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Abstract
In this paper we study the following nonlinear Schrödinger system:

⎧
⎪⎨

⎪⎩

–�u + αu = |u|p–1u + 2
q+1λ|u| p–32 u|v| q+12 , x ∈R

3,

–�v + βv = |v|q–1v + 2
p+1λ|u| p+12 |v| q–32 v, x ∈R

3,

u(x) → 0, v(x) → 0, as |x| → ∞,

where 3 ≤ p,q < 5, α, β are positive parameters. We show that there exists λk > 0
such that the equation has at least k radially symmetric sign-changing solutions and
at least k seminodal solutions for each k ∈ N and λ ∈ (0,λk). Moreover, we show the
existence of a least energy radially symmetric sign-changing solution for each
λ ∈ (0,λ0) where λ0 ∈ (0,λ1].

1 Background and main results
Consider the following nonlinear coupled Schrödinger system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + αu = |u|p–1u + 2
q+1λ|u| p–3

2 u|v| q+1
2 , x ∈ �,

–�v + βv = |v|q–1v + 2
p+1λ|u| p+1

2 |v| q–3
2 v, x ∈ �,

u = v = 0 on ∂�.

(1.1)

Here � = R
N or � is a smooth bounded domain in R

N , α, β are positive parameters and
λ �= 0 is a coupling constant.

In the case p = q = 3, system (1.1) becomes the cubic system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + αu = u3 + λuv2, x ∈ �,

–�v + βv = v3 + λu2v, x ∈ �,

u = v = 0 on ∂�,

(1.2)

which arises in the study of many physical phenomena like nonlinear optics and Bose–
Einstein condensation (cf. [15, 17]). Therefore, in the last decades, system (1.2) has re-
ceived great interest from mathematicians. When � is the entire spaceRN , the existence of
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least energy and other finite energy solutions of (1.2) was studied in [2, 11, 12, 18, 21, 22, 27]
and the references therein. In particular, when λ > 0 is sufficiently large, infinitely many
radially symmetric sign-changing solutions of (1.2) were obtained in [23]. Liu and Wang
[20] studied a general m-coupled system (m ≥ 2) and proved that system (1.2) has in-
finitely many nontrivial solutions, but whether solutions obtained in [20] are positive or
sign-changing cannot be determined there (see also [21]). When � ⊂ R

N (N = 2, 3) is a
smooth bounded domain, there are also many papers studying (1.2). Lin and Wei [18]
proved that a least energy solution of (1.2) exists within an appropriate range of λ. Dancer,
Wei, and Weth [14] and Noris and Ramos [24] proved the existence of infinitely many pos-
itive solutions of (1.2). When � is a ball, a multiplicity result on positive radially symmetric
solutions was given in [29]. Later, by using a global bifurcation approach, the result of [29]
was reproved by [4] without requiring the symmetric condition. Under some more general
assumptions, Sato and Wang [26] proved that system (1.2) has infinitely many semipos-
itive solutions (i.e., at least one component is positive). In [14], the authors proved the
existence of unbounded sequence solutions for N ≤ 3 and λ ≤ –1. As pointed out above,
for λ ≤ –1, Wei and Weth [29] proved that (1.2) has a radially symmetric solution, which
turns out to be a positive solution.

We remark that the existence of infinitely many sign-changing solutions or seminodal
solutions to (1.2) was solved by Chen, Lin, and Zou [10] and Liu, Liu, and Wang [19]
independently, where N ≤ 3 and λ < 0.

To the best of our knowledge, the existence of sign-changing solutions to (1.1) has not
ever been studied in the literature when � = R

3 and 3 ≤ p, q < 5. The main goal of this
paper is to study the existence of sign-changing solutions, seminodal solutions, and least
energy sign-changing solutions to problem (1.1) when λ > 0 is small. This will complement
the study made in [14, 19, 21, 22, 29].

Definition 1.1 A solution (u, v) is called nontrivial if u �≡ 0 and v �≡ 0, a solution (u, v) is
semitrivial if (u, v) is type of (u, 0) or (0, v). We call a solution (u, v) positive if u > 0 and
v > 0 in R

N , a solution (u, v) sign-changing if both u and v change sign, a solution (u, v)
seminodal if one changes sign and the other one is positive.

The first main result of the current paper is as follows.

Theorem 1.1 Assume α,β > 0. Then for any k ∈N there exists λk > 0 such that system (1.1)
possesses at least k radially symmetric sign-changing solutions for each fixed λ ∈ (0,λk).

We can also study some further properties of the sign-changing solutions obtained in
Theorem 1.1. It is well known that a nontrivial solution (u, v) ∈ H1(RN )×H1(RN ) is called
a least energy solution if its energy is minimal among the energy of all nontrivial solutions.
A sign-changing solution is called a least energy sign-changing solution if it has the least
energy among all sign-changing solutions. Precisely, we have the following theorem.

Theorem 1.2 Assume α,β > 0. Then there exists λ0 ∈ (0,λ1] such that system (1.1) pos-
sesses a least energy radially symmetric sign-changing solution for each fixed λ ∈ (0,λ0).

Theorem 1.3 Assume α,β > 0. Then for any k ∈N there exists λk > 0 such that system (1.1)
possesses at least k seminodal solutions for each fixed λ ∈ (0,λk).
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Remark 1.1 We can prove that system (1.1) possesses at least k seminodal solutions with
the first component positive and the second component radially symmetric sign-changing
or the first component radially symmetric sign-changing and the second component pos-
itive.

The structure of this paper is as follows. In Sect. 2 we prove the existence of at least k
radially symmetric sign-changing solutions. The main tool will be the use of a new no-
tion of vector genus by [28] and a new constrained problem by [10], which will be used
to construct minimax values. Remark that the ideas in [10, 28] cannot be used directly,
and here we will give some new ideas. The crucial idea in this paper is turning to study
a new problem with two constraints to obtain sign-changing solutions of (1.1). This idea
has never been used for (1.1) in the literature up to our knowledge. We will give all the
necessary details of the proof. Section 3 is then dedicated to the proof of Theorem 1.2 by
using a minimizing argument. Finally in Sect. 4 we will present the proof of Theorem 1.3
applying the arguments in Sect. 2 and Sect. 3.

We give some notations here. Throughout this paper, we denote the norm of Lp(RN )
by |u|p = (

∫

RN |u|p dx)
1
p , the norm of H1(RN ) by ‖u‖2 =

∫

RN (|∇u|2 + |u|2) dx, and positive
constants (possibly different in different places) by C. Define Hr := H1

r (RN ) × H1
r (RN ) as a

subspace of H := H1(RN ) × H1(RN ) with norm ‖(u, v)‖2
Hr := ‖u‖2

α + ‖v‖2
β where

H1
r
(
R

N)
:=

{
u ∈ H1(

R
N)

: u is radially symmetric
}

,

‖u‖2
α :=

∫

RN

(|∇u|2 + α|u|2)dx.

2 Proof of Theorem 1.1
In this section, we assume that N = 3, 3 ≤ p, q < 2∗ – 1 = 5 and α,β > 0. Without loss of
generality, we assume p ≤ q. Let λ ∈ (0, 1). For any k ∈ N, let Xk+1 ⊂ H1

r (R3), dim Xk+1 =
k + 1, and there exists u0 ∈ Xk+1 and u0 > 0. Then there exists m > 0 such that for any
(u, v) ∈ Xk+1 × Xk+1 satisfying |u|p+1

p+1, |v|q+1
q+1 < 2, we have

‖u‖2
α < m, ‖v‖2

β < m. (2.1)

Without loss of generality, we can assume m > 1. Obviously, the sign-changing solutions
of system (1.1) are the critical points of the C2 functional �λ : Hr →R given by

�λ(u, v) :=
1
2
(‖u‖2

α + ‖v‖2
β

)
–

1
p + 1

|u|p+1
p+1 –

1
q + 1

|v|q+1
q+1

–
4λ

(p + 1)(q + 1)

∫

R3
|u| p+1

2 |v| q+1
2 dx.

(2.2)

We will look for solutions of Eq. (1.1) as critical points of the functional �λ restricted to
the sphere

A :=
{

(u, v) ∈ Hr : |u|p+1 = 1, |v|q+1 = 1
}

.

To obtain at least k sign-changing critical points, we need to define several minimax en-
ergy levels using a new definition of vector genus introduced by [28]. As in [28], we recall
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vector genus and take the transformations

σi : A→A, σ1(u, v) = (–u, v), σ2(u, v) = (u, –v), i = 1, 2.

Consider the class of sets

F =
{

A ⊂A : A is a closed set and σi(u, v) ∈ A,∀(u, v) ∈ A, i = 1, 2
}

and for each A ∈F and k1, k2 ∈N, the class of functions

F(k1,k2)(A) =

{

f = (f1, f2) : A →
2∏

i=1

R
ki–1 : fi : A →R

ki–1 continuous,

fi
(
σi(u, v)

)
= –fi(u, v) for each i, fi

(
σj(u, v)

)
= fi(u, v) for i �= j

}

.

where R
0 := {0}.

Definition 2.1 (Vector genus, see [28]) For every nonempty and closed set A ⊂ H1
0 (�)

such that –A = A, we define

γ (A) := inf
{

k : there exists h : A →R
k\{0} continuous and odd

}

and γ (A) := ∞ if no such k exists.
Let A ∈ F and take any k1, k2 ∈ N. We say that γ (A) ≥ (k1, k2) if for every f ∈ F(k1,k2)(A)

there exists (u, v) ∈ A such that f (u, v) = (f1(u, v), f2(u, v)) = (0, 0). We denote

�(k1,k2) :=
{

A ∈F : γ (A) ≥ (k1, k2)
}

.

Remark 2.1 Note that Definition 2.1 does not actually define the quantity γ (A) but gives
the meaning of γ (A) ≥ (k1, k2) only. A different notation of genus was introduced by
Chang, Wang, and Zhang in [8].

Lemma 2.1 (see [28]) Let f = (f1, f2) :
∏2

i=1 Ski → ∏2
i=1 R

ki be a continuous function such
that fi(σi(u, v)) = –fi(u, v), fi(σj(u, v)) = fi(u, v) for any i, j = 1, 2, i �= j, then there exists
(u0, v0) ∈ ∏2

i=1 Ski such that f (u0, v0) = (0, . . . , 0).

Lemma 2.2 (see [28]) The following properties hold.
(1) Take A1 × A2 ⊂A and let ηi : Ski–1 → Ai be a homeomorphism such that

ηi(–x) = –ηi(x) for every x ∈ Ski–1, i = 1, 2. Then A1 × A2 ∈ �(k1,k2), where
Ski–1 = {x ∈ R

ki : |x| = 1}.
(2) We have η(A) ∈ �(k1,k2) whenever A ∈ �(k1,k2) and a continuous map η : A →A is

such that η ◦ σi = σi ◦ η, ∀i = 1, 2.

Together with the notation of vector genus, to obtain sign-changing solutions, we will
use cones of positive or negative functions based on the works such as [5, 13, 30]. We
define the cone

P1 :=
{

(u, v) ∈ Hr : u ≥ 0
}

, P2 :=
{

(u, v) ∈ Hr : v ≥ 0
}

,
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and take P :=
⋃2

i=1(Pi ∪ –Pi). Moreover, for any δ > 0, we define

Pδ :=
{

(u, v) ∈ Hr : dist
(
(u, v),P

)
< δ

}
,

where

dist
(
(u, v),P

)
:= min

{
distp+1(u,P1), distp+1(u, –P1),

distq+1(v,P2), distq+1(v, –P2)
}

,

distp+1(u,±P1) := inf
ω∈±P1

|u – ω|p+1 =
∣
∣u∓∣

∣
p+1,

distq+1(v,±P2) := inf
ω∈±P2

|v – ω|q+1 =
∣
∣v∓∣

∣
q+1,

where u± := max{0,±u}.

Lemma 2.3 For any 0 < δ < 2– 1
p+1 , there holds A\Pδ �= ∅ whenever A ∈ �(k1,k2) with

k1, k2 ≥ 2.

Proof For any A ∈ �(k1,k2), define f = (f1, f2) by

f1(u, v) =
(∫

R3
|u|pu dx, 0, . . . , 0

)

,

f2(u, v) =
(∫

R3
|v|qv dx, 0, . . . , 0

)

,

then f ∈ F(k1,k2)(A), so by Definition 2.1, there exists (u0, v0) ∈ A such that f (u0, v0) =
(0, . . . , 0). By A ∈A, we deduce that

∫

R3

(
u+

0
)p+1 dx =

∫

R3

(
u–

0
)p+1 dx =

1
2

,
∫

R3

(
v+

0
)q+1 dx =

∫

R3

(
v–

0
)q+1 dx =

1
2

,

therefore, dist((u0, v0),P) = 2– 1
p+1 , and so (u0, v0) ∈ A\Pδ for any 0 < δ < 2– 1

p+1 . �

For technical reasons, we will work on the neighborhood of A in H1
r (R3),

A∗ :=
{

(u, v) ∈ Hr :
1
2

< |u|p+1
p+1 < 2,

1
2

< |v|q+1
q+1 < 2

}

, (2.3)

when u ∈A∗, (u, v) �≡ (0, 0). Define

B∗
m :=

{
(u, v) ∈A∗ : ‖u‖2

α < m,‖v‖2
β < m

}
, (2.4)

Bm :=
{

(u, v) ∈A : ‖u‖2
α < m,‖v‖2

β < m
}

, (2.5)

Cm :=
{

(u, v) ∈A : ‖u‖2
α = m,‖v‖2

β = m
}

. (2.6)
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Let Sp and Sq be the sharp constants of the Sobolev embedding H1
r (R3) ↪→ Lp+1(R3) and

H1
r (R3) ↪→ Lq+1(R3), respectively,

‖u‖2
α ≥ Sp|u|2p+1, ‖v‖2

β ≥ Sq|v|2q+1, ∀u, v ∈ H1
r
(
R

3). (2.7)

For any (u, v) ∈ Hr\{(0, 0)}, we have

sup
t,s≥0

�λ(tu, sv) = �λ(tu,v,λu, su,v,λv) =: �λ(u, v), (2.8)

where tu,v,λ, su,v,λ ≥ 0 satisfy

∂

∂t
�λ(tu, sv)|(tu,v,λ,su,v,λ) =

∂

∂s
�λ(tu, sv)|(tu,v,λ,su,v,λ) = 0.

Note that for t, s ≥ 0,

�λ(tu, sv) :=
1
2
(
t2‖u‖2

α + s2‖v‖2
β

)
–

tp+1

p + 1
|u|p+1

p+1 –
sq+1

q + 1
|v|q+1

q+1

–
4λ

(p + 1)(q + 1)
t

p+1
2 s

q+1
2

∫

R3
|u| p+1

2 |v| q+1
2 dx.

(2.9)

Define

F(u, v,λ; t, s) := t‖u‖2
α – tp|u|p+1

p+1 –
2

q + 1
t

p–1
2 s

q+1
2 λ

∫

R3
|u| p+1

2 |v| q+1
2 dx

:= tF1(u, v,λ; t, s)

and

G(u, v,λ; t, s) := s‖v‖2
β – sq|v|q+1

q+1 –
2

p + 1
t

p+1
2 s

q–1
2 λ

∫

R3
|u| p+1

2 |v| q+1
2 dx

:= sG1(u, v,λ; t, s),

which implies

F1(u, v,λ; tu,v,λ, su,v,λ) = G1(u, v,λ; tu,v,λ, su,v,λ) = 0. (2.10)

Since F1(u, v,λ; t, s) and G1(u, v,λ; t, s) are decreasing with respect to t > 0 and s > 0, respec-
tively, F1(u, v,λ; 0, 0) > 0, G1(u, v,λ; 0, 0) > 0, so tu,v,λ, su,v,λ are unique. Note that for t, s ≥ 0,
3 ≤ p, q < 5, by (2.9), we can choose some positive constant T such that �λ(tu, sv) < 0 for
any t, s > T , therefore, tu,v,λ, su,v,λ ∈ [0, T].

Define

m̃ >
[

(q + 1)Sp

(
1
2

) 2
p+1

] 2
p+q–2

+
4(p + 1)(q + 1)

(p – 1)( Sp
8 )

2
p–1

m
p+1
p–1 + m. (2.11)

Then Bm ⊂ Bm̃, B∗
m ⊂ B∗̃

m.
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Lemma 2.4 For any k ∈ N, there exist λ̃ ∈ (0, 1) and T1 > T2 > 0 such that for any λ ∈ (0, λ̃)
and (u, v) ∈ B∗̃

m, we have

T2 ≤ tu,v,λ, su,v,λ ≤ T1. (2.12)

Furthermore, there exist λk ∈ (0, λ̃] and ck > 0 such that for any λ ∈ (0,λk), we have

sup
(u,v)∈Bm

sup
t,s≥0

�λ(tu, sv) < ck ≤ inf
(u,v)∈Cm̃

sup
t,s≥0

�λ(tu, sv). (2.13)

Proof We see from (2.9) and (2.10) that

sup
t,s≥0

�λ(tu, sv) = �λ(tu,v,λu, su,v,λv)

=
(

1
2

–
1

p + 1

)

t2
u,v,λ‖u‖2

α +
(

1
2

–
1

q + 1

)

sq+1
u,v,λ|v|q+1

q+1

+
(q – 1)

(p + 1)(q + 1)
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p+1

2 |v| q+1
2 dx.

(2.14)

Firstly, we claim that there exist λ̃ ∈ (0, 1) and T1 > T2 > 0 such that for any λ ∈ (0, λ̃) and
(u, v) ∈ B∗̃

m, we have

T2 ≤ tu,v,λ, su,v,λ ≤ T1.

By (2.10),

tu,v,λ ≤
( ‖u‖2

α

|u|p+1
p+1

) 1
p–1

< (2m̃)
1

p–1 < 2m̃,

su,v,λ ≤
( ‖v‖2

β

|v|q+1
q+1

) 1
q–1

< (2m̃)
1

q–1 < 2m̃.

Thus, we obtain that

tu,v,λ, su,v,λ < 2m̃ =: T1.

Define

λ̃ =
(q + 1)Sp( 1

2 )
2

p+1

8(2m̃)
p+q–2

2
.

We see from (2.11) that λ̃ ∈ (0, 1). Moreover, by (2.7) and (2.10), for any λ ∈ (0, λ̃), we have

tp–1
u,v,λ|u|p+1

p+1 = ‖u‖2
α –

2
q + 1

t
p–3

2
u,v,λs

q+1
2

u,v,λλ

∫

R3
|u| p+1

2 |v| q+1
2 dx

> Sp

(
1
2

) 2
p+1

–
2

q + 1
(2m̃)

p+q–2
2 λ|u|

p+1
2

p+1 |v|
q+1

2
q+1
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> Sp

(
1
2

) 2
p+1

–
4

q + 1
(2m̃)

p+q–2
2 λ

>
1
2

Sp

(
1
2

) 2
p+1

>
Sp

4
.

Then we get tu,v,λ > ( Sp
8 )

1
p–1 . Similarly, we have su,v,λ > ( Sq

8 )
1

q–1 . Thus, we get

tu,v,λ, su,v,λ > min

{(
Sp

8

) 1
p–1

,
(

Sq

8

) 1
q–1

}

=: T2.

This completes T2 ≤ tu,v,λ ≤ T1.
Now we prove the existence of λk and ck . For any (u, v) ∈ Bm̃ and λ ∈ (0, λ̃], by (2.14),

there holds
∣
∣
∣
∣sup
t,s≥0

�λ(tu, sv) –
(

1
2

–
1

p + 1

)

t2
u,v,λ‖u‖2

α –
(

1
2

–
1

q + 1

)

sq+1
u,v,λ|v|q+1

q+1

∣
∣
∣
∣

=
∣
∣
∣
∣

(q – 1)
(p + 1)(q + 1)

t
p+1

2
u,v,λs

q+1
2

u,v,λλ

∫

R3
|u| p+1

2 |v| q+1
2 dx

∣
∣
∣
∣ ≤ Cλ.

Hence,

sup
(u,v)∈Bm

sup
t,s≥0

�λ(tu, sv)

≤ sup
(u,v)∈Bm

[(
1
2

–
1

p + 1

)

t2
u,v,λ‖u‖2

α +
(

1
2

–
1

q + 1

)

sq+1
u,v,λ|v|q+1

q+1

]

+ Cλ

≤ sup
(u,v)∈Bm

[(
1
2

–
1

p + 1

)( ‖u‖2
α

|u|p+1
p+1

) 2
p–1 ‖u‖2

α +
(

1
2

–
1

q + 1

)( ‖v‖2
β

|v|q+1
q+1

) q+1
q–1

]

+ Cλ

≤
(

1
2

–
1

p + 1

)

m
p+1
p–1 +

(
1
2

–
1

q + 1

)

m
q+1
q–1 + Cλ

≤ 2
(

1
2

–
1

q + 1

)

m
p+1
p–1 + Cλ < (q + 1)m

p+1
p–1 + Cλ,

and

inf
(u,v)∈Cm̃

sup
t,s≥0

�λ(tu, sv)

≥ inf
(u,v)∈Cm̃

[(
1
2

–
1

p + 1

)

t2
u,v,λ‖u‖2

α +
(

1
2

–
1

q + 1

)

sq+1
u,v,λ|v|q+1

q+1

]

– Cλ

> inf
(u,v)∈Cm̃

(
1
2

–
1

p + 1

)

t2
u,v,λ‖u‖2

α – Cλ

≥
(

1
2

–
1

p + 1

)(
Sp

8

) 2
p–1

m̃ – Cλ,

then by (2.11), we can choose

λk = min

{
q + 1
2C

m
p+1
p–1 , λ̃

}

,
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ck =
(

1
2

–
1

p + 1

)(
Sp

8

) 2
p–1

m̃ – Cλk

such that ck > 0 for any 0 < λ < λk the conclusion holds. �

For any (u, v) ∈ B∗̃
m, the following linear problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�ϕ + αϕ – 2
q+1 t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ϕ|v| q+1
2 = tp–1

u,v,λ|u|p–1u,

–�ψ + βψ – 2
p+1 t

p+1
2

u,v,λs
q–3

2
u,v,λλ|u| p+1

2 |v| q–3
2 ψ = sq–1

u,v,λ|v|q–1v,

ϕ(x) → 0, ψ(x) → 0, as |x| → ∞,

(2.15)

has a unique solution (ϕ,ψ) ∈ Hr \ {(0, 0)}. Then we can choose λk small enough such that
for any ϕ,ψ ∈ H1

r (R3),

∫

R3
|u|p–1uϕ dx =

‖ϕ‖2
α – 2

q+1 t
p–3

2
u,v,λs

q+1
2

u,v,λλ
∫

R3 |u| p–3
2 ϕ2|v| q+1

2 dx

tp–1
u,v,λ

≥
1
2‖ϕ‖2

α

tp–1
u,v,λ

> 0

and

∫

R3
|v|q–1vψ dx =

‖ψ‖2
β – 2

p+1 t
p+1

2
u,v,λs

q–3
2

u,v,λλ
∫

R3 |u| p+1
2 |v| q–3

2 ψ2 dx

sq–1
u,v,λ

≥
1
2‖ψ‖2

β

sq–1
u,v,λ

> 0.

Define

μ :=
1

∫

R3 |u|p–1uϕ dx
, ν :=

1
∫

R3 |v|q–1vψ dx
,

then μ > 0, ν > 0 and (ϕ̃, ψ̃) := (μϕ,νψ) is the unique solution of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–�ϕ̃ + αϕ̃ – 2
q+1 t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ϕ̃|v| q+1
2 = μtp–1

u,v,λ|u|p–1u,

–�ψ̃ + βψ̃ – 2
p+1 t

p+1
2

u,v,λs
q–3

2
u,v,λλ|u| p+1

2 |v| q–3
2 ψ̃ = νsq–1

u,v,λ|v|q–1v,
∫

R3 |u|p–1uϕ̃ dx =
∫

R3 |v|q–1vψ̃ dx = 1,

ϕ̃(x) → 0, ψ̃(x) → 0, as |x| → ∞.

(2.16)

Fixed any k ∈N, we define

A1 :=
{

u ∈ Xk+1 : |u|p+1 = 1
}

, A2 :=
{

v ∈ Xk+1 : |v|q+1 = 1
}

.

There is an odd homeomorphism from Sk to A1 and A2. By Lemma 2.2(1), A := A1 × A2 ∈
�(k+1,k+1). Observe that from (2.1) we deduce that A ⊂ Bm, and so by (2.13),

sup
(u,v)∈A

sup
t,s≥0

�λ(tu, sv) < ck .
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Define

�
(k1,k2)
λ :=

{
A ∈ �(k1,k2) : A ⊂ Bm̃, sup

(u,v)∈A
sup
t,s≥0

�λ(tu, sv) < ck

}
.

Observe that �
(k1,k2)
λ �= ∅, �

(k1,k2)
λ ⊂ �

(k′
1,k′

2)
λ when k1 ≥ k′

1 and k2 ≥ k′
2. We are now ready to

define a sequence of minimax energy levels which will turn out to be critical levels for �λ

over A. For every k1, k2 ∈ [2, k + 1] and 0 < δ < 2– 1
p+1 , define

dk1,k2
λ,δ := inf

A∈�
(k1,k2)
λ

sup
A\Pδ

sup
t,s≥0

�λ(tu, sv). (2.17)

It is easy to see that

dk1,k2
λ,δ < ck for any 0 < δ < 2– 1

p+1 , 2 ≤ k1, k2 ≤ k + 1. (2.18)

As a step towards to the proof of Theorem 1.1, we will prove that dk1,k2
λ,δ is indeed a

critical level of �λ for δ sufficiently small. To prove Theorem 1.1, it is necessary to find
a pseudogradient for �λ over A for which Pδ is positively invariant for the associated
flow. We can now define the operator

K : B∗
m̃ → Hr ; (u, v) �→ (ϕ̃, ψ̃),

that is, for any (u, v) ∈ B∗̃
m, K(u, v) = (ϕ̃, ψ̃) is the unique solution of (2.16). It is easy to

prove that K(σi(u, v)) = σi(K(u, v)), i = 1, 2.
Now, we give some property of the operator K . We can now prove that K is a compact

C1 operator.

Lemma 2.5 The operator K is of class C1.

Proof Define C1 maps Ji : B∗̃
m × H1

r (R3) ×R → H1
r (R3) ×R, i = 1, 2, by

J1
(
(u, v),ω,γ

)

=
(

ω – (–� + α)–1
(

2
q + 1

t
p–3

2
u,v,λs

q+1
2

u,v,λλ|u| p–3
2 ω|v| q+1

2 + γ tp–1
u,v,λ|u|p–1u

)

,

∫

R3
|u|p–1uω dx – 1

)

and

J2
(
(u, v),ω,γ

)

=
(

ω – (–� + β)–1
(

2
p + 1

t
p+1

2
u,v,λs

q–3
2

u,v,λλ|u| p+1
2 |v| q–3

2 ω + γ sq–1
u,v,λ|v|q–1v

)

,

∫

R3
|v|q–1vω dx – 1

)

then by (2.16), J1((u, v), ϕ̃,μ) = J2((u, v), ψ̃ ,ν) = 0. Moreover, the derivatives of J1 and J2

with respect to (ω,γ ) at the point ((u, v), ϕ̃,μ) and ((u, v), ψ̃ ,ν) in the direction (ω0,γ0),
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respectively, are

Dω,γ J1
(
(u, v), ϕ̃,μ

)
(ω0,γ0)

=
(

ω0 – (–� + α)–1
(

2
q + 1

t
p–3

2
u,v,λs

q+1
2

u,v,λλ|u| p–3
2 ω0|v| q+1

2 + γ0tp–1
u,v,λ|u|p–1u

)

,

∫

R3
|u|p–1uω0 dx

)

and

Dω,γ J2
(
(u, v), ψ̃ ,ν

)
(ω0,γ0)

=
(

ω0 – (–� + β)–1
(

2
p + 1

t
p+1

2
u,v,λs

q–3
2

u,v,λλ|u| p+1
2 |v| q–3

2 ω0 + γ0sq–1
u,v,λ|v|q–1v

)

,

∫

R3
|v|q–1vω0 dx

)

.

We claim that Dω,γ J1((u, v), ϕ̃,μ) and Dω,γ J2((u, v), ψ̃ ,ν) are bijective maps. In fact, for
any (ω,γ ) ∈ H1

r (R3) ×R, the following linear problems

–�ω1 + αω1 –
2

q + 1
t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ω1|v| q+1
2 = –�ω + αω,

–�ω2 + αω2 –
2

q + 1
t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ω2|v| q+1
2 = tp–1

u,v,λ|u|p–1u,

have unique solutions ω1,ω2 ∈ H1
r (R3), ω2 �= 0 by u ∈ B∗̃

m and (2.12), then we define

γ0 =
γ –

∫

R3 |u|p–1uω1 dx
∫

R3 |u|p–1uω2 dx
,

we have

Dω,γ J1
(
(u, v), ϕ̃,μ

)
(ω1 + γ0ω2,γ0) = (ω,γ ),

that is, Dω,γ J1((u, v), ϕ̃,μ) is surjective. Similarly, Dω,γ J2((u, v), ψ̃ ,ν) is surjective.
If Dω,γ J1((u, v), ϕ̃,μ)(ω0,γ0) = (0, 0), then

⎧
⎨

⎩

–�ω0 + αω0 = 2
q+1 t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ω0|v| q+1
2 + γ0tp–1

u,v,λ|u|p–1u,
∫

R3 |u|p–1uω0 dx = 0,

so ω0 ≡ 0, γ0tp–1
u,v,λ|u|p–1u ≡ 0, by tu,v,λ > 0, u ∈ B∗̃

m, we have γ0 = 0, this implies Dω,γ J1((u, v),
ϕ̃,μ) is injective. Therefore, Dω,γ J1((u, v), ϕ̃,μ) is bijective. Similarly, Dω,γ J2((u, v), ψ̃ ,ν) is a
bijective map. Then we can apply the implicit theorem to the C1 maps Dω,γ J1((u, v), ϕ̃,μ)
and Dω,γ J2((u, v), ψ̃ ,ν), we have the conclusions. �

Lemma 2.6 Let {(un, vn)}n≥1 ⊂ Bm̃. For any 0 < λ < λk , there exists (ϕ̃0, ψ̃0) ∈ Hr such that,
up to a subsequence,

K(un, vn) → (ϕ̃0, ψ̃0), strongly in Hr .
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Proof Since {(un, vn)}n≥1 ⊂ Bm̃, we have

(un, vn) ⇀ (u0, v0) weakly in Hr ,

un → u0, strongly in Lp+1(
R

3),

vn → v0, strongly in Lq+1(
R

3),

and |u0|p+1 = |v0|q+1 = 1. By (2.12), we also have

tun ,vn ,λ → tu0,v0,λ > 0, sun ,vn ,λ → su0,v0,λ > 0.

Then by (2.3), (2.7), (2.12), and (2.15),

1
2
‖ϕn‖2

α ≤ ‖ϕn‖2
α –

2
q + 1

t
p–3

2
un ,vn ,λs

q+1
2

un ,vn ,λλ

∫

R3
|un| p–3

2 ϕ2
n|vn| q+1

2 dx

= tp–1
un ,vn ,λ

∫

R3
|un|p–1unϕn dx

≤ C
∫

R3
|un|p|ϕn|dx

≤ C|un|pp+1|ϕn|p+1 ≤ C‖ϕn‖α .

Similar estimates hold for ψn, we get ‖ψn‖2
β ≤ C‖ψn‖β , so {(ϕn,ψn)}n≥1 ⊂ Hr are bounded.

Thus

(ϕn,ψn) ⇀ (ϕ0,ψ0) weakly in Hr ,

ϕn → ϕ0, strongly in Lp+1(
R

3),

ψn → ψ0, strongly in Lq+1(
R

3).

Then by (2.15) and Hölder’s inequality,

∫

R3

(∇ϕn∇(ϕn – ϕ0) + αϕn(ϕn – ϕ0)
)

dx

=
2

q + 1
t

p–3
2

un ,vn ,λs
q+1

2
un ,vn ,λλ

∫

R3
|un| p–3

2 ϕn(ϕn – ϕ0)|vn| q+1
2 dx

+ tp–1
un ,vn ,λ

∫

R3
|un|p–1un(ϕn – ϕ0) dx

→ 0, as n → ∞.

Hence,

‖ϕn‖2
α =

∫

R3
(∇ϕn∇ϕ0 + αϕnϕ0) dx + o(1) = ‖ϕ0‖2

α + o(1).
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Similarly, we have ‖ψn‖2
β = ‖ψ0‖2

β + o(1). Therefore, we have (ϕn,ψn) → (ϕ0,ψ0) strongly
in Hr and (ϕ0,ψ0) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�ϕ0 + αϕ0 – 2
q+1 t

p–3
2

u0,v0,λs
q+1

2
u0,v0,λλ|u0| p–3

2 ϕ0|v0| q+1
2 = tp–1

u0,v0,λ|u0|p–1u0,

–�ψ0 + βψ0 – 2
p+1 t

p+1
2

u0,v0,λs
q–3

2
u0,v0,λλ|u0| p+1

2 |v0| q–3
2 ψ0 = sq–1

u0,v0,λ|v0|q–1v0,

ϕ0(x) → 0, ψ0(x) → 0, as |x| → ∞,

since |u0|p+1 = |v0|q+1 = 1, so ϕ0 �= 0, ψ0 �= 0 and

μn :=
1

∫

R3 |un|p–1unϕn dx
→ 1

∫

R3 |u0|p–1u0ϕ0 dx
=: μ0,

νn :=
1

∫

R3 |vn|q–1vnψn dx
→ 1

∫

R3 |v0|q–1v0ψ0 dx
=: ν0.

We see that

(ϕ̃n, ψ̃n) = (μnϕn,νnψn) → (μ0ϕ0,ν0ψ0) =: (ϕ̃0, ψ̃0), strongly in Hr .

This completes the proof. �

Define

Bm̃,λ :=
{

(u, v) ∈ Bm̃ : sup
t,s≥0

�λ(tu, sv) < ck

}
,

then by (2.13) we obtain Bm ⊂ Bm̃,λ.

Lemma 2.7 For any 0 < δ < 2– 1
p+1 sufficiently small, we have that

dist
(
K(u, v),P

)
<

δ

2
, ∀(u, v) ∈ Bm̃,λ, dist

(
(u, v),P

)
< δ.

Proof Suppose by contradiction that there exist δn → 0 and (un, vn) ∈ Bm̃,λ satisfying
dist((un, vn),P) < δn and dist(K(un, vn),P) ≥ δn

2 . We suppose that dist((un, vn),P) = |u–
n |p+1

without loss of generality. Let (ϕ̃n, ψ̃n) = K(un, vn) and ϕ̃n = μnϕn, ψ̃n = νnψn. By a similar
proof as in Lemma 2.6, we have that μn and νn are uniformly bounded. By (2.12), we can
take λk smaller if necessary such that for any λ ∈ (0,λk) and (u, v) ∈ B∗̃

m, we get

1
2
∥
∥ϕ̃–

n
∥
∥2

α
≤ ∥

∥ϕ̃–
n
∥
∥2

α
–

2
q + 1

t
p–3

2
un ,vn ,λs

q+1
2

un ,vn ,λλ

∫

R3
|un| p–3

2
(
ϕ̃–

n
)2|vn| q+1

2 dx.

This together with (2.7) and (2.16) allows us to get

∣
∣ϕ̃–

n
∣
∣2
p+1 ≤ 1

Sp

∥
∥ϕ̃–

n
∥
∥2

α

≤ C
(
∥
∥ϕ̃–

n
∥
∥2

α
–

2
q + 1

t
p–3

2
un ,vn ,λs

q+1
2

un ,vn ,λλ

∫

R3
|un| p–3

2
(
ϕ̃–

n
)2|vn| q+1

2 dx
)
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= –Cμntp–1
un ,vn ,λ

∫

R3
|un|p–1unϕ̃

–
n dx

≤ C
∫

R3

(
u–

n
)p

ϕ̃–
n dx ≤ C

∣
∣u–

n
∣
∣p
p+1

∣
∣ϕ̃–

n
∣
∣
p+1 ≤ Cδp

n
∣
∣ϕ̃–

n
∣
∣
p+1,

and hence dist(K(un, vn),P) ≤ |ϕ̃–
n |p+1 ≤ Cδ

p
n < δn

2 for n sufficiently large, which is a con-
tradiction. This completes the proof. �

Now define a map

V : B∗
m̃ → Hr ; (u, v) �→ (u, v) – K(u, v).

It is easy to prove that V (σi(u, v)) = σi(V (u, v)), i = 1, 2. We will prove that if (u, v) ∈ Bm̃\P ,
V (u, v) = 0, then (tu,v,λu, su,v,λv) is a sign-changing solution of Eq. (1.1). Firstly, we prove that
V satisfies the Palais–Smale type condition and V is a pseudogradient for supt,s≥0 �λ(tu, sv)
over Bm̃. Denote �λ(u, v) := supt,s≥0 �λ(tu, sv).

Lemma 2.8 (Palais–Smale type condition) Let (un, vn) ∈ Bm̃ be such that

�λ(un, vn) → c < ck and V (un, vn) → 0 strongly in Hr .

Then there exists (u0, v0) ∈ Bm̃ such that (un, vn) → (u0, v0) strongly in Hr , up to a subse-
quence, and V (u0, v0) = 0. We also have

For any (u, v) ∈ Bm̃,
〈∇�λ(u, v), V (u, v)

〉

Hr
≥ T2

2
2

∥
∥V (u, v)

∥
∥2

Hr
.

Proof Similar as Lemma 2.6, we have, up to a subsequence,

(un, vn) ⇀ (u0, v0) weakly in Hr ,

K(un, vn) → (ϕ̃0, ψ̃0) strongly in Hr .

Then we have, as n → ∞,

o(1) =
〈
V (un, vn), (un – u0, vn – v0)

〉

Hr

= 〈un – ϕ̃n, un – u0〉Hr + 〈vn – ψ̃n, vn – v0〉Hr

= 〈un, un – u0〉Hr – 〈ϕ̃n, un – u0〉Hr + 〈vn, vn – v0〉Hr – 〈ψ̃n, vn – v0〉Hr

whence

〈un, un – u0〉Hr + 〈vn, vn – v0〉Hr = o(1).

Then (un, vn) → (u0, v0) strongly in Hr and (u0, v0) ∈ Bm̃,

�λ(tu0,v0,λu0, su0,v0,λv0) = lim
n→∞�λ(tun ,vn ,λun, sun ,vn ,λvn) = c < ck ,

then by (2.13), we have (u0, v0) ∈ Bm̃, V (u0, v0) = limn→∞ V (un, vn) = 0.
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Finally, we prove that V is a pseudogradient for �λ(u, v) over Bm̃. By (2.9) and (2.10) we
can prove that

〈∇�λ(u, v), (ω, 0)
〉

Hr
= t2

u,v,λ

∫

R3
(∇u∇ω + αuω) dx

–
2λ

q + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λ

∫

R3
|u| p–3

2 uω|v| q+1
2 dx,

(2.19)

〈∇�λ(u, v), (0,ω)
〉

Hr
= s2

u,v,λ

∫

R3
(∇v∇ω + βvω) dx

–
2λ

p + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λ

∫

R3
|u| p+1

2 |v| q–3
2 vω dx

(2.20)

hold for any (u, v) ∈ Bm̃ and ω ∈ H1
r (R3). We can take λk smaller if necessary such that for

any λ ∈ (0,λk) by (2.19), (2.20), (2.12), and (2.16)

〈∇�λ(u, v), V (u, v)
〉

Hr

= t2
u,v,λ

∫

R3

(∇u∇(u – ϕ̃) + αu(u – ϕ̃)
)

dx

+ s2
u,v,λ

∫

R3

(∇v∇(v – ψ̃) + βv(v – ψ̃)
)

dx

–
2

q + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p–3

2 u(u – ϕ̃)|v| q+1
2 dx

–
2

p + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p+1

2 |v| q–3
2 v(v – ψ̃) dx

= t2
u,v,λ‖u – ϕ̃‖2

α + s2
u,v,λ‖v – ψ̃‖2

β

+ t2
u,v,λ

∫

R3

(∇ϕ̃∇(u – ϕ̃) + αϕ̃(u – ϕ̃)
)

dx

+ s2
u,v,λ

∫

R3

(∇ψ̃∇(u – ψ̃) + αψ̃(v – ψ̃)
)

dx

–
2

q + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p–3

2 u(u – ϕ̃)|v| q+1
2 dx

–
2

p + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p+1

2 |v| q–3
2 v(v – ψ̃) dx

= t2
u,v,λ‖u – ϕ̃‖2

α + s2
u,v,λ‖v – ψ̃‖2

β

–
2

q + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p–3

2 (u – ϕ̃)2|v| q+1
2 dx

–
2

p + 1
t

p+1
2

u,v,λs
q+1

2
u,v,λλ

∫

R3
|u| p+1

2 |v| q–3
2 (v – ψ̃)2 dx

≥ t2
u,v,λ

2
‖u – ϕ̃‖2

α +
s2

u,v,λ

2
‖v – ψ̃‖2

β

≥ T2
2

2
(‖u – ϕ̃‖2

α + ‖v – ψ̃‖2
β

)
=

T2
2

2
∥
∥V (u, v)

∥
∥2

Hr
.

This completes the proof. �
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Lemma 2.9 There exists a unique global solution η = (η1,η2) : R+ × Bm̃,λ → Hr for the
initial value problem

⎧
⎨

⎩

d
dt η(t, (u, v)) = –V (η(t, (u, v))),

η(0, (u, v)) = (u, v) ∈ Bm̃,λ.
(2.21)

Moreover,
(1) For any t > 0 and (u, v) ∈ Bm̃,λ, there holds η(t, (u, v)) ∈ Bm̃,λ;
(2) For any t > 0, (u, v) ∈ Bm̃,λ, there holds η(t,σi(u, v)) = σi(η(t, (u, v))), i = 1, 2;
(3) For any (u, v) ∈ Bm̃,λ, �λ(η(t, (u, v))) is nonincreasing in t;
(4) There exists δ0 ∈ (0, 2– 1

p+1 ) such that, for any 0 < δ < δ0, (u, v) ∈ Bm̃,λ ∩Pδ and t > 0,
there holds η(t, (u, v)) ∈Pδ .

Proof It follows from Lemma 2.5 that V ∈ C1(B∗̃
m, Hr). As Bm̃,λ ⊂ Bm̃ ⊂ B∗̃

m, we get that
V ∈ C1(Bm̃,λ, Hr). Then there exists a solution η : [0, Tmax) × Bm̃,λ → Hr , where Tmax is the
maximal time such that (2.21) has a solution η ∈ B∗̃

m.
For any (u, v) ∈ Bm̃,λ and t ∈ (0, Tmax), there holds

d
dt

∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p+1 dx

= –(p + 1)
∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p–1

η1
(
t, (u, v)

)
V1

(
η
(
t, (u, v)

))
dx

= –(p + 1)
∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p–1

η1
(
t, (u, v)

)[
η1

(
t, (u, v)

)
– K1

(
η
(
t, (u, v)

))]
dx

= (p + 1) – (p + 1)
∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p+1 dx,

so we have

d
dt

[

e(p+1)t
(∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p+1 dx – 1

)]

= 0.

Then

e(p+1)t
(∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p+1 dx – 1

)

=
∫

R3

∣
∣η1

(
0, (u, v)

)∣
∣p+1 dx – 1

=
∫

R3
|u|p+1 dx – 1 ≡ 0.

Similarly, there holds

e(q+1)t
(∫

R3

∣
∣η2

(
t, (u, v)

)∣
∣q+1 dx – 1

)

=
∫

R3

∣
∣η2

(
0, (u, v)

)∣
∣q+1 dx – 1

=
∫

R3
|v|q+1 dx – 1 ≡ 0,

we deduce that for any (u, v) ∈ Bm̃,λ and t ∈ [0, Tmax),

∫

R3

∣
∣η1

(
t, (u, v)

)∣
∣p+1 dx ≡

∫

R3

∣
∣η2

(
t, (u, v)

)∣
∣q+1 dx ≡ 1.
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Thus, for any t ∈ [0, Tmax), (u, v) ∈ Bm̃, we have η(t, (u, v)) ∈ B∗̃
m ∩ A = Bm̃. If Tmax < +∞,

then η(Tmax, (u, v)) ∈ Cm̃. There holds �λ(η(Tmax, (u, v))) ≥ ck by (2.13). Moreover,

d
dt

�λ

(
η
(
t, (u, v)

))
=
〈

∇�λ

(
η
(
t, (u, v)

))
,

d
dt

η
(
t, (u, v)

)
〉

Hr

= –
〈∇�λ

(
η
(
t, (u, v)

))
, V

(
η
(
t, (u, v)

))〉

Hr

≤ –
T2

2
2

∥
∥V

(
η
(
t, (u, v)

))∥
∥2

Hr
≤ 0.

(2.22)

On the other hand, we see from (u, v) ∈ Bm̃,λ and (2.22),

�λ

(
η
(
Tmax, (u, v)

)) ≤ �λ

(
η
(
0, (u, v)

))
= �λ(u, v) < ck ,

it yields a contradiction, so Tmax = +∞, η(t, (u, v)) ∈ Bm̃,λ and (1)(3) hold.
Since V (σi(u, v)) = σi(V (u, v)), i = 1, 2, then (2) holds.
Take δ0 > 0 as in Lemma 2.7, note that as t → 0,

η
(
t, (u, v)

)
= (u, v) + t

d
dt

η
(
t, (u, v)

)|t=0 + o(t)

= (u, v) – tV (u, v) + o(t) = (1 – t)(u, v) + tK(u, v) + o(t),

hence for any 0 < δ < δ0, (u, v) ∈ Bm̃,λ ∩Pδ , we have

dist
(
η
(
t, (u, v)

)
,P

)
= dist

(
(1 – t)(u, v) + tK(u, v) + o(t),P

)

≤ (1 – t) dist
(
(u, v),P

)
+ t dist

(
K(u, v),P

)
+ o(t)

< (1 – t)δ +
tδ
2

+ o(t) < δ,

for sufficiently small t > 0, and (4) holds. This completes the proof. �

To prove Theorem 1.1, we will give that dk1,k2
λ,δ is indeed critical energy level for δ > 0

sufficiently small.

Lemma 2.10 For any k ∈ N, k1, k2 ∈ [2, k + 1], 0 < δ < δ0, and 0 < λ < λk , there exists
(̃u0, ṽ0) ∈ Hr such that (̃u0, ṽ0) is a sign-changing solution of Eq. (1.1) and �λ (̃u0, ṽ0) = dk1,k2

λ,δ .

Proof By (2.18) we see that dk1,k2
λ,δ < ck . Assume that there is small 0 < ε < 1 such that for

any (u, v) ∈ Bm̃,λ, |�λ(u, v) – dk1,k2
λ,δ | ≤ 2ε, dist((u, v),P) ≥ δ, there holds ‖V (u, v)‖2

Hr ≥ ε. By
(2.17), there exists A ∈ �

(k1,k2)
λ such that

sup
A\Pδ

�λ(u, v) < dk1,k2
λ,δ + ε, (2.23)

then supA �λ(u, v) < ck , A ⊂ Bm̃,λ. Thus we consider the set A0 = η( 4
T2

2
, A), A0 ∈ Bm̃,λ by

Lemma 2.9(1). From Lemma 2.2(2), Lemma 2.3, and Lemma 2.9(3), we get

sup
A0

�λ(u, v) ≤ sup
A

�λ(u, v) < ck ,
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so A0 ∈ �
(k1,k2)
λ and A0\Pδ �= ∅. Then, by (2.15), (2.19), and Lemma 2.9(3), for the ε > 0,

t ∈ [0, 4
T2

2
], there exists (u, v) ∈ A such that η( 4

T2
2

, (u, v)) ∈ A0\Pδ satisfying

dk1,k2
λ,δ ≤ sup

A0\Pδ

�λ(u, v) < �λ

(

η

(
4

T2
2

, (u, v)
))

+ ε

≤ �λ

(
η
(
t, (u, v)

))
+ ε ≤ �λ(u, v) + ε < dk1,k2

λ,δ + 2ε.

(2.24)

We conclude that ‖V (η(t, (u, v)))‖2
Hr ≥ ε for any t ∈ [0, 4

T2
2

] and

d
dt

�λ

(
η
(
t, (u, v)

))
= –

〈∇�λ

(
η
(
t, (u, v)

))
, V

(
η
(
t, (u, v)

))〉

Hr

≤ –
T2

2
2

∥
∥V

(
η
(
t, (u, v)

))∥
∥2

Hr
≤ –

T2
2

2
ε.

Therefore, by integrating over 0 to 4
T2

2
and (2.24), we have

(
dk1,k2

λ,δ – ε
)

–
(
dk1,k2

λ,δ + ε
)

< �λ

(

η

(
4

T2
2

, (u, v)
))

– �λ(u, v)

≤ –
T2

2
2

ε

∫ 4
T2

2

0
dt = –2ε,

it yields a contradiction, and therefore, for any ε = 1
n > 0, there exists (un, vn) ∈ Bm̃,λ such

that

∣
∣�λ(un, vn) – dk1,k2

λ,δ
∣
∣ ≤ 2ε,

∥
∥V (un, vn)

∥
∥2

Hr
≤ ε and dist

(
(un, vn),P

) ≥ δ.

By Lemma 2.8, there exists (u0, v0) ∈ Bm̃,λ such that (un, vn) → (u0, v0) strongly in Hr , up to
a subsequence. Hence, we have

�λ(u0, v0) = dk1,k2
λ,δ , V (u0, v0) = 0 and dist

(
(u0, v0),P

) ≥ δ.

We conclude that (u0, v0) is sign-changing and (u0, v0) = K(u0, v0) = (ϕ̃0, ψ̃0). It follows from
(2.16) that (u0, v0) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�u0 + αu0 = μtp–1
u0,v0,λ|u0|p–1u0 + 2

q+1 t
p–3

2
u0,v0,λs

q+1
2

u0,v0,λλ|u0| p–3
2 u0|v0| q+1

2 ,

–�v0 + βv0 = νsq–1
u0,v0,λ|v0|q–1v0 + 2

p+1 t
p+1

2
u0,v0,λs

q–3
2

u0,v0,λλ|u0| p+1
2 |v0| q–3

2 v0,

u0(x) → 0, v0(x) → 0, as |x| → ∞.

(2.25)

On the other hand, tu0,v0,λ and su0,v0,λ satisfy

‖u0‖2
α = tp–1

u0,v0,λ|u0|p+1
p+1 +

2
q + 1

t
p–3

2
u0,v0,λs

q+1
2

u0,v0,λλ

∫

R3
|u0| p+1

2 |v0| q+1
2 dx,

‖v0‖2
β = sq–1

u0,v0,λ|v0|q+1
q+1 +

2
p + 1

t
p+1

2
u0,v0,λs

q–3
2

u0,v0,λλ

∫

R3
|u0| p+1

2 |v0| q+1
2 dx,
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then we have μ = ν = 1. Hence, we have that (tu0,v0,λu0, su0,v0,λv0) is a sign-changing solution
of Eq. (1.1) by problem (2.25) and

�λ (̃u0, ṽ0) := �λ(tu0,v0,λu0, su0,v0,λv0) = �λ(u0, v0) = dk1,k2
λ,δ .

This completes the proof. �

Proof of Theorem 1.1 Observe that from Lemma 2.10 we know that for any k ∈N, k1, k2 ∈
[2, k + 1], 0 < δ < δ0, and 0 < λ < λk , there exists a sign-changing solution (̃u0, ṽ0) with
�λ (̃u0, ṽ0) = dk1,k2

λ,δ . For any fixed k1 ∈ [2, k + 1], we have

dk1,2
λ,δ ≤ dk1,3

λ,δ ≤ · · · ≤ dk1,k
λ,δ ≤ dk1,k+1

λ,δ < ck .

Suppose that problem (1.1) has at most k – 1 sign-changing solutions by contradiction,
then there exists k2 ∈ [2, k] satisfying

d := dk1,k2
λ,δ = dk1,k2+1

λ,δ < ck .

Now define

M :=
{

(u, v) ∈ Bm̃ : (u, v) sign-changing,�λ(u, v) = d, V (u, v) = 0
}

,

then M⊂F is finite. So there exist N ∈ [1, k – 1] and {(un, vn)}1≤n≤N ⊂M such that

M =
{{

(un, vn)
} ∪ {

(–un, vn)
} ∪ {

(un, –vn)
} ∪ {

(–un, –vn)
}}

1≤n≤N .

For any 1 ≤ n ≤ N , there exist open neighborhoods �1
n, �2

n, �3
n, �4

n of {(un, vn)}, {(–un, vn)},
{(un, –vn)}, {(–un, –vn)}, respectively, such that

�1
n ∩ �2

n ∩ �3
n ∩ �4

n = ∅,

M⊂
3⋃

n=1

(
�1

n ∪ �2
n ∪ �3

n ∪ �4
n
)

=: �.

Define

Mρ :=
{

(u, v) ∈ Bm̃ : distHr

(
(u, v),M

)
< ρ

}
,

we can choose ρ > 0 small enough such that M2ρ ⊂ �. Since M is finite, then there is
ε0 ∈ (0, ck –d

2 ) such that for any (u, v) ∈ Bm̃\(Pδ ∪Mρ), |�λ(u, v) – d| ≤ 2ε0, we have

∥
∥V (u, v)

∥
∥2

Hr
≥ ε0. (2.26)

In fact, if for any ε = 1
n > 0 there exists (un, vn) ∈ Bm̃\(Pδ ∪Mρ) satisfying |�λ(un, vn) – d| ≤

2ε, then there holds ‖V (un, vn)‖2
Hr ≤ ε. Then, by Lemma 2.8, there exists (u0, v0) ∈

Bm̃\(Pδ ∪Mρ) such that (un, vn) → (u0, v0) strongly in Hr , up to a subsequence, �λ(u0, v0) =
d and V (u0, v0) = 0. Therefore, (u0, v0) ∈Mρ . It yields a contradiction.
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Moreover, for (u, v) ∈ M, V (u, v) = 0, then for ρ > 0 small enough, there exists T0 > 0
such that for any (u, v) ∈M2ρ ,

∥
∥V (u, v)

∥
∥

Hr
≤ T0. (2.27)

Let

T :=
1
2

min

{

1,
ρT2

2
4T0

}

. (2.28)

By (2.17), for ε0 > 0, there exists A ∈ �
(k1,k2+1)
λ such that

sup
A\Pδ

�λ(u, v) < dk1,k2+1
λ,δ +

Tε0

2
= d +

Tε0

2
. (2.29)

Let B := A\M2ρ , then B ⊂F .
We claim that γ (B) ≥ (k1, k2). In view of a contradiction, suppose that γ (B) < (k1, k2).

From Definition 2.1, we know that there exists f ∈ F(k1,k2)(B) such that f (u, v) = (f1(u, v),
f2(u, v)) �= (0, 0) for any (u, v) ∈ B. Take f̃ = (̃f1, f̃2) ∈ C(Hr ,Rk1–1 × R

k2–1) such that f̃ |B = f
by Tietze’s extension theorem. Define

F1(u, v) := f̃1(u, v) + f̃1
(
σ2(u, v)

)
– f̃1

(
σ1(u, v)

)
– f̃1(–u, –v),

F2(u, v) := f̃2(u, v) + f̃2
(
σ1(u, v)

)
– f̃2

(
σ2(u, v)

)
– f̃2(–u, –v),

then F := (F1, F2) ∈ C(Hr ,Rk1–1 × R
k2–1), F|B = 4̃f , Fi(σi(u, v)) = –4̃fi(u, v) = –Fi(u, v) and

Fi(σj(u, v)) = 4̃fi(u, v) = Fi(u, v), i �= j, i, j = 1, 2.
Define the continuous function

g(u, v) :=

⎧
⎨

⎩

1, (u, v) ∈ ⋃3
n=1(�1

n ∪ �2
n),

–1, (u, v) ∈ ⋃3
n=1(�3

n ∪ �4
n)

and g(σ1(u, v)) = g(u, v), g(σ2(u, v)) = –g(u, v). Take g̃ ∈ C(Hr ,R) such that g̃|� = g by Ti-
etze’s extension theorem. Define

G(u, v) := g̃(u, v) + g̃
(
σ1(u, v)

)
– g̃

(
σ2(u, v)

)
– g̃(–u, –v),

then G ∈ C(Hr ,R), G|� = 4̃g , G(σ1(u, v)) = G(u, v), and G(σ2(u, v)) = –G(u, v). Therefore,
we can define

H1(u, v) := F1(u, v) ∈R
k1–1,

H2(u, v) :=
(
F2(u, v), G(u, v)

) ∈R
k2 ,

then H := (H1, H2) ∈ C(A,Rk1–1 × R
k2 ) and H ∈ F(k1,k2+1)(A). Since A ∈ �

(k1,k2+1)
λ , γ (A) ≥

(k1, k2 + 1), so there exists (u, v) ∈ A such that H(u, v) = (0, 0). If (u, v) ∈ B = A\M2ρ , then

F(u, v) = 4̃f (u, v) = 4f (u, v) �= (0, 0),
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a contradiction. Thus (u, v) ∈M2ρ , then

G(u, v) = 4̃g(u, v) = 4g(u, v) �= (0, 0),

a contradiction. Therefore, γ (B) ≥ (k1, k2).
Since B ⊂ A ⊂ Bm̃, supB �λ(u, v) ≤ supA �λ(u, v) < ck , then we have B ⊂ Bm̃,λ and B ∈

�
(k1,k2)
λ . Define B0 := η( ρ

2T0
, B), then B0 ⊂ Bm̃,λ, B0 ∈ �(k1,k2), B0\Pδ �= ∅, and supB0 �λ(u, v) ≤

supB �λ(u, v) < ck by Lemma 2.2(2) and Lemma 2.3, so B0 ∈ �
(k1,k2)
λ . Thus supB0\Pδ

�λ(u,
v) ≥ dk1,k2

λ,δ by (2.17).
We claim that η(t, (u, v)) /∈Mρ for any t ∈ (0, ρ

2T0
), (u, v) ∈ B. In view of a contradiction,

if there exists t0 ∈ (0, ρ

2T0
) such that η(t0, (u, v)) ∈Mρ , for (u, v) ∈ B = A\M2ρ , by the con-

tinuity of η, there exists 0 ≤ t1 < t2 ≤ t0 satisfying η(t1, (u, v)) ∈ ∂M2ρ , η(t2, (u, v)) ∈ ∂Mρ ,
and η(t, (u, v)) ∈M2ρ\Mρ for any t ∈ (t1, t2). Then by (2.27) we have

ρ ≤ ∥
∥η

(
t1, (u, v)

)
– η

(
t2, (u, v)

)∥
∥

Hr
=
∥
∥
∥
∥

∫ t2

t1

V
(
η
(
t, (u, v)

))
∥
∥
∥
∥

Hr

≤ 2T0(t2 – t1),

so ρ

2T0
≤ t2 – t1 ≤ t0 – 0 < ρ

2T0
, this yields a contradiction.

For ε0 > 0, there exists (u, v) ∈ B such that η( ρ

2T0
, (u, v)) ∈ B0\Pδ satisfies

dk1,k2
λ,δ ≤ sup

B0\Pδ

�λ(u, v) < �λ

(

η

(
ρ

2T0
, (u, v)

))

+
Tε0

2
.

Moreover, η(t, (u, v)) ∈ Bm̃,λ for any t ≥ 0, then by Lemma 2.9(4), η(t, (u, v)) /∈ Pδ for any
t ∈ [0, ρ

2T0
]. Therefore,

η
(
t, (u, v)

) ∈ Bm̃\(Pδ ∪Mρ). (2.30)

In particular, (u, v) /∈ Pδ . Moreover, by (2.29) and Lemma 2.9 (3), we get

dk1,k2
λ,δ ≤ sup

B0\Pδ

�λ(u, v) < �λ

(

η

(
ρ

2T0
, (u, v)

))

+
Tε0

2

≤ �λ

(
η
(
t, (u, v)

))
+

Tε0

2

≤ �λ(u, v) +
Tε0

2
< dk1,k2+1

λ,δ +
Tε0

2
+

Tε0

2
,

(2.31)

that is,

∣
∣�λ(u, v) – d

∣
∣ ≤ Tε0

2
< 2ε0.

So we see from (2.26) and Lemma 2.8 that

d
dt

�λ

(
η
(
t, (u, v)

))
= –

〈∇�λ

(
η
(
t, (u, v)

))
, V

(
η
(
t, (u, v)

))〉

Hr

≤ –
T2

2
2

∥
∥V

(
η
(
t, (u, v)

))∥
∥2

Hr
≤ –

T2
2

2
ε0.

(2.32)
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Finally, we deduce from (2.28), (2.31), and (2.32) that

dk1,k2
λ,δ < �λ

(

η

(
ρ

2T0
, (u, v)

))

+
Tε0

2

≤ �λ(u, v) +
Tε0

2
–
∫ ρ

2T0

0

T2
2

2
ε0 dt

< dk1,k2
λ,δ +

Tε0

2
+

Tε0

2
–

T2
2

2
ε0

ρ

2T0

= dk1,k2
λ,δ +

ε0

2

(

2T –
T2

2 ρ

2T0

)

≤ dk1,k2
λ,δ ,

this yields a contradiction. This completes the proof. �

3 Proof of Theorem 1.2
Using Theorem 1.1, for k = 1, there exists λ1 > 0 such that system (1.1) has a radially sym-
metric sign-changing solution (u1, v1) for any λ ∈ (0,λ1) and for k1 = k2 = 2,

�λ(u1, v1) = d2,2
λ,δ < c1.

Let

Uλ :=
{

(u, v) ∈ Hr : (u, v) is a sign-changing solution of (1.1)
}

,

then Uλ �= ∅ by Theorem 1.1, we can define

dλ := inf
(u,v)∈Uλ

�λ(u, v)

and dλ < c1. Let (un, vn) ∈ Uλ be a minimizing sequence of dλ with �λ(un, vn) → dλ,
�λ(un, vn) < c1 and �′

λ(un, vn) = 0. Then

(
1
2

–
1

p + 1

)
(‖un‖2

α + ‖vn‖2
β

)

≤
(

1
2

–
1

p + 1

)
(‖un‖2

α + ‖vn‖2
β

)
+
(

1
p + 1

–
1

q + 1

)

|vn|q+1
q+1

+
2

p + 1

(
1

p + 1
–

1
q + 1

)

λ

∫

R3
|un| p+1

2 |vn| q+1
2 dx

= �λ(un, vn) –
1

p + 1
�′

λ(un, vn)(un, vn) < c1.

(3.1)

Observe that {(un, vn)}n≥1 is bounded in Hr , we may assume that, up to a subsequence,

(un, vn) ⇀ (u0, v0) weakly in Hr ,

un → u0, strongly in Lp+1(
R

3),

vn → v0, strongly in Lq+1(
R

3).
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Since �′
λ(un, vn) = 0, it is standard to prove that

(un, vn) → (u0, v0) strongly in Hr ,

and �′
λ(u0, v0) = 0, �λ(u0, v0) = dλ.

Moreover, �′
λ(un, vn)(u±

n , 0) = 0 and �′
λ(un, vn)(0, v±

n ) = 0, we deduce from (2.7) and (3.1)
that

Sp
∣
∣u±

n
∣
∣2
p+1 ≤ ∥

∥u±
n
∥
∥2

α
=
∣
∣u±

n
∣
∣p+1
p+1 +

2
q + 1

λ

∫

R3

∣
∣u±

n
∣
∣

p+1
2 |vn| q+1

2 dx

≤ ∣
∣u±

n
∣
∣p+1
p+1 +

2
q + 1

λ
∣
∣u±

n
∣
∣

p+1
2

p+1 |vn|
q+1

2
q+1

<
∣
∣u±

n
∣
∣p+1
p+1 +

2
q + 1

[
c1

( 1
2 – 1

p+1 )Sq

] q+1
4

λ
∣
∣u±

n
∣
∣

p+1
2

p+1 .

We can choose 0 < λ0 < λ1 small enough such that for any λ ∈ (0,λ0) we have

Sp
∣
∣u±

n
∣
∣2
p+1 < 2

∣
∣u±

n
∣
∣p+1
p+1,

which implies |u±
n |p+1 ≥ ξ1 > 0 for any n ≥ 1. Similarly, |v±

n |q+1 ≥ ξ2 > 0 for any n ≥ 1.
Therefore, |u±

0 |p+1 ≥ ξ1 > 0, |v±
0 |q+1 ≥ ξ2 > 0, and so Eq. (1.1) has a least energy sign-

changing solution (u0, v0). This completes the proof. �

4 The proof of Theorem 1.3
In this section, we obtain seminodal solutions (u, v) such that u is positive, v is sign-
changing and use the same notations as in Sect. 2 for convenience. Define the C1 functional

�λ(u, v) :=
1
2
(‖u‖2

α + ‖v‖2
β

)
–

1
p + 1

∣
∣u+∣∣p+1

p+1 –
1

q + 1
|v|q+1

q+1

–
4λ

(p + 1)(q + 1)

∫

R3
|u| p+1

2 |v| q+1
2 dx,

where (u, v) ∈ H̃r := {(u, v) ∈ Hr : u+ �= 0, v �= 0},

A :=
{

(u, v) ∈ Hr :
∣
∣u+∣∣

p+1 = 1, |v|q+1 = 1
}

,

A∗ :=
{

(u, v) ∈ Hr :
1
2

<
∣
∣u+∣∣p+1

p+1 < 2,
1
2

< |v|q+1
q+1 < 2

}

,

B∗
m :=

{
(u, v) ∈A∗ : ‖u‖2

α < m,‖v‖2
β < m

}
, Bm := B∗

m ∩A.

As in Sect. 2, for any (u, v) ∈A, we define

sup
t,s≥0

�λ(tu, sv) = �λ(tu,v,λu, su,v,λv) =: �λ(u, v). (4.1)

It is easy to prove that Lemma 2.4 also holds in this section by trivial modifications. Then
define

Bm̃,λ :=
{

(u, v) ∈ Bm̃ : sup
t,s≥0

�λ(tu, sv) < ck

}
.
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For any (u, v) ∈ B∗̃
m, λ ∈ (0,λk), we consider the following linear problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�ϕ + αϕ – 2
q+1 t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ϕ|v| q+1
2 = tp–1

u,v,λ(u+)p,

–�ψ + βψ – 2
p+1 t

p+1
2

u,v,λs
q–3

2
u,v,λλ|u| p+1

2 |v| q–3
2 ψ = sq–1

u,v,λ|v|q–1v,

ϕ(x) → 0, ψ(x) → 0, as |x| → ∞,

(4.2)

then (4.2) has a unique solution (ϕ,ψ) ∈ Hr\{(0, 0)}. Define

μ :=
1

∫

R3 (u+)pϕ dx
> 0, ν :=

1
∫

R3 |v|q–1vψ dx
> 0.

Then (ϕ̃, ψ̃) := (μϕ,νψ) is the unique solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

–�ϕ̃ + αϕ̃ – 2
q+1 t

p–3
2

u,v,λs
q+1

2
u,v,λλ|u| p–3

2 ϕ̃|v| q+1
2 = μtp–1

u,v,λ(u+)p,

–�ψ̃ + βψ̃ – 2
p+1 t

p+1
2

u,v,λs
q–3

2
u,v,λλ|u| p+1

2 |v| q–3
2 ψ̃ = νsq–1

u,v,λ|v|q–1v,
∫

R3 (u+)pϕ̃ dx =
∫

R3 |v|q–1vψ̃ dx = 1,

ϕ̃(x) → 0, ψ̃(x) → 0, as |x| → ∞.

(4.3)

We can now also define the operator

K : B∗
m̃ → Hr ; (u, v) �→ (ϕ̃, ψ̃),

K
(
σ2(u, v)

)
= σ2

(
K(u, v)

)
. (4.4)

Then, by similar proofs as in Lemma 2.5 and Lemma 2.6, we have that K ∈ C1(B∗̃
m, Hr) and

K satisfies the Palais–Smale type condition. Define the map

V : B∗
m̃ → Hr ; (u, v) �→ (u, v) – K(u, v).

Consider the class of sets

F =
{

A ∈A : A is a closed set and σ2(u, v) ∈ A,∀(u, v) ∈ A
}

(4.5)

for each A ∈F and k2 ≥ 2, the class of functions

F(1,k2)(A) =
{

f : A →R
k2–1 : f continuous and f

(
σ2(u, v)

)
= –f (u, v)

}
. (4.6)

To obtain seminodal solutions, we should also define a cone of positive functions, that is,

P2 :=
{

(u, v) ∈ Hr : v ≥ 0
}

, P = P2 ∪ –P2,

distq+1
(
(u, v),P

)
:= min

{
distq+1(v,P2), distq+1(v, –P2)

}
, (4.7)

thus, v is sign-changing if distq+1((u, v),P) > 0.
Under the new definitions (4.4)–(4.6), we define vector genus, slightly different from

Definition 2.1.
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Definition 4.1 Let A ∈ F and take any k2 ∈ N with k2 ≥ 2. We say that γ (A) ≥ (1, k2) if
for every f ∈ F(1,k2)(A) there exists (u, v) ∈ A such that f (u, v) = 0. We denote

�(1,k2) :=
{

A ∈F : γ (A) ≥ (1, k2)
}

.

Lemma 4.1
(1) Take A := A1 × A2 ⊂A and let η : Sk2–1 → A2 be a homeomorphism such that

η(–x) = –η(x) for every x ∈ Sk2–1. Then A ∈ �(1,k2);
(2) We have η(A) ∈ �(1,k2) whenever A ∈ �(1,k2) and a continuous map η : A →A is such

that η ◦ σ2 = σ2 ◦ η.

Proof (1) For every f ∈ F(1,k2)(A) and u ∈ A1, we define a map

h : Sk2–1 → R
k2–1; h(x) := f

(
u,η(x)

)
,

then by (4.6) it is easy to see that h is continuous and

h(–x) = f
(
u,η(–x)

)
= f

(
u, –η(x)

)
= –f

(
u,η(x)

)
= –h(x).

Then Borsuk–Ulam theorem yields x0 ∈ Sk2–1 such that h(x0) = f (u,η(x0)) = 0. By Defini-
tion 4.1, we have A ∈ �(1,k2).

(2) Fix any f ∈ F(1,k2)(η(A)), then by (4.6) we have f ◦η ∈ F(1,k2)(A). Since A ∈ �(1,k2), there
exists (u0, v0) ∈ A such that f ◦ η(u0, v0) = 0. Then by η(u0, v0) ∈ η(A) we have γ (η(A)) ≥
(1, k2), that is, η(A) ∈ �(1,k2). This completes the proof. �

Lemma 4.2 Assume k2 ≥ 2. Then, for any 0 < δ < 2– 1
q+1 and A ∈ �(1,k2), we have A\Pδ �= ∅.

Proof For any A ∈ �(1,k2), define f by

f (u, v) =
(∫

R3
|v|qv dx, 0, . . . , 0

)

,

then f ∈ F(1,k2)(A), so by Definition 4.1, there exists (u0, v0) ∈ A such that f (u0, v0) = 0. We
deduce from A ∈A that

∫

R3

(
v+

0
)q+1 dx =

∫

R3

(
v–

0
)q+1 dx =

1
2

.

Therefore, distq+1((u0, v0),P) = 2– 1
q+1 , and so (u0, v0) ∈ A\Pδ for any 0 < δ < 2– 1

q+1 . This
completes the proof. �

Fixed any k ∈N, we define

A1 :=
{

cu0 : c =
1

|u0|p+1
, u0 > 0

}

, A2 :=
{

v ∈ Xk+1 : |v|q+1 = 1
}

.

By Lemma 4.1(1), A := A1 × A2 ∈ �(1,k+1), A ⊂ Bm̃, and supA �λ(u, v) < ck . Then we can
define

�
(1,k2)
λ :=

{
A ∈ �(1,k2) : A ⊂ Bm̃, sup

A
�λ(u, v) < ck

}
.
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For any k2 ∈ [2, k + 1] and 0 < δ < 2– 1
q+1 , we define a sequence of minimax energy level:

d1,k2
λ,δ := inf

A∈�
(1,k2)
λ

sup
A\Pδ

sup
t,s≥0

�λ(tu, sv).

It is easy to see that

d1,k2
λ,δ < ck for any 0 < δ < 2– 1

q+1 and 2 ≤ k2 ≤ k + 1.

Lemma 2.7 and Lemma 2.8 also hold in Sect. 4.

Lemma 4.3 There exists a unique global solution η : R+ × Bm̃,λ → Hr for the initial value
problem

⎧
⎨

⎩

d
dt η(t, (u, v)) = –V (η(t, (u, v))),

η(0, (u, v)) = (u, v) ∈ Bm̃,λ.
(4.8)

Moreover, (1), (3), (4) of Lemma 2.9 hold and
(2) For any t > 0, (u, v) ∈ Bm̃,λ, η(t,σ2(u, v)) = σ2(η(t, (u, v))).

Proof From the above discussion, we see that V ∈ C1(B∗̃
m, Hr). As Bm̃,λ ⊂ Bm̃ ⊂ B∗̃

m, we get
that V ∈ C1(Bm̃,λ, Hr), then there exists a solution η : [0, Tmax) × Bm̃,λ → Hr , where Tmax is
the maximal time such that (4.8) has s solution η ∈ B∗̃

m.
For any (u, v) ∈ Bm̃,λ and t ∈ (0, Tmax), there holds

d
dt

∫

R3

(
η+

1
(
t, (u, v)

))p+1 dx

= –(p + 1)
∫

R3

(
η+

1
(
t, (u, v)

))pV
(
η+

1
(
t, (u, v)

))
dx

= –(p + 1)
∫

R3

(
η+

1
(
t, (u, v)

))p[
η+

1
(
t, (u, v)

)
– K1

(
η+(t, (u, v)

))]
dx

= (p + 1) – (p + 1)
∫

R3

(
η+

1
(
t, (u, v)

))p+1 dx,

so we have

d
dt

[

e(p+1)t
(∫

R3

(
η+

1
(
t, (u, v)

))p+1 dx – 1
)]

= 0.

Since
∫

R3 (η+
1 (0, (u, v)))p+1 dx =

∫

R3 (u+)p+1 dx = 1, then for any t ∈ [0, Tmax),

∫

R3

(
η+

1
(
t, (u, v)

))p+1 dx ≡ 1.

The rest of the proof is the same as Lemma 2.9. This completes the proof. �

Proof of Theorem 1.2 Observe that from Lemma 2.10, for any k2 ∈ [2, k + 1], 0 < δ < δ0

small, there exists (u0, v0) ∈ Bm̃ such that

�λ(u0, v0) = d1,k2
λ,δ , V (u0, v0) = 0 and distq+1

(
(u0, v0),P

) ≥ δ.
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We conclude that v0 is sign-changing and (u0, v0) = K(u0, v0) = (ϕ̃0, ψ̃0). It follows from
(4.3) that (u0, v0) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�u0 + αu0 = μtp–1
u,v,λ(u+

0 )p + 2
q+1 t

p–3
2

u0,v0,λs
q+1

2
u0,v0,λλ|u0| p–3

2 u0|v0| q+1
2 ,

–�v0 + βv0 = νsq–1
u0,v0,λ|v0|q–1v0 + 2

p+1 t
p+1

2
u0,v0,λs

q–3
2

u0,v0,λλ|u0| p+1
2 |v0| q–3

2 v0,

u0(x) → 0, v0(x) → 0, as |x| → ∞,

(4.9)

and |u+
0 |p+1 = |v0|q+1 = 1, then by (4.1) we have μ = ν = 1. Moreover, (4.9) yields

∥
∥u–

0
∥
∥2

α
=

2
q + 1

t
p–3

2
u0,v0,λs

q+1
2

u0,v0,λλ

∫

R3
|u0| p–3

2
(
u–

0
)2|v0| q+1

2 .

We can take λk small enough if necessary such that for any λ ∈ (0,λk) and (u0, v0) ∈ B∗̃
m,

∥
∥u–

0
∥
∥2

α
–

2
q + 1

t
p–3

2
u0,v0,λs

q+1
2

u0,v0,λλ

∫

R3
|u0| p–3

2
(
u–

0
)2|v0| q+1

2 ≥ 1
2
∥
∥u–

0
∥
∥2

α
,

then ‖u–
0‖2

α = 0, so u0 ≥ 0. By the strong maximum principle, u0 > 0. Hence we have that
(tu0,v0,λu0, su0,v0,λv0) is a seminodal solution of (1.1) with tu0,v0,λu0 positive and su0,v0,λv0

sign-changing,

�λ(tu0,v0,λu0, su0,v0,λv0) = �λ(u0, v0) = d1,k2
λ,δ .

By similar proof as Theorem 1.1, we complete the proof. �
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