Minhés and Rodrigues Boundary Value Problems
https://doi.org/10.1186/513661-024-01882-y

® Boundary Value Problems

a SpringerOpen Journal

(2024) 2024:73

RESEARCH Open Access

Impulsive coupled systems with regular and

Check for
updates

singular ¢-Laplacians and generalized jump

conditions

Feliz Minhos'#"

and Gracino Rodrigues®?

“Correspondence:
fminhos@uevora.pt

' Department of Mathematics,
School of Science and Technology,
University of Evora, Rua Romé&o
Ramalho, 59, Evora, 7000-671,
Portugal

’Center for Research in
Mathematics and Applications
(CIMA), Institute for Advanced
Studies and Research (lIFA),
University of Evora, Rua Roméao
Ramalho, 59, Evora, 7000-671,
Portugal

Full list of author information is
available at the end of the article

@ Springer

Abstract

This work contains sufficient conditions for the solvability of a third-order coupled
system with two differential equations involving different Laplacians, fully
discontinuous nonlinearities, two-point boundary conditions, and two sets of
impulsive effects. The first existing result is obtained from Schauder’s fixed point
theorem, and the second one provides also the localization of a solution via the lower
and upper solutions technique.

We point out that it is the first time that impulsive coupled systems with strongly
nonlinear fully differential equations and generalized impulse effects are considered
simultaneously. Moreover, the singular case is applied to a special relativity model in
classical electrodynamics.

Mathematics Subject Classification: 34A34;34B37; 34B16; 34B15

Keywords: Coupled systems; Regular and singular Laplacian equations; Generalized
impulsive conditions; Special relativity

1 Introduction

In this article we consider the third-order impulsive coupled system

(@@ (%)) +f (%, u(x), ' (x), u” (%), v(x), V' (%), V" (x)) = 0,
(Y (V' (X)) + glx, ulx), u' (x), u” (x), vx), V' (x),v" (%)) = 0,

xeM,
x €N,

(1.1)

where M = [a,b]\{x1,...,%,,} and N = [a,b]\{11,..., T4}, ¢, ¥ : R — R are increasing
homeomorphisms such that ¢(0) = 1(0) = 0 and ¢(R) = ¥ (R) = R, f,g: [a,b] x R® — R
are L!-Carathéodory functions, together with the boundary conditions

M(ﬂ) = A01
v(a) = By,

M/(ﬂ) = Alv
V(a) = By,

u'(b) = Ay,
v'(b) = B,

(1.2)

with Ax, By € R, k=0,1,2.
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The impulsive conditions are given by

Aulw;) = Toi (35, 1w(x:), ' (1), v(x:), V' (%))

Aut' () = Iy (o, 1), 0/ (o), " (3), (), V (1))

A (" (1)) = D (%1, ox;), ' (o), " (:), (i), V (), V' (%2)),

A7) = Joj (7 u(Ty), (1)), v(1)), V(1))

AV (1) = 1yj(7, u(z), ' (1)), v(1y), V (1)), V' (1)),

AY (vV'(1) = Joi(1 u(T), (), " (1)), (1)), V (1), V" (%)),
where Au(x;) = u(x) —u(x;), i=1,2,...,m, Av(y) = v(rj*) - V(t/‘),j =1,2,...,m Io;, Joj €
C([a,b] x R%, R), I, J1; € C([a, b] x R®,R), I;, J»; € C([a, b] x R®,R), and ¢ are fixed points
suchthata =wg <) <Xy < <X <Xps1 =D, A=Tg<T1< T3 <+ < T < Tyy1 = b.

For a particular case, without jumps on the ¢, ¥-Laplacians, that is, for

Aulx) = Tog (i, w(ox:), 1 (x7), v(xs), V' (%)),

A (o) = Ty (i, (o), 1 (o), 1" (22, v(x2), V (1),

AN(E) = Joy (55 15, 1 (37), (1), ¥ (37),

AV (1) = (T, u(z), o' (1), v(T)), V (1), V' (1)),

(1.4)

an existence and localization theorem is proved, where we present the sufficient assump-
tions to localize a solution in a strip bounded by lower and upper solutions.

