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p-1 2 p3 q+1 3
-Au+au=|u| u+q?)n|u| Tulv T, xelR’,

— |91 2 pil, a3 3
-Av+ Bv=|v|7 v+mk|u| T[Ty, xeR’,

ux) — 0, vix) = 0, as x| = oo,

where 3 < p,q <5, a, B are positive parameters. We show that there exists Ay > 0
such that the equation has at least k radially symmetric sign-changing solutions and
at least k seminodal solutions for each k € N and A € (0, Ax). Moreover, we show the
existence of a least energy radially symmetric sign-changing solution for each

A € (0, Ao) where Ay € (0, A1].

1 Background and main results
Consider the following nonlinear coupled Schrodinger system:

_1 2 p3 gl
—Au + au = |ulf u+mk|u| Tulv|'z, x€L,
p+l q-3
—Av+By=v[i v+ ZAu| T v Ty, xeq, (1.1)

p+l
u=v=0 ondQ.

Here = RN or Q is a smooth bounded domain in RY, «, 8 are positive parameters and
A #0is a coupling constant.

In the case p = g = 3, system (1.1) becomes the cubic system:

—Au+au=u®+r?, xeQ,
—-Av+Bv=v*+rudy, x€Q, (1.2)
u=v=0 ond<,

which arises in the study of many physical phenomena like nonlinear optics and Bose—
Einstein condensation (cf. [15, 17]). Therefore, in the last decades, system (1.2) has re-
ceived great interest from mathematicians. When € is the entire space RV, the existence of
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least energy and other finite energy solutions of (1.2) was studied in [2, 11, 12, 18, 21, 22, 27]
and the references therein. In particular, when A > 0 is sufficiently large, infinitely many
radially symmetric sign-changing solutions of (1.2) were obtained in [23]. Liu and Wang
[20] studied a general m-coupled system (m > 2) and proved that system (1.2) has in-
finitely many nontrivial solutions, but whether solutions obtained in [20] are positive or
sign-changing cannot be determined there (see also [21]). When Q@ C RN (N =2,3) is a
smooth bounded domain, there are also many papers studying (1.2). Lin and Wei [18]
proved that a least energy solution of (1.2) exists within an appropriate range of A. Dancer,
Wei, and Weth [14] and Noris and Ramos [24] proved the existence of infinitely many pos-
itive solutions of (1.2). When €2 is a ball, a multiplicity result on positive radially symmetric
solutions was given in [29]. Later, by using a global bifurcation approach, the result of [29]
was reproved by [4] without requiring the symmetric condition. Under some more general
assumptions, Sato and Wang [26] proved that system (1.2) has infinitely many semipos-
itive solutions (i.e., at least one component is positive). In [14], the authors proved the
existence of unbounded sequence solutions for N < 3 and A < —1. As pointed out above,
for A < -1, Wei and Weth [29] proved that (1.2) has a radially symmetric solution, which
turns out to be a positive solution.

We remark that the existence of infinitely many sign-changing solutions or seminodal
solutions to (1.2) was solved by Chen, Lin, and Zou [10] and Liu, Liu, and Wang [19]
independently, where N <3 and A < 0.

To the best of our knowledge, the existence of sign-changing solutions to (1.1) has not
ever been studied in the literature when © = R3 and 3 < p,q < 5. The main goal of this
paper is to study the existence of sign-changing solutions, seminodal solutions, and least
energy sign-changing solutions to problem (1.1) when A > 0 is small. This will complement
the study made in [14, 19, 21, 22, 29].

Definition 1.1 A solution (u,v) is called nontrivial if # % 0 and v # 0, a solution (i, v) is
semitrivial if (i, v) is type of (,0) or (0,v). We call a solution (u,v) positive if # > 0 and
v>0in RY, a solution (u,v) sign-changing if both z and v change sign, a solution (u,v)
seminodal if one changes sign and the other one is positive.

The first main result of the current paper is as follows.

Theorem 1.1 Assume o, 8 > 0. Then for any k € N there exists Ay > 0 such that system (1.1)
possesses at least k radially symmetric sign-changing solutions for each fixed ) € (0, A¢).

We can also study some further properties of the sign-changing solutions obtained in
Theorem 1.1. It is well known that a nontrivial solution (i, v) € HY(RN) x H'(RN) is called
a least energy solution if its energy is minimal among the energy of all nontrivial solutions.
A sign-changing solution is called a least energy sign-changing solution if it has the least
energy among all sign-changing solutions. Precisely, we have the following theorem.

Theorem 1.2 Assume «, B > 0. Then there exists Lo € (0,11] such that system (1.1) pos-

sesses a least energy radially symmetric sign-changing solution for each fixed X € (0, 1).

Theorem 1.3 Assumea, p > 0. Then for any k € N there exists Ly > 0 such that system (1.1)
possesses at least k seminodal solutions for each fixed ) € (0, A¢).
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Remark 1.1 We can prove that system (1.1) possesses at least k seminodal solutions with
the first component positive and the second component radially symmetric sign-changing
or the first component radially symmetric sign-changing and the second component pos-

itive.

The structure of this paper is as follows. In Sect. 2 we prove the existence of at least k
radially symmetric sign-changing solutions. The main tool will be the use of a new no-
tion of vector genus by [28] and a new constrained problem by [10], which will be used
to construct minimax values. Remark that the ideas in [10, 28] cannot be used directly,
and here we will give some new ideas. The crucial idea in this paper is turning to study
a new problem with two constraints to obtain sign-changing solutions of (1.1). This idea
has never been used for (1.1) in the literature up to our knowledge. We will give all the
necessary details of the proof. Section 3 is then dedicated to the proof of Theorem 1.2 by
using a minimizing argument. Finally in Sect. 4 we will present the proof of Theorem 1.3
applying the arguments in Sect. 2 and Sect. 3.

We give some notations here. Throughout this paper, we denote the norm of L?(RY)
by lulp = (fpn lul? dx)!l’, the norm of H'(RY) by [[u|* = [pun (IVul* + |u]*) dx, and positive
constants (possibly different in different places) by C. Define H, := H}(RN) x H}(RN) as a
subspace of H := H'(RY) x H'(RY) with norm ||(,v) |17, := |« + [[v||; where

H} (RY) := {u € H'(R") : u is radially symmetric},
[lac]|? ::/ (IVul® + a|ul®) dx.
RN

2 Proof of Theorem 1.1

In this section, we assume that N =3,3 < p,g<2* -1 =5 and «, 8 > 0. Without loss of
generality, we assume p < q. Let A € (0,1). For any k € N, let X;,; C H}(R3), dim Xj,1 =
k + 1, and there exists g € Xi;1 and uo > 0. Then there exists m > 0 such that for any

. . +1 +1
(14, v) € Xir1 X X satisfying |uly', [vI77) < 2, we have

llullg < m, Ivilg < m. (2.1)

Without loss of generality, we can assume m > 1. Obviously, the sign-changing solutions
of system (1.1) are the critical points of the C? functional ®; : H, — R given by

p+1

1 gq+1
p+l |
qg+1

gq+1

1
;. (u,v) := §(||M||f, +Ivilg) - ul V|

L

p+1
4-)\, p+l g+l

- - 2 |yl 2 dx.

i) L

We will look for solutions of Eq. (1.1) as critical points of the functional ®; restricted to

(2.2)

the sphere
A= {(M,V) €H,: |M|p+1 =1, |V|q+1 = 1}

To obtain at least k sign-changing critical points, we need to define several minimax en-
ergy levels using a new definition of vector genus introduced by [28]. As in [28], we recall
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vector genus and take the transformations

oi: A— A, o1(u,v) = (—u,v), oo (u,v) = (u,—v), i=1,2.
Consider the class of sets

F= {A C A:Aisaclosed set and o;(u,v) € A,Y(u,v) € A,i = 1,2}

and for each A € F and ky, ky € N, the class of functions

2
Fuyjp(A) = 1f = (fi.fp) : A > [ [RN: f:: A > R5™ continuous,

i=1

Siloi(u, v)) = —f(u, v) for each i, i (0j(u,v)) = fi(u,v) fori #j ;.

where R := {0}.

Definition 2.1 (Vector genus, see [28]) For every nonempty and closed set A C H}(S2)
such that —A = A, we define

y(A) = inf{k : there exists /1 : A — R¥\{0} continuous and odd}

and y (A) := o0 if no such k exists.
Let A € F and take any ki, k, € N. We say that y(A) > (ky, ky) if for every f € Fi x,)(A)
there exists (¢, v) € A such that f(u,v) = (fi (4, v), /2(u,v)) = (0,0). We denote

kuk2) . {A eF:yA)=> (kl,k2)}'

Remark 2.1 Note that Definition 2.1 does not actually define the quantity y (4) but gives
the meaning of y(A) > (ki,k2) only. A different notation of genus was introduced by
Chang, Wang, and Zhang in [8].

Lemma 2.1 (see [28]) Let f = (f1,/2): ]_[?=1 Ski ]_[izz1 R be a continuous function such
that fi(o;(u,v)) = —fi(u,v), filoj(u,v)) = fi(u,v) for any i,j = 1,2, i #j, then there exists
(210, vo) € ]_[f=1 Ski such that f(uo, vo) = (0,...,0).

Lemma 2.2 (see [28]) The following properties hold.
(1) Take A, x Ay C A and let n; : S5~ — A; be a homeomorphism such that
ni(—x) = —ni(x) for every x € S5, i =1,2. Then A, x Ay € T*1%2) where
Skl = (x e RN : |x| = 1}.
(2) We have n(A) € T* k) whepever A € T® %) gnd g continuous map n: A — Ais
such that noo;=o0;0n,Vi=1,2.

Together with the notation of vector genus, to obtain sign-changing solutions, we will
use cones of positive or negative functions based on the works such as [5, 13, 30]. We
define the cone

Py = {(u,v)eH,:uzO}, Pzzz{(u,v)eH,:vZO},

Page 4 of 28
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and take P := U?:I(Pi U —P;). Moreover, for any § > 0, we define
Ps := {(u,v) € H, : dist((u,v), P) < 8},

where

dist((u, v),P) = min{distpﬂ(u, P1), dist,q (4, —P1),
distys1 (v, P), distysr (v, =P2) ),

; — i _ _|yF
dist,, 1 (, £P1) := wenill;l |t — w|ps1 = |u |p+1,

. o B _ T
dlStqH(V;:EPZ)' weniﬂ;’z"/ w|q+1 |V |q+1’

where u* := max{0, £u}.

1
Lemma 2.3 For any 0 < 8 < 2771, there holds A\Ps # ) whenever A € T*1k) with
kl: k2 = 2.

Proof For any A € T2 define f = (f}, f5) by

,V) = udx,0,...,0),

Filwy) (fstu . )

fz(u,v)=</ |v|qux,0,...,0),
R3

then f € Fix k) (A), so by Definition 2.1, there exists (uo,vy) € A such that f(uo,vo) =
(0,...,0). By A € A, we deduce that

+\p+1 _ _\p+1 _l
[ [y as=,
/ (vg)q+ldx=/ (1/5)q+1dx=l
R3 2

R3

1 1
therefore, dist((uo, vo), P) = 2" 7T, and so (uo, vo) € A\P; for any 0 < § < 2771, d

For technical reasons, we will work on the neighborhood of A in H!(R?),

1 1 .
A* o= {(u,v) €H,: 5 < |u|§ﬂ <2, 3 < |VIZ+} < 2}, (2.3)
when u € A*, (u,v) # (0,0). Define
B = {(u,v) € A* : ull} < m, V]| < m}, (2.4)
By = {(u,v) € A: ull}, < m, |IvI§ < m}, (2.5)

Coni= {(w,v) € A Nlullg = m, VIl = m}. (2.6)
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Let S, and S, be the sharp constants of the Sobolev embedding H} (R?) < L?*!(R?) and
HNR3) < L1*1(R3), respectively,

lull? = Splul?,;, VI3 = SglviZ,y,  Yu,ve HY (R). (2.7)
For any (u,v) € H,\{(0,0)}, we have
sup @, (tu,sv) = Oy (L0 ths Supv) = Yalu,v), (2.8)
t,s>0
where t,,,,3, 8, > 0 satisfy
0 d
& qD)»(tu) SV) |(tu,v,kxsu,v,k) = & (D)L (tul SV) | (tu,v,k'su,v,k) =0.

Note that for ¢,s > 0,

Lo o 2 AR R
D, (tu,sv) .= = (t°||u||; +s°||v - —u - — v
plaays9) = 3 (Nl + S WVIG) =l = = WIgh

(2.9)
4}\. p+l
- 7thT |u|T|v|T dx.
p+1(g+1)
Define
2 p+l 2 pologil prl g+l
F(u,v,A56,8) = tllully, =t lul, ———t 7 s 2 4 lu| 2 |v| 2 dx
q+ 1 R3
= tF(u, v, A; L, 8)
and
G(u,v, A3 t,5) :=s||v||/23 —sq|v|gj} - —tT TA/ |u|® e [v] 5 dx
:=5G1(u, v, A5, 5),
which implies
Fl(ui v, )ﬁ tu,v,)u Su,v,)\) = Gl (M, v, )\; tu,v,)u su,v,A) =0. (210)

Since Fy(u,v, A; t,5) and G (u, v, A; £, s) are decreasing with respect to ¢ > 0 and s > 0, respec-
tively, F1(u,v,2;0,0) > 0, G1(&,v,4;0,0) > 0, 50 t,,,,3, Suv,5. are unique. Note that for £,s > 0,
3 <p,q<5,by (2.9), we can choose some positive constant 7" such that ®; (¢u,sv) < 0 for
any t,s > T, therefore, t,,,, 5, € [0, T].

Define

>[(q+1)5p(%)m]w2 ip+1;zgj+_1l) mET 1+ m. (2.11)

Then B,, C By, B}, C BE,.
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Lemma 2.4 Foranyk € N, there exist » € (0,1) and Ty > To > 0 such that for any X € (0,%)

and (u,v) € B, we have
T2 S tu,v,)u Su,v,k < Tl' (212)
Furthermore, there exist Ay € (0, 3:] and c > 0 such that for any A € (0, L), we have

sup sup ®; (tu,sv) <cx < inf sup &, (tu,sv). (2.13)

(u,v)eByy, t,s>0 u,V)€Ci ¢,5>0

Proof We see from (2.9) and (2.10) that
sup (D)» (tu: SV) = (D)\(tu,v,)\u» Su,v,)LV)

t,s>0
1 1 1 1
= (5 - ﬁ)tﬁ,v,,\ﬂuﬂi + <§ - qT) Tvlﬂ |Zﬁ (2.14)

(q 1) p+1 q+1
g teasuna " ¥

Firstly, we claim that there exist e (0,1) and T7 > T, > O such that for any A € (O,X) and

(u,v) € B, we have
TZ S tu,v,)n Su,v,k S Tl~

By (2.10),

1
lullZ \P7T L
bupp < il < (2m)P1 <2m,

|u|p+1

|~

A
VIZNAT
Suyp < | |q+1 < (2m)TT < 2m.
v
gq+1

Thus, we obtain that
tu,v,)n S[,{,v,)L < 2}% =: Tl'
Define

(g + 1)S,(L)7T

x = 17+q -2
8(2m) 2

We see from (2.11) that & € (0,1). Moreover, by (2.7) and (2.10), for any A € (0,%), we have

e

73 q+1 1 +1

pil 2 2 prl gl

uvk|u|p+1_ ”u” 1 uv,k uvk /3'”' 2 |V| 7 dx
R

1 1% 2 p+1 q+1
> S, E) —q+1(2m) )L|1,t|p+1|v|q+1

Page 7 of 28
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1 1
Then we get £,,,,, > (%”)P*1 . Similarly, we have s,,,,, > (%‘7)‘1*1 . Thus, we get
1

1
S\ 1 /S, \41
buyor S, > min{ ({) , (g‘]) } =T).

This completes T < t,,,; < T;.
Now we prove the existence of A; and cx. For any (u,v) € B and A € (0, A, by (2.14),
there holds

1 1 1 1 1 1
b Pttt on) - (5 } ,m)"‘im”””?z - (5 - q—l) AR

t,s>0
1 pl q” +1 +1
(q ) tu?/)\ uvk / |u|pT|V|qux

T+ D@+ R3

<Ca.

Hence,

sup sup O, (tu,sv)

(u,v)EBy, t,5>0

1 1 1 1
< o | (G- pan oottt + (5- g i -
u,V)Ebm

q+1

2
1 1 ul|2\ 71 1 1 Ivlig \ «T
= o [y (i) v (5 ) () e
wneBaL\2 P+1/\|uff 2 g+l \wit,

p+1

1 1 Jaat 1 1 g+l
<l=- mrl o+ | —— ma T + CA
2 p+1 2 g+1

1 1 pl
<2<—— 1)mpl+C)\<(q+1)mﬁl+C}\

and

inf  sup &, (tu,sv)

(u,)€C ¢,5>0

1 1 1 1 1 1
Z(uinefc [(E—ﬁ)t,f,v,klluﬂiJr (5_—q+ ) St IV |Zili|

) 1 1 9
>( 1§1fc 5 " prl uM||u|| -Cx
u,v)eCp; p+

11 \/S,\7T.
> =-- — m—CA,
2 p+1 8

then by (2.11), we can choose

Ak = min q+1 Z%X
=mi mr==, )
k 2C
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11 \/S,\PT.
c=--—— — m — Chy
2 p+1 8
such that ¢, > 0 for any 0 < A < A the conclusion holds. O

For any (u,v) € B}, the following linear problem

p—3 g+l
~Ag +ap - q+1tmsmf\|u| Tt = Py,

p+1 q—3 B
SAY B - it sl T T g = s e, (2.15)
@(x) — 0, 1ﬁ(x) — 0, as|x| — oo,

has a unique solution (¢, ¥) € H, \ {(0,0)}. Then we can choose 1, small enough such that
for any ¢, € H'(R3),

q+1

/ - dx llW—m& Sut ok fia 107 @2l
ul” Tupdx =

b
1 2
> 2”(p1” 0
tf:vk
and
+1 q—3 f N
il - S0 fos |l T V)T 2 d
p+1 uv,k u,vk R:
[ -
Su,v,k
_ B
= g1
Suvk
Define
1 1

= 5 Vi=—""7"7-—"—7"7""—7©¢/"
’ Jgs 1wl tug dx Jrs VT dx

then 1 >0, v >0 and (@, 1;) := (@, V) is the unique solution of

L= PoRgyist
-Ap +ag - q+1 by aSupaklul 2 @l 2 =/uf5“|u|
p;l q-3 prl g3 ~ 41
_Alp+,3w p+ltu”su”k|u| T |2 Y= MM|V| v, (2.16)

Jas [ulP uGdx = fos VT v dx = 1,

P(x) = 0, U(x)— 0, as x| — oco.
Fixed any k € N, we define
Ay = {M € Xgs1: |u|p+1 = 1}, Ay = {V € Xis1: |V|q+1 = 1}

There is an odd homeomorphism from S¥ to Ay and A,. By Lemma 2.2(1), A:=A; x Ay €
[k+Lk+1)  Observe that from (2.1) we deduce that A C B,,, and so by (2.13),

sup sup D; (tu,sv) < cx.
(u,v)eA t,s>0

Page 9 of 28
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Define

Fikl’k” = ’A er%k) . 4 c B, sup sup ®; (tu,sv) < ck}.

(u,v)eA t,s>0

KK,
Observe that F;kl’kZ) £, F;kl’kz) C Fi %) ywhen k1 > ki and ky > k}. We are now ready to

define a sequence of minimax energy levels which will turn out to be critical levels for ®;
1
over A. For every ki, ky € [2,k + 1] and 0 < § < 2771, define

d/f(gkz := inf  sup sup ®; (tu,sv). (2.17)
’ Ael"ikl'kz) A\Ps t,s>0

It is easy to see that
1
d/;fs’kz <c¢x forany0<8<27771,2 <kj,ky <k+1. (2.18)

As a step towards to the proof of Theorem 1.1, we will prove that d’;}s’b is indeed a
critical level of &, for § sufficiently small. To prove Theorem 1.1, it is necessary to find
a pseudogradient for @, over A for which P; is positively invariant for the associated
flow. We can now define the operator

~

K: B;%l — Hr; (Lt, V) = ((7;7 w);

~

that is, for any (u,v) € B, K(u,v) = (@, V) is the unique solution of (2.16). It is easy to
prove that K(o;(u,v)) = 0:(K(&,v)), i = 1,2.

Now, we give some property of the operator K. We can now prove that K is a compact
C! operator.

Lemma 2.5 The operator K is of class C.
Proof Define C' maps J;: By x H(R3) x R > H}(R3) x R, i = 1,2, by
]l ((M, V)) w, )/)

2 1’;3 g+l p-3 g+l
-1 22 = -1 -1
= (a)—(—A+a) (ﬁtuix\sui/,/\)‘|”| Tl Tyt ulf ),

/ P uw dx — 1)
R3

and

2 ((w,v), 0,7)
p+l  q-3

2 pil a3 pl g3 -
-1 pr- = 1 -1
= (a) - (—A + ﬁ) <p? uiksuik)\lm 2 |V| 2w+ VSZ,V,}JV'q V),

/ T v dx — 1)
R3

then by (2.16), J1((x,v), @, 1) = J((u,v), ¥,v) = 0. Moreover, the derivatives of J; and J
with respect to (w,y) at the point ((,v), @, 1) and ((,v), 1;, v) in the direction (wo, o),
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respectively, are
Doy i (1, v), @, 1) (@0, o)

2 p-3 g+l
= (a)o—(—A+a)’l<q—1t,7‘,_ksu”k|u| 7 wolv| T + ol lulP™! ),

/ P uw, dx>
R3

and
Da),y]Z((ur V)» J, V) (wO: VO)
1 2 p+1 q-3 1
= (wo—(—A+ﬂ) (p—l Y mklul Sk w0+V0SuM|V|q V>,

VI tva dx).

R3

We claim that D,,, /i ((#,v), @, ) and Dy, Jo((u,v), J, v) are bijective maps. In fact, for
any (w,y) € H(R®) x R, the following linear problems

p-3 g+l
-Aw; +aw; — —— M‘,)\su‘,)\)»ml by w1|v| :—Aw+aw,
g+1
=3 q+l 1 1
—Awy + 0wy — —— 1 by Suvailul & a)2|v| =t ulf"u,

have unique solutions w;,w, € H}(R?), , # 0 by u € B% and (2.12), then we define

Y = Jgs lulP uw, dx

O =
" Sz lulPtuw, dx

we have

Doy 1 ((4,v), @, 1) (@1 + yo@2, Y0) = (@, 7),

thatis, D, J1((#,v), @, u) is surjective. Similarly, D,,, J((x, v), 17/4, V) is surjective.
Iwa,y]l ((l/l, V); ‘Z» M)(wO) VO) = (0’ 0), then

p3 gq+1

—Awg + awy = tumsum)»|u|7a)olv|7 +y0t5‘,k|u|

2
g+l
Sz 4P uwo dx = 0,

so wg =0, yotpv)\luV’ 'u =0, by t,,, >0, u € B, we have y, = 0, this implies D, , /1 (%, v),
@, 1) is injective. Therefore, D,,, J1 (4, v), @, i) is bijective. Similarly, D, J»((u,v), 1;, v)isa
bijective map. Then we can apply the implicit theorem to the C* maps D,,, /1 ((, ), , i)
and D, Jo((u,v), fﬁ, v), we have the conclusions. O

Lemma 2.6 Let {(uy,,V,)} =1 C Bi. For any 0 < A < A, there exists (@o, {ﬁo) € H, such that,
up to a subsequence,

K(t4n, V) = (@0, Vo), strongly in H,.
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Proof Since {(4,,Vy)}u>1 C Bji, we have

(s Vi) = (100, v0) weakly in H,,
u, — up, strongly in LP+1(R3),

vy, — Vo, strongly in L7 (R?),
and |uolp+1 = [Volg+1 = 1. By (2.12), we also have
Ly v = Lugwoi > 0, Supvuh > Sugvo,k > 0.

Then by (2.3), (2.7), (2.12), and (2.15),

p-3

2
2 2
12 = 0l = Tt [ bl T il

1
5”?071 o < ”(pn
=ti;in,}\‘/‘ |un|p71un§0ndx
R3
=c [ kvl ds
R3

p
=< C|un|p+1|(/7n|p+1 < Cllenlle-

Similar estimates hold for v, we get ||y, II?, < Cll¥ullg» 50 {(@n, ¥u)}n=1 C H, are bounded.
Thus

(0> W) = (@0, ¥o) weakly in H,,
@n — @o, strongly in I#*'(R?),

Y, — Yo, stronglyin Lq+1(R3).

Then by (2.15) and Hoélder’s inequality,

fR ; (VouV(@n = 90) + au(en — 90)) dx

2 p3

q+l
=ﬁtu:,vn Mn Vi / |Mn| T (/)n((/)n ¢O)|Vn| 2 dx

1 _
+t1!:nl/n /3 |t | lun(%—%)dx
R

— 0, asun— oo.

Hence,

a1 = [ (V050 + apug)dr + o) = ol + o)
R
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Similarly, we have ||¥,,[|3 = [[¥oll5 + o(1). Therefore, we have (¢, ¥») — (g0, ¥o) strongly
in H, and (o, o) satisfies

-3 q+1

—Ao + oo - q+1 u(?VOASMOVOAMMd T (00|Vo| £ —tﬁovoﬂuol 0
p+l q-3

~Ayo + o - p+1 MOVOASMOVMMMM o) 2 Iﬁo—Suovo,\lVd

@o(x) >0, Yolx) >0, as|x]— oo,

since |u0|p+1 = |V0|q+1 =1,s0 Po 7/0; WO 7/0 and

1 1
M = - = [ho,
" f]RS P~ t A flR3 |t P~ uo@o dx
1 1
Vy = — =:1p.
" fes Walt W dx T [os [vol?tvoyo dx
We see that

(5}1: Jn) = (Mn‘/’nr Vnwn) - (MO‘va VOWO) = (&Or 1;0), strongly in H,.
This completes the proof. d

Define

Bjis = {(u,v) € By : sup Oy (tu, sv) < ck}

t,s>0
then by (2.13) we obtain B,, C Bji,;.

Lemma 2.7 Forany 0<3§ < 27ﬁ sufficiently small, we have that
. ) .
dist(K (4, v), P) < 7 Y(u,v) € Bj, dist((u,v), P) < 6.

Proof Suppose by contradiction that there exist §, — 0 and (u,,v,) € By, satisfying
dist((z4,,, vy,), P) < 8,, and dist(K (u,, v,,), P) > %" We suppose that dist((4,, V), P) = |14;;]p+1
without loss of generality. Let (&, V) = K(tt, v,) and On = UnPn» U = VU By a similar
proof as in Lemma 2.6, we have that 1, and v, are uniformly bounded. By (2.12), we can

take A smaller if necessary such that for any A € (0, A¢) and (u,v) € B, we get

Ly ~ 2 3
Tl <1702 - =it [ 17 @)l d

This together with (2.7) and (2.16) allows us to get
~ 1~
il 15l

3
< (I gt [ ol @) )
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= _C“ntlu?;,lvn,A/ |1l 105, A
R3
<c /R () o = Cla 255y = LI

and hence dist(K (4, v,), P) < |@,, |ps1 < Cé8h < %” for n sufficiently large, which is a con-
tradiction. This completes the proof. g

Now define a map
V:By, — Hy; (u,v) = (u,v) = K(u,v).
It is easy to prove that V(o;(u,v)) = 6:(V(u,v)), i = 1,2. We will prove that if (u,v) € Bz\P,
V(u,v) =0, then (¢,,,,,4, S, v) is a sign-changing solution of Eq. (1.1). Firstly, we prove that
V satisfies the Palais—Smale type condition and V' is a pseudogradient for sup; .-, ®; (tu, sv)
over Bj;. Denote W, (u,v) := sup, .o ©;. (tu, sv).
Lemma 2.8 (Palais—Smale type condition) Let (u,,v,) € Bj; be such that

W, (U, V) > c<cx  and  V(uy,vy) > 0 strongly in H,.

Then there exists (ug,vo) € Bjy; such that (u,,v,) — (uy,vo) strongly in H,, up to a subse-
quence, and V (ug, vo) = 0. We also have

T3

For any (u,v) € By, (VWi(,v), V(u,v)), > 5

2
[V,
Proof Similar as Lemma 2.6, we have, up to a subsequence,

(Mnr Vn) — (u()y V()) Weakly in Hr:

K(tty, V) = (P0,%0)  strongly in H,.
Then we have, as n — o0,

o(1) = (V(un’ Vi), (U — U, Vi — V0)>H

A
= (U, — Eﬁm Uy — uO)Hr + Vi =V, vy — VO)HV

= (Uony Uy — 1) 1, — (@ tn — U0) 1, + (Vs Vi = Vo)1, — (Vs Vi — VoD,
whence
(U thy — o) 1, + (Vi Vi — Vo), = 0(1).
Then (u,, vi,) = (uo, o) strongly in H, and (u, o) € B,
D; (g v,1 105 Sug,vp, V0) = nlirlgo D) (L v h Bt iy d Vi) = € < Cis

then by (2.13), we have (1o, vo) € Bii, V (1o, vo) = limy,_, o0 V(14y, vyr) = 0.

Page 14 of 28
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Finally, we prove that V is a pseudogradient for W, (4, v) over Bj. By (2.9) and (2.10) we

can prove that

(V\Ilk(u, V), (w, )) tu ” f (VuVw + auw) dx
R3

(2.19)
2\ 1’+1 251
- q+ +1 MV,A uv, |M| 2 ua)|V| 2 dx,
(VWi (,v),(0,w)),, :sf,“/ (VvVo + Bvw) dx
r LAl RB
2.20
2% b o Pl g3 (2.20)
- tu,v,lsu,v,l |u| 2 |V| T vo dx
p+1 R3

hold for any (#,v) € Bj and w € H}(R?). We can take A; smaller if necessary such that for
any A € (0, 2¢) by (2.19), (2.20), (2.12), and (2.16)

(V0 G, v), Vv,

=t /I;S(VLN(u - @) +au(u - 9)) dx

+8% 5 /RB (VwW(v- ) + Bu(v — 1;)) dx

2 p+1 q+1

_q+1 uv,A uv, / |M| 2 uu ¢)|V| 2 dx
p+l q+1 ~

p+1 uvksuvA f |M|T|V|TV( —lﬂ)dx

2 ~n2 2 2
=t2 N =Gl2+ s, lv="713

+tw,\/3(V'g5V(u—@+oz$(u—§5))dx

+to [ (VTG T) +aTo- ) ds

2 p+l g+l

- q+ i1 uv,Asuzl/,A / |M| T u(u §0)|V| 2 dx
17

+1 q+l ~
p 1 uvksuvA f |M| 2 |V| 2 V( —W)dx

2 ~2 2 2
= u,v,,\||M—§0||a+S,”,\||V—1ﬁ||ﬂ

2 p+l + )

- q+ 1 uv,)» uv)» / |bl| 2 (I/l ’(ﬁ) |V| 2 dx
plogrl p+l q-3 ~

-——t2 52 A ul 7z vz (v-v)tdx
p+ 1 u,V,A°u,v,A /H‘@ | | | | ( I/f)

tz A 2 A
> S gy G + Sy - 2

V

\

T2 ~ ~ T3
= =g+ v =v13) = 5 [ Ve,

This completes the proof. d

Page 15 of 28
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Lemma 2.9 There exists a unique global solution n = (n1,n2) : R* x By, — H, for the
initial value problem

%U(t» (Li, V)) = —V(Tl(t: (Lt, V))):
77(0; (u7 V)) = (l/t, V) € Br';t,)w

(2.21)

Moreover,
(1) Foranyt >0 and (u,v) € By, there holds n(t, (u,v)) € Bj,;
(2) Foranyt >0, (u4,v) € B, there holds n(¢t,0:(u,v)) = o:(n(t, (4, v))), i = 1,2;
(3) Forany (u,v) € By, Va(n(t, (u,v))) is nonincreasing in t;
(4) There exists 8o € (0, 271#) such that, for any 0 < 8 < 8¢, (u,v) € Bjzp NPs and t >0,
there holds n(t, (u,v)) € P;.

Proof 1t follows from Lemma 2.5 that V € CY(B%, H,). As By, C Bji C B, we get that
V € CY(Bj, Hy). Then there exists a solution 7 : [0, Tinax) X By — H,, where Ty is the
maximal time such that (2.21) has a solution n € B,.

For any (u,v) € By, and t € (0, Tpnax), there holds

d "
d—t/RS|m(t,(u,v))|p dx
=—(p+1) /R i 1 (8, () [P 0 (& () Vi (0 (2 (1, 1)) dx
=—(p+1) ./RB |m (¢ (u,v)) |p_1r]1(t, ) [m (& w,v) - K (n(t, (w,v))) ] dx
=(p+1)-(p+ 1)/ |1 (&, () [ dx,
R3
so we have

d : .
E[e(’”l) (/Rg|m(t, (u,v))\p Y - 1)} =0.

Then

eww( f |2 (8, ) [P e - 1) = f [0, o) [ 1
R3 R3
=f lulP*'dx—1=0.
R3

Similarly, there holds

ewf( [ e ) - 1) = [ 0. Gu)|™ -1

= | tdx-1=0,
R3

we deduce that for any (&, v) € By, and t € [0, Tax),

/|m(t,(u,v))’p+ldxz/ ’nz(t,(u,v))’q+1dle.
R3 R3
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Thus, for any ¢ € [0, Tmax), (&, v) € Bz, we have n(t, (u,v)) € B, N A = B If Tax < +00,
then 1(Tmax, (#,v)) € Ciir. There holds W, (7(Tmax, (¢, v))) > ck by (2.13). Moreover,

d

L, (n(e, ) - <V\IJA(n(t, ), Lot v))>

Hy

- (06 ), V(o0 ), @22)
T3 2
=-VaE@)ly, <o
On the other hand, we see from (i, v) € Bj;; and (2.22),

“IJ)» (77 (Tmax’ (M, V))) = \pk (T](O, (ur V))) = qj}n(ur V) < Ck»

it yields a contradiction, so Tmax = +00, n(t, (¢, v)) € Bz, and (1)(3) hold.
Since V(oi(u,v)) = 0:(V (1, v)), i = 1,2, then (2) holds.
Take 8y > 0 as in Lemma 2.7, note that as t — 0,

n(t (,v)) = (u,v) + t%n(t, (4,V))le=0 + 0(t)

= (u,v) =tV (u,v) + o(t) = (1 = £)(&,v) + tK(u,v) + 0(2),
hence for any 0 < § < 8y, (&, v) € Bj;5 N'Ps, we have

dist(n(t, (u, v)), P) = dist((l —t)(u,v) + tK(u,v) + o(t), 73)
< (1 - ) dist((,v), P) + tdist(K(u,v), P) + o(2)

£8
<(1-1)38+ §+o(t)<8,
for sufficiently small ¢ > 0, and (4) holds. This completes the proof. d

To prove Theorem 1.1, we will give that d];}gkz is indeed critical energy level for § > 0
sufficiently small.

Lemma 2.10 For any k € N, ky,ky € [2,k + 1], 0 < § < 8¢, and 0 < A < Ay, there exists

(%o, Vo) € H, such that (dy, Vo) is a sign-changing solution of Eq. (1.1) and ®; (tio, Vo) = d/;}ékz.

Proof By (2.18) we see that d’;}a’kz < ck. Assume that there is small 0 < & < 1 such that for

any (u,v) € B, |V (1, v) — d’;}(gkﬂ < 2g, dist((u,v), P) > 8, there holds ||V (u, V)||§{r >¢.By

(2.17), there exists A € Ff\kl’k” such that

sup ¥, (u,v) < d’;lgkz +8, (2.23)
A\P; ’

then sup, W (&, v) < ¢k, A C Bs,,.. Thus we consider the set Ap = n(%,A), Ao € Bj by

Lemma 2.9(1). From Lemma 2.2(2), Lemma 2.3, and Lemma 2.9(3), we get

sup \IJ)\ (u’ V) =< sup \IJ)L (I/l, V) < Cky
Ao A
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s0 Ag € Fikl’kz) and Ao\ Ps # @. Then, by (2.15), (2.19), and Lemma 2.9(3), for the ¢ > 0,
te [0, %], there exists (u,v) € A such that n(%, (u,v)) € Ao\'Ps satisfying
2 2

4
dl,{,lg’kz < sup W, (u,v) < W, <n<ﬁ,(u, v))) iy

Ao\Ps 2 (224')

<UL (n(t ) +e < Wi(wv) +e< d];fs’kz +2e.

We conclude that ||V (n(¢, (i, v)))||§{r > ¢ foranyt € [0, Tizz] and

0006, 50) = {99 (060 ), V0 6, 0 ) .
S| =

Therefore, by integrating over 0 to Tizz and (2.24), we have

(A —e) - (d“kz+8)<“’*<n(%’<u,v>)>‘%<u,v)
2

T2 (72
<——28/ 2 dt=-2¢,
==5¢ )

it yields a contradiction, and therefore, for any ¢ = % > 0, there exists (u,, v,) € By, such
that

W (s v) =52 <26, || Vv ||}

y =€ and dist((t4u, vu), P) = 6.

By Lemma 2.8, there exists (1, Vo) € B, such that (i, v,) — (10, Vo) strongly in H,, up to

a subsequence. Hence, we have
W, (o, vo) = d’{ﬁ;kz, V(uo,v9) =0 and dist((uo,v0), P) > 6.

We conclude that (ug, vp) is sign-changing and (i, vo) = K(u0, vo) = (@0, 1}0). It follows from
(2.16) that (19, vo) satisfies

p=3 q+1

p=3 g1
—Aug + g = /u:po v |HolP ! q+ltuo vorSuavon MU0l 2 uo|v0| T,
—Avg + Brg = vsy V0A|V0|q 1Vo + o tI,Z_vok o0, Mol " vl 2 o, (2:25)
uo(x) — 0, volx) = 0, as |x| — oo.

On the other hand, £, and s,,,,,, satisfy

2 p3 q+1 p+l g+l
2 2 2 = -5
luoll2 = &0 luoloiy + T TSt A; 1ol F ol T,

1 q 3 1 1
g+1 2 ol prl il
”VOHﬁ Suo, V0A|V0|q+1 + p+ ltuo vorS MO)V() )\)L /11\{3 lug| 2 |vol 2 dx,
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then we have 1 = v = 1. Hence, we have that (£,,,,,,1 40, Suy,v,1 V0) is @ sign-changing solution
of Eq. (1.1) by problem (2.25) and

D, (2o, Vo) := P (tug 0,405 Sug.vo.V0) = Wi (o, Vo) = dl,\(,lg'kz'
This completes the proof. g
Proof of Theorem 1.1 Observe that from Lemma 2.10 we know that for any k € N, &y, k; €
[2,k +1],0 <8 <8, and 0 < A < A, there exists a sign-changing solution (zy, V) with
D, (110, V0) = d’;}(gkz. For any fixed k; € [2,k + 1], we have

k1,2 k1,3 k1,k ki,k+1
dys <dys < =dyy <diy <

Suppose that problem (1.1) has at most k — 1 sign-changing solutions by contradiction,
then there exists k; € [2, k] satisfying

di= i - Y <

Now define
M= {(u, v) € By : (u,v) sign-changing, W, (u,v) = d, V(u,v) = 0},

then M C F is finite. So there exist N € [1,k — 1] and {(u,, V) }1<n<ny C M such that
M = {@n, v } U { (s, vi) } U { @, =vi) } U {(—tt, =vi) }} e

Forany 1 < n < N, there exist open neighborhoods 2}, 2, @3, Q% of {(u,,, )}, {(~thn, i)},
{(st, =)}, {(—14, —v,)}, Tespectively, such that

QneineinQl=9,
3
MclJ@uaiualua) =Qq.

n=1

Define
M, = {(u,v) € B : disty, ((u,v), M) < p},

we can choose p > 0 small enough such that M,, C . Since M is finite, then there is
& € (0, %%1) such that for any (u,v) € B \(Ps UM,), |W, (1, v) — d| < 2g, we have

|V, v)||12{r > g. (2.26)

In fact, ifforany ¢ = % > 0 there exists (u,, V) € By \(Ps UM,,) satisfying |V, (4, v,) —d| <
2¢, then there holds ||V (u,,v,) ”%ﬂ < ¢. Then, by Lemma 2.8, there exists (ug,vo) €
B \(PsUM ) such that (i, v,) = (10, Vo) strongly in H,, up to a subsequence, W, (1, Vo) =
d and V' (u9,vo) = 0. Therefore, (19, vo) € M. It yields a contradiction.



Zhang Boundary Value Problems (2024) 2024:69 Page 20 of 28

Moreover, for (u,v) € M, V(u,v) = 0, then for p > 0 small enough, there exists 7Ty > 0
such that for any (&,v) € sz,

|V v, <To (2.27)
Let
1 T?
T:= —min{1, 2221 (2.28)
2 4T,
By (2.17), for &g > 0, there exists A € Fikl'k”l) such that
Te Te
sup W, (&, v) < d’;lgkﬁl + 0 g4 220 (2.29)
A\P;s ’ 2 2

Let B:= A\\My,, then BC F.

We claim that y(B) > (ki,k2). In view of a contradiction, suppose that y(B) < (ki, k).
From Definition 2.1, we know that there exists f € F, k,)(B) such that f(u,v) = (fi(u,v),
o, v)) #(0,0) for any (u,v) € B. Take f = (i, /) € C(H,, R\~ x Rk2=1) such that f|5 = f
by Tietze’s extension theorem. Define

then F := (F,F,) € C(H,,R\~1 x Rk-1) F|p = 4}, Fi(o;(u,v)) = —4%(14, v) = —F;(u4,v) and
E(O}(M, V)) = 4_](;(”) V) = Fi(ur V)» i 7{]: l:] =1,2.
Define the continuous function

L @y eU,,@ued),

SN L e e Ul @ U

and g(o1(u,v)) = g(u,v), gloa(u,v)) = —g(u,v). Take g € C(H,,R) such that g|g = g by Ti-
etze’s extension theorem. Define

G(u,v):=g(u,v) + E(al (u, V)) —E(crg(u, v)) —g(~u,-v),

then G € C(H,,R), G|q = 4¢, G(o1(&,v)) = G(,v), and G(o2(&,v)) = —G(u, v). Therefore,

we can define

Hi(u,v) := Fy(u,v) € RbL

Hy(u,v) := (Fz(u, v), G(u, V)) e RR,

then H := (Hy,H,) € C(A,RA-1 x R®) and H € Fy, 4,.1)(A). Since A € T 1y (4) >
(k1, ko + 1), so there exists (u,v) € A such that H(x,v) = (0,0). If (4,v) € B= A\\M,,, then
0

Flu,v) = 4f (u,v) = 4f (u,v) #(0,0),
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a contradiction. Thus (u,v) € My, then

G(u,v) = 4g(u,v) = 4g(u,v) # (0,0),

a contradiction. Therefore, y (B) > (ki, k2).

Since B C A C By, supg W, (4, v) < supy W, (u,v) < ¢, then we have B C By, and B €
%) Define By := n(34-,B), then By C By, By € T1%2), Bo\P; # ¢, and supy, W;.(u,v) <
supg W, (14, v) < cx by Lemma 2.2(2) and Lemma 2.3, so By € F;kbkﬂ, Thus supg\p, Wi (4,
v) > di by (2.17).

We claim that (¢, (4, v)) ¢ M, for any ¢ € (0, %
if there exists £y € (0, 52 57o ) such that n(z, (4, v)) € M,, for (u,v) € B = A\ My, by the con-
tinuity of 7, there exists 0 < ; < £, < t, satisfying n(¢;, (i, v)) € I My, (2, (1, v)) € IM,,
and n(t, (4, v)) € My,\ M, for any ¢ € (¢;, ;). Then by (2.27) we have

L
2Ty’

), (1, v) € B. In view of a contradiction,

P =< ||Tl(t1»(bi: V)) - ([2,(14, V) ”H H/ t (I/t, V) ) < 2TO(tZ _tl);

Hy

50ﬁ<t2—t1<t0—0<2T,

For gy > 0, there exists (4, v) € B such that n(ZL}O, (u,v)) € Bo\P;s satisfies

this yields a contradiction.

TE()
dke < sup W, (u,v) < ¥y, (n( , (4, v))) —.
0 Bo\Ps 2T 2

Moreover, n(t,(u,v)) € Bj;; for any ¢ > 0, then by Lemma 2.9(4), n(¢, (4,v)) ¢ Ps for any
telo, 2’} ]. Therefore,

n(t, (u,v)) € Bi\(Ps UM,). (2.30)

In particular, (&, v) ¢ Ps. Moreover, by (2.29) and Lemma 2.9 (3), we get

T
A2 < sup Wy () < W (0 =2, (u,v) il
’ 2To

Bo\Ps 2
T
< W, (n(t, w,v))) + % (2.31)
Teg Tey Te
< (u,v) + — dkl orl 270 250
2 2 2

that is,
T
’\IIA(u,V) —d’ < % < 289.

So we see from (2.26) and Lemma 2.8 that

000, ) = {94 (1(6.66), V(18 )

2 T?
<——||V( ( ”"’)))”H,f—jgo'

(2.32)
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Finally, we deduce from (2.28), (2.31), and (2.32) that

T
de <, <n(%,(u, V))) - %
0

P
T Ty T2

< W (u,v) + it —/ ¢ Z200dt
2 Jy 2

gk, Teo  Teo T_ZZSOL
A 2 2 2 2T,

& T?
S (o 20 =i,

this yields a contradiction. This completes the proof. g
3 Proof of Theorem 1.2
Using Theorem 1.1, for k = 1, there exists 1; > 0 such that system (1.1) has a radially sym-
metric sign-changing solution (u;,v;) for any A € (0,A;) and for ky =k =2,

Dy (u1,v1) = diiﬁ <cy.
Let

u, = {(u, v) € H, : (4,v) is a sign-changing solution of (1.1)},

then U, #{ by Theorem 1.1, we can define

dy := inf @, (u,v)

(u,v)ely,

and d, < ¢;. Let (u,,v,) € U, be a minimizing sequence of d, with ®;(u,,v,) — d;,

D; (44, Vi) < ¢1 and P! (4, v,) = 0. Then

1 1
(5 —m)(nunni + lvallg)
1 1 ) ) 1 1 a1
= (5= n it oo+ (55 - o i

2 1 1 . ‘
; ) [l
p+1l\p+1 g+1 R3

1,
= &y (U, Vi) — —(I)A(um Vi) (i, Vi) < C1.
p+1

(3.1)

Observe that {(u,, v,)}4>1 is bounded in H,, we may assume that, up to a subsequence,

(t4ny Vi) = (uo,vo) weakly in H,,
Uy — ug, strongly in I7*! (R?),

vy — vo, strongly in L7 (R?).
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Since @ (u,,v,) = 0, it is standard to prove that
(s Vi) = (uo,vo) strongly in H,,

and @} (u, vo) = 0, Py (1o, vo) = d;.
Moreover, @/, (1, v,,)(uE,0) = 0 and @ (u, v,)(0, viE) = 0, we deduce from (2.7) and (3.1)

that
sl = = o o e
= |”njE i: + mk uf :’%Wﬂ:ﬁ
e [ o]
6I+1 E_H)Sq p

We can choose 0 < Ag < A; small enough such that for any A € (0, 1) we have

2
p+1

+ +|p+l
Sp|un‘ <2‘un i1
which implies | lp+1 = &1 > 0 for any # > 1. Similarly, |V;t|q+1 > & >0 forany n > 1.
Therefore, Iu(jf lpr1 =861 >0, |v§|q+1 > & > 0, and so Eq. (1.1) has a least energy sign-

changing solution (o, vo). This completes the proof. g

4 The proof of Theorem 1.3
In this section, we obtain seminodal solutions (x,v) such that u is positive, v is sign-
changing and use the same notations as in Sect. 2 for convenience. Define the C! functional

1 1 1 1 1
a7 1= 3 (el + WVIG) = =g ety = g Mg

ptl
2

. / )% v d
- u 1% X,
p+1D(g+1) Js

where (u,v) € H, = {(u,v) e H, :u* #0,v#0},

A={(w,v) eH,:|u*| ., =1Vl =1},

p+1

1 1 1 1
A* = {(u,v) €H,: 5 < |u+|£:1 <2,§ < |1/|Z:1 <2},
By = {(w,v) € A ul <m, v <m},  Bn:=B,nA

As in Sect. 2, for any (&, v) € A, we define

sup O, (tu, sv) = @, (L0t Syppv) = Vs (u, v). (4.1)

t,s>0

It is easy to prove that Lemma 2.4 also holds in this section by trivial modifications. Then
define

Bji s = {(u, v) € By : sup Oy (tu, sv) < ck].

t,s>0
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For any (u,v) € B}, A € (0, At), we consider the following linear problem:

p3 q+1

3 q+1 -1
—A(p+0{g0 q+1 uvksuvk)‘lm 2 (ﬂ|V| 2 :t!u]vx(u+)p

p+1 q—?)
Ay + By - p+1tumsum?»|u|TIV|T¢—S vty

o(x) = 0, Y(x)— 0, as|x| —> oo,

then (4.2) has a unique solution (¢, V) € H,\{(0,0)}. Define

1 1

=— >0, V= >
Jrs (ut)Po dx s V11w dx

Then (@, ) := (ug, v) is the unique solution of the following problem:

p=3 g+l
~AG +ag - q+1tmsmklu| T <pIVI Tty

ptl -3 q-3 ~
_Aw-l—ﬁw_l?ﬂtuvksuvk)"u' 2 |V|Tw uvk|v|q 1

Jas @ PG dx = [os VT Wi dx =1,

?(x) — 0, U(x)— 0, as x| — oco.
We can now also define the operator

K:BY—Hys  (uv)e (§9),

K (02(u,v)) = 02 (K (1, v)).

Then, by similar proofs as in Lemma 2.5 and Lemma 2.6, we have that K € C*(
K satisfies the Palais—Smale type condition. Define the map

V:By, — H,; (u,v) = (u,v) = K(u,v).
Consider the class of sets
F = {A € A:Aisaclosed set and oy (u,v) € A,V (u,v) € A}
for each A € F and k, > 2, the class of functions

Fi i) (A) = {f 1A — Rk : f continuous andf(crz(u, V)) =—f(u, V)}.
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(4.2)

(4.3)

(4.4)

B%,H,)and

(4.5)

(4.6)

To obtain seminodal solutions, we should also define a cone of positive functions, that is,

Py = {(u,v)eHr:VZO}, P=PU-Ps,
distgs1((#,v), P) == min{distg,1 (v, P2), distya1 (v, =P2) },

thus, v is sign-changing if dist,,1 ((»,v), P) > 0.

(4.7)

Under the new definitions (4.4)—(4.6), we define vector genus, slightly different from

Definition 2.1.
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Definition 4.1 Let A € F and take any k, € N with k, > 2. We say that y(A) > (1, k) if
for every f € F(1 x,)(A) there exists (&, v) € A such that f(u, v) = 0. We denote

PR = {Ae F:y(4) > (Lk)}.

Lemma 4.1
(1) Take A:= A, x Ay C Aand let n: S — A, be a homeomorphism such that
n(—x) = —n(x) for every x € S, Then A e Tk,
(2) We have n(A) € Tk whenever A € TM%) and a continuwous map n: A — A is such
thatnooy =0y01.

Proof (1) For every f € Fuk,)(A) and u € A;, we define a map
h: Skl 5 Rl h(x) := f (u,n(%)),
then by (4.6) it is easy to see that / is continuous and

h(—x) = f (u,n(=x)) = f (1, -n(x)) = —f (u, n(x)) = h(x).

Then Borsuk—Ulam theorem yields x € S*2~! such that /(x) = f (1, n(x0)) = 0. By Defini-
tion 4.1, we have A € ['(Lk2),

(2) Fixany f € F(l,kz)(m): then by (4.6) we have f o € F(1 4,)(A). Since A € k) there
exists (ug,vp) € A such that f o n(up, vo) = 0. Then by n(u, vo) € n(A) we have y(n(4)) >
(1, k), that is, m e Ik This completes the proof. O

1
Lemma 4.2 Assume ky > 2. Then, for any 0 < 8 <241 and A € T"%), we have A\Ps # 0.

Proof For any A € T'\1%2), define f by

flu,v)= (/]1&3 |V|qux,0,...,0>,

then f € F(11,)(A), so by Definition 4.1, there exists (i, o) € A such that f (i, vo) = 0. We
deduce from A € A that
/ (v5) ™ dx = / (vo)" dx = L
R3 R3 2
1 1
Therefore, distg,1((u0,vo), P) = 2741, and so (uo,vo) € A\Ps for any 0 < § < 2741, This
completes the proof. O

Fixed any k € N, we define

1
A= {cumc: ,u0>0}, Ay = {veXk+1:|v|q+1=1}.
|u0|p+1

By Lemma 4.1(1), A := A; x Ay € T3V 4 C By, and sup, ¥, (1, v) < ¢t. Then we can
define

I‘S‘]Q) = {A eIk . 4 c B, sup W, (u,v) < ck}.
A
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1
For any k; € [2,k + 1] and 0 < § < 2™ 7*1, we define a sequence of minimax energy level:

1 .
dx'lgz = inf  sup sup D, (tu, sv).
Ael‘;l'kz) A\Ps t,s>0

It is easy to see that
1
di:lgz <c¢x forany0<8<2 #Tand2 <k, <k+1.
Lemma 2.7 and Lemma 2.8 also hold in Sect. 4.

Lemma 4.3 There exists a unique global solution n : R* x By, — H, for the initial value
problem

D (t, (u,v) = =V (it ,v))),
77(0, (M, V)) = (ur V) S Br?t,)w

(4.8)
Moreover, (1), (3), (4) of Lemma 2.9 hold and
(2) Foranyt >0, (u,v) € By, n(t, o2(u,v)) = 02(n(t, (u,v))).

Proof From the above discussion, we see that V' e CI(B},,H,). As Bj;, C By C B, we get
that V € C! (B, H,), then there exists a solution 7 : [0, Tiax) X Bjx — Hy, where Ty is
the maximal time such that (4.8) has s solution 1 € B,.

For any (u,v) € By, and t € (0, Tpnax), there holds

d .
7 i) as

R3
<o) [ (1) Vi )
=—(p+1) /R (0 (& @) Y [0 (6 @0, ) = Ko (0 (8, (,)) )] dx
=(p+1)-(p+1) f (ni (& () )" di,
R3

so we have

d t + +
P |:e(p+1) (/]12{3 (n1 (t, (u, v)))P Ydx - 1)] =0.

Since [p3 (7 (0, (u, V)P dx = [p3(u*)P* dx = 1, then for any ¢ € [0, Tinax),

/1;3 (ni (8w, ))"" dx=1.

The rest of the proof is the same as Lemma 2.9. This completes the proof. d

Proof of Theorem 1.2 Observe that from Lemma 2.10, for any k, € [2,k + 1], 0< 8 < &
small, there exists (g, vo) € Bj; such that

W, (o, vo) = diilgz, V(u,v0) =0 and  distg((uo, vo), P) = .
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We conclude that vy is sign-changing and (uo, vo) = K(uo,vo) = (@0, Wo). It follows from
(4.3) that (uq, vo) satisfies

£3 4l p=3 g1
—Aug + g = putly,, () + q+1tu0,voksuovoxkluol 2 uolVoI z,
+1 q—3

—Avg + Bvo = VSZ;,VO,HVOW_IVO + 2 Mol " vl 2 vo, (4-9)

p+1 uo,vo.S uo,vo.

up(x) — 0, vo(x) — 0, as|x| — oo,

and | |p+1 = [Volg+1 = 1, then by (4.1) we have p = v = 1. Moreover, (4.9) yields

g3 al -3 1
51 = q+1 budiSupni /Rglum’%(ua)ﬂvm%.

We can take Ax small enough if necessary such that for any A € (0, A«) and (uo, vo) € B%,,

g ol 3, _ g1 1
” 0” q+1 u()ZVO)»SugV()A)\‘\/RB |u0|p2 (uo)2|Vo|q; >

then ||ug |2 = 0, so uy > 0. By the strong maximum principle, #y > 0. Hence we have that

(Lugvo,0 40» Sug,vp,1 Vo) 18 @ seminodal solution of (1.1) with £,,, 4o positive and s, Vo
sign-changing,

1Lk
(DA(tuo,vo,AMOysuo,vo,AVO) =W, (up,vo) = d,\,gz'

By similar proof as Theorem 1.1, we complete the proof. d
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