Usually ¢ and ¢ are known as ¢, ¥ -Laplacian as they generalize the one-dimensional
Laplacian and the p-Laplacian, and they were used by many authors in a broad range of
problems. Some examples: [34] to obtain a positive periodic solution for a ¢-Laplacian Lié-
nard equation with a singularity; [21] proving the multiplicity of solutions of p-Laplacian
Dirichlet boundary value problem with discontinuous nonlinearities; [35] giving suffi-
cient conditions for the existence of at least three positive solutions of one-dimensional
p-Laplacian boundary value problem; [7, 31] to obtain positive solutions for some p-
Laplacian problem in superlinear cases; and [29] based on nonnegative nonlinearities un-
der a version of the Krasnosel’skii expansion and compression cone theory.

Beyond the classic regular Laplacians, the singular cases, that is, homeomorphisms ¢ :

(-a,a)— R with 0 < a < +00, have been recently studied by several authors, such as, for

example: [15, 16] for p-Laplacian; [2, 3, 26] with existence and multiplicity results; [5]
obtaining heteroclinic solutions; and [12] for equations on the half-line with functional
boundary conditions.

Nonlinear coupled systems, where the unknown functions and their derivatives can in-
teract, have been considered in several works in recent years, such as, among others: [30]
via Schauder’s fixed point theorem; [11] for fractional differential equations at resonance
applying coincidence degree theory; [24] including the study of different types of differen-
tial and integral equations; [36] via lower and upper solutions technique; and [18] applied
to reaction—diffusion Robin problems.

Impulsive differential equations model many real phenomena in which the nonlineari-
ties have sudden discontinuous jumps in their values. These types of events can occur in
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population dynamics, control, and optimization theory, ecology, biology and biotechnol-
ogy, economics, pharmacokinetics, and other physics and mechanics problems. For some
examples of the approach to impulsive differential equations, we refer to: [22] for a gen-
eral theory; [19] via fixed point index; [23, 27] applied to functional impulsive problems;
and [38] with a monotone iterative technique for approximating the solution. The study
of ¢-Laplacian impulsive problems can be seen, for instance, in: [17] in periodic problems
applying a continuation theorem; [9, 10] for bounded and unbounded intervals; [33] for
fractional equations with p-Laplacian; and [1, 8, 28] for Brownian motion.

Combining all these areas and results, we consider, to the best of our knowledge, for the
first time the methods and techniques suggested in, for example, [6, 14] to an impulsive
coupled system with fully differential equations including different regular and singular
Laplacians and generalized impulsive conditions, whose jumps depend on both variables
and some of its derivatives.

The paper is organized as follows: Sect. 2 contains the functional framework and some
preliminary results, namely the explicit solution for the associated impulsive linear prob-
lem, Nagumo-type growth conditions, and a priori bounds for the second derivatives. In
Sect. 3, we present an existence theorem for the general case. Section 4 contains an exis-
tence and localization result applied to a particular case of the initial impulsive conditions
and a concrete example to show the applicability of the localization tool. Section 5 applies
our method to the singular case and to special relativity theory.

2 Definitions and preliminary results

This section introduces some preliminary results and the functional framework.
Define

y(x7) = lim_y(x),

X—> Xy

and consider the sets of piecewise continuous functions:

PCl([a, b]) - {u = C([a, b],R) continuous for x # x;, u(x;) = u(xf),} ,

1
u(xl*) is finite for i = 1,2,3,...,m

PCy(la, b)) = {V :v € C([a, b], R) continuous for x # 7;,v(1}) = V(Tj_),} |

v(rj*) is finite forj=1,2,3,...,n
and
PCila,b] = {y:y" € PCila,b], 1,k = 1,2}.

Let Xi := PCZ[a, b], k = 1,2, be the usual Banach space equipped with the norm || - ||,
defined by

Iyllx, == max{[[¥lloe: 15 lloo 15" lloc }»

where

¥l := sup |y(x)]

a<x<b
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and X2 := X; x X, with the norm

Il G, V)l x> = max{llallx,» [Vix, -

Definition 2.1 A function /: [a,b] x R® — R is L!-Carathéodory if
i. For each (¥0,91,¥2,20,21,22) € R®, x> h(x, ¥0, Y1, Y2, 20,21, 22) is measurable on [a, b];
ii. For almost every x € [a, b], (%0, Y1, Y2, 20,21, 22) > h(x, Y0, Y1, Y2, 20, 21, 22) 1S
continuous on R?;
iii. For each L > 0, there is a positive function p; € L![a, b] such that, for a.e. x € [a, b]

and (¥, y1,¥2, 20, 21, 22) € R® with

max{b’olr [y1l, 1y2l; 2ol 1211, |Z2|} <L,

we have

|, Y0, 71, ¥20 20,21, 2) | < ().

For (u, v) solution of problem (1.1)—(1.3), one must consider (u(x), v(x)) € X? satisfying
(1.1), boundary conditions (1.2), and impulsive effects (1.3).

The next lemma gives the unique solution for the homogeneous problem related to
(1.1)-(1.3).

Lemma 2.2 Let ¢, ¢ : R — R be increasing homeomorphisms and p,q € L'a,b].
The problem composed by the differential system

(@@ (x))) +px) =0
(W (V' (x)) +q(x) =0

and conditions (1.2) and (1.3) has a unique solution given by
u(x) = Ao + Ar(x —a) + ) Ioi (i, i), (1), (), V' (x:)

ixj<x

+(w—a) Y D ), (), u” (), vii), v (x:))

ixj<x

e [0 (9000 X oot 50,0 )

b
+/ p(E)dS) dsdr

and
v(x) =Bo + Bilx—a) + »_ Joj(zj, u(r), (1)), v(1;), V(1))
Jitj<x

+(x-a) Y (g uln),u(5),v(g), v (5),v' (1)

Jitj<x

Page 4 of 31
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A w-l(w(Bﬂ—Zfz,(rj,u(r,),u/(m,u”(r,),v(rj),v/(m,v”(rj))

Jiti>s
b
+/ q(é)d&)dsdr.

Proof Integrating the first equation of (2.1), for x € (x,,, b], we have, by (1.2),

b
(') = B(As) + f (&) d. 22)

For x € (x,,_1,%,], integrating (2.1), by (1.3) and (2.2), we obtain

(' () = d(u (7)) + / " e de

Xn

= (" (%)) = Ton (300, (), 1/ (%), 14" (2), V(%), V' (), V' (%)) + / p(&)ds
b
= ¢(A2) + / P(i") d%- - 1271 (xm M(xn)x u/(xrl)’ M//(xrl)’ V(xn)¢ V/(xn)7 V//(xn))
o [ perde
b
=¢(A2) - by (xn: u(@n), u' (%), t" (%), (%), V (%), V//(xn)) + / p(&)ds.

So, by mathematical induction, for x € [4, b],

b
P (%)) = p(Az) = Y Doy s, o), 1 (), u” (3:), V(i) v (3:), V' (1)) + / p(§)de,

ixi>x

and therefore

u'(x) =" <¢(Az) = D, o), (i), 0 (), v(2), V (), v (1))

ixi>x

. (2.3)
o [ peod).
By a new integration of (2.3) from a to x, when x € [, 1],
u'(x)=Ar+ / ¢! <¢(A2) - Z Dy (i wox), ! (x2), 0" (22), (), v (2), V' (1))
ix;>s (24)

b
+/ p(é)dé) ds.

According to (1.3), when x — x7, we have

W (x7) = o' (67) + Dy (w0, oer), 0/ (x2), 0 (1), V(1) V (1)),

Page 5 of 31
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by (2.4),

W' (x]) =A1+ / 1 ¢! <¢(A2) - Z Lo (i, 10c;), ' (i), 0" (2), V(o) V/ (262), V' (7))

b
+/ P(E)dé) ds

+ 111 (xl: u(xl)v M/(xi)¢ u//(xl)r V(xl): V/(xl)):

and for x € [a, b],

u'(x) = [Ar + Z T (o (i), 1/ (2), 0 (1), vi(6:), V/ (7))

ixj<x

+/ ¢t <¢(A2)— ZIZi(xbu(xi): ! (o), " (o), v(x:), V (1), V' (1))

ix;>s

b
+ f p(é)d&) ds.

Similarly,

u(x]) = Ao + Ar(¥1 — a) + Iog (1, u(x1), ' (%1), v(%1),V/ (1))

+ (xl - a) Z Ili(xi’ u(xi); u/(xi)r u//(xi), V(xi)r V/(xi))

iixj<x

[ ¢-1(¢(A2>—ZIZi(x,-,u(x»,u/(xi),u”(x»,v(xi),v/(x»,v”(xi))

b
+/ p(&)d&) dsdr,

and by induction it can be proved that the solution of the first equation of problem (2.1),
(1.2), (1.3), for x € [a, b], is given by

u(x) =Ao + Ar(x —a) + Z Toi (o, (i), ' (2:), v(:), V/ (1))

ixj<x

+x—a) Y D wln), ' (), u (), vii), v (x:))

ixj<x

+ / / ¢~ (¢(A2) - Z Lo (i a(o0i), 1/ (22), 0" (), v(2), v/ (2), V' (1))

b
+ / p(é)df;‘) dsdr.
S
Likewise, for the second equation, we have

v(x) =Bo + Bilx—a) + »_ Joj(zj, u(r), (1)), v(1y), V(1))

Jitj<x

+w—a) Y Joi(T uly) u (5), vi(m), v (1), V' (1))

Jitj<x
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Jit>s

N I/f‘l(W(Bz)—Z]z;(fj,u(f;),u’(f;),u”(r;),V(f,'),V’(T;),V”(Tj))
b

+/ q(é)d&) dsdr. 0

The Nagumo condition, introduced in [25], is an important tool for controlling the sec-
ond derivatives. We consider here a Nagumo-type condition given by the following defi-

nition.

Definition 2.3 Let y,fl) (%), F,((l) (x), k=1,2,1=0,1, be piecewise continuous functions such
that

I I I I
W) <), P2 <%, aexela,bl,
and consider the set

S = i (xyyO;yI:yZ,ZO:ZI)Z2) € [61, b] X R6: } . (S)

@) <y < TV W), 1 () <z < TP (), 1= 0,1

The L!-Carathéodory functions f,g : [a,b] x R® — R satisfy a Nagumo-type condition
if there are i > 0, k = 1,2 with

j1i= max {'Fi<xi+1)—y{<xi)| |y{(xl»+1>—r1<xi)|}
1= ) ’

i=0,1,2,...,m Xit1 —Xi Xit1 —Xi
/ / / / (25)
Upi=  max { IT5(Tj41) — 7/2(1'/)|’ [v5(Tie1) — Ty (1) }’
j=0,1,2,...1 Tis1 — T Tl —Tj
and continuous positive functions g : [0, +00) — (0, +00), k = 1,2, verifying
If (%, 50,51, 2. 20,21, 22) | < @1(192]),  V(&%:50,71,¥2,20,21,22) € S, 06
|g(xxy0:y1;y2,zo,21,22)| S §02(|22|)’ V(x:yO;yl’yZ)ZO’ZI;ZZ) S Sr
with
¢(+00) -1 ¥ (+00) -1(g
/ L(l)l ds = +00, / M ds = +00. (2.7)
o) e1lo7H9)) v 2(lYHs))

This growth condition allows a priori estimations on the second derivatives.

Lemma 2.4 Consider y,,T"; € PCla,b], k =1,2, such that

Vi) <T(x), ae xelab],
and letf,g : [a,b] x R® — R be L'-Carathéodory functions satisfying a Nagumo-type con-
dition according to Definition 2.3. Then there exist Ny > 0, k = 1,2, such that every solution

(u,v) of (1.1) on the set (S) satisfies

[ <Ny and V] <No.
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Remark 2.5 Note that N7 depends only on y/, I'}, and ¢; and N on y;, I'}, and ¢s.

Proof Let (u(x), v(x)) be a solution of (1.1) on the set (S).
By the mean value theorem, there are x € (x;,x;,1) and X € (7}, 7j,1) such that

W) =)y YO0 V) 29

Xir1 — X Tj+1 — Tj

u”(?_C)

If |u”(x)| < p1, Vx € [a, D], then it is enough to define Nj := 141, and the proof is complete.
The case |u”(t)| > (1, Vx € [a, b], with u; defined in (2.5), is not possible.
In fact, if " (x) > 11, Vx € (x;,%:,1), we obtain by (2.8), (S), and (2.5) the contradiction

( an, — 1/ (xt ! (ar. — v~
w(s) = L) 26D Dibon) 2vie) 29)
Xirl — X; Xitl — X

If u”(x) < —pu1, Vx € [a, b], the contradiction is similar.
Assume now that there are ¥,x* € (x;,x;,1) with X < x* such that

u'(X)<p and u”(x*) > 1.

By the continuity of #”(x), there exists ¥ € [¥,4*] such that #”(x) = u; and " (x) >0, Vx €
[%, x*].
Consider Nj > pu, k = 1,2, such that

i) o~ (s)| ¥(N2) |w—1(s)|
pAPEIR I b- d — b-a). (2.
S g s> moma [ G > tatb=el 210

Making the change of variable ¢ (1" (x)) = s and using (2.6) and (2.9),

*

/WW (2Ol / |~ (9" (x)))]
o)  ei1(lo ()] i o1(lpHp(u" (%))

T (x)| RN
5/& (o P @) dx
T )] - | —f G ulx), o (x), u” (%), v(x), v (x), V" ()]
dx,
= / o1 (@)D *
u' @) - (1w @)
d
= / o' @)

(6 (') d

)

*

< /x u'(x)dx=u'(x*) -/ (R) < w1 (b - a),
and by (2.10)

/‘f’("”(x*” [0
2

N O]
_e Wi b
w@y @1o716))) s pa(b-a) < /

oy (o)

Therefore u”(x*) < N1, and as x* is taken arbitrarily, then #”(x) < N; for the values of x

whenever u(x) > 1.
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The case for x > x* follows similar arguments.
The other possible case where

u'(X)> -1 and (%) < -y

can be proved by the previous techniques. Therefore ||u”||o < Nj.
By a similar method as above, it can be shown that

/W’(’C*” a0l
v

VN2 Y(s)|
_Ww WL b
w@y  elr(s))) s ua(b-a) < /

v 22D

and, with the same type of arguments, obtaining that ||V’ | o < N>. O
The arguments forward will require the following lemma of [32].

Lemma 2.6 For v,w € C(I) such that v(x) < w(x), for every x € I, define
qlx, u) = max{v, min{u, w}}.

Then, for each u € C(I), the next two properties hold:
(a) %q(x, u(x)) exists for a.e. x € I.
(b) Ifu,u,, € CY(I) and u,, — u in CH(I), then

d d
Eq(x, U (%)) — %q(x, u(x)) forae xel

Schauder’s fixed point theorem will be the key existence tool.

Theorem 2.7 [37] Let Y be a nonempty, closed, bounded, and convex subset of a Banach
space X, and suppose that P:Y — Y is a compact operator. Then P has at least one fixed
pointinY.

3 Existence result
The next theorem will guarantee the existence of a solution of (1.1)—(1.3) through the
existence of fixed points of a convenient operator.
(H1) ¢, ¥ : R— R are increasing homeomorphisms such that ¢(0) = ¥(0) = 0 and
#(R) =y (R) =R, and

o7 W) <@~ (Iwl) and [y (w)| <y (Iwl).
Theorem 3.1 Consider Ay, Bi € R, k=0,1,2, and the homeomorphisms ¢ and  verify-
ing (H1). Letf,g : [a,b] x R® — R be L'-Carathéodory functions satisfying a Nagumo-type
condition as in Definition 2.3, and Iy;, Jij, k = 0,1,2,i=1,...,m, j = 1,...,n, be continu-

ous functions. Then there is at least one pair of functions (u,v) € X* solution to problem
(1.1)—(1.3).

Proof Define the operators T} : X2 — X1, Ty : X?> — Xo,and T : X? — X? given by

T(u,v) = (Tl (u,v), To(u, V))r (3.1)
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with

(T1(w, ) (%) = Ao + Ar(x—a) + Y Toi (i, (o), ' (1), V() V ()

ixj<x

+(e—a) Y I ule), (), (03), v(i), v (1))

ixj<x

[ ¢>-1<¢(A2>—Z12i(xi,u(x»,u/(x»,u”(x,»),v(xi),v’(x»,v”(xi))

b
+/ S u®),u(€),u"(€),v(E),V(6),V'(§)) dé) dsdr

and

(Ta(,v)) () = Bo + Bi(x = @) + Y _ Joj( (), ' (1)), (1)), V (%))

Jitj<x

+(x—a) Y iz ulm), ' (), (), V (1), V()

Jitj<x

[ Iﬁ_l(w(Bz)—le;(fj,u(r;),u/(fj),u”(fj),V(Tj),v/(fj),v/'(f,'))

JiTj>s
b
+ / g(&,u(€),u'(&),u" (&), v(E),V(§),V'(§)) dé) dsdr.
Define L > 0 and M > 0 such that
L> |[(u,v)llx2 (3.2)

and
m n
M> Ji})‘?‘i‘z{; i, le Ui } (3.3)
i= j=

Since f and g are L'-Carathéodory functions and a nonnegative function p..(x) €
L'([a,b]), k = 1,2, such that

If (e, (), 4 (), " (%), v(), V' (), V' (%)) | < i1 (%),

g (o 1), (), (), (), ¥ (), V' ()| < por(@), a.ex € [a, b].

(3.4)

The proof will follow several steps that, for clarity, are detailed for the T} (x, v) operator.
The technique for the T, (u, v) operator is similar.

Step 1: T is well defined, continuous, and uniformly bounded.

By the Lebesgue dominated convergence theorem, (3.4), (1.3), (H1), and (3.3), then

(T2, ) )] < |Aol + |As(x—a)| + D lloil + [ = a)| D |

ixj<x ixp<x

/ax /ﬂrqyl (¢(A2) - ZIZi

ix;>s

+

Page 10 of 31



Minhés and Rodrigues Boundary Value Problems (2024) 2024:73

b
+/ f(%‘,u(&),u/(é),u”(&),V(E),V’(E),V”(E))dé) dsdr

<|Ao| + |[A1(x = a)| + M + M|(x - a)|

[ [

" / 17 (&, u(@), (&), u”(é)m(é),v/(é),V”(S))Idé) dsdr

< |Ap| + |A1(b—a)f +M+M|(b—a)|

b
ff <‘¢A2 +M+f ,01L($)d§‘)dsdr<+oo,

(T2 () @) <IAL + ) I

ixj<x

/ s (¢>(A2) -k

iix;>s

+

b
" / If (£, u(®), w €), w"(), v(E), V ), v”(&))|ds> ds

b b
ﬂmHWﬂ/nﬁ(MMM+M+/pﬂ@&>ﬁ<ﬂo

and

(T ()" )] <

¢! <¢(A2) =Y b

ix;>s

/ (6 l6), 1 (€), (s),v<s>,v/<5),v/’<s))|ds)‘

< ¢_1<‘¢(A2)| +M+/ plL(S)dé) < +00.

a

Therefore (T1(u,v))(x) € X;. The proof that (T5(u,v))(x) € X; is similar, and so T is well

defined in X2.
Moreover, defining B € X? as

B={(u,v) € X*: | ,v)| > <L},

from the above, it is clear that 715 is uniformly bounded.

Step 2: T is equicontinuous, that is, T1B is equicontinuous on each interval 1x;,x;,1] for
i=0,1,...,mwithxo = aand x,,,1 = b, and T>B is equicontinuous on each interval |tj, j.1]

forj=0,1,...,nwith ty = a and t,,; = b.

Consider Z Clx;,x:,1] and X,x* € Z such that, without loss of generality, ¥ < x*. For

(u,v) € B, we have

,;]H?J(Tl(u’ ) (x*) = (T1(u,v)) (5c)|

< lim |A;(x* —a) - A1 (x - a)|

x—x*

Page 11 of 31
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+ lim

x—>x*

Yooli- Y I+ (& -a) Y hi-(G-a) Y I

a<xj<x* a<xi<x a<xj<x* a<xj<x

[ [ofonr 5

LXi>8

+ lim

X—x*

+f f(E,u(&),u/(é),u”(%‘),V(é),V'(E),V”(E))d%‘) dsdr

—/: /ar¢_1<¢(A2)— Z:]zt

ix;>s

b
+f f(E,u(&),u/(é-‘),u”(S),V(é),V'(E),V”(E))d%‘) dsdr

/x* /:05_1(%1)(142) - ZIZI

x>

< lim
x—x*

f (6 u(E), i €).' €), 0V (E) V' ()) ds) dsdr| -

1im [(7300,7) () = (T2:8,) ()]

> nhi- )y Ili'

a<x;<x* a<xi<x

/x ¢! <¢(A2) - Zfzi

ix;>s

< lim
X—>x*

+ lim

x—x*

b
+/ S u®),u'(),u" (), v(E),V(§),V(§)) d«f) ds

- /x ¢! (¢(A2) =Y b

ix;>8

b
+/ S u®),u'(),u" (), v(E),V(§),V(§)) d«f) ds

/’C - <¢(A2) - 2125

ix;>s

< hm
x%x

b
+/ f(E’M(E)!Ll(é)?M//(E):V(S)rV,(E))V”(E)) dg) ds| =

and

lim | (T1(, )" (x*) = (T2, )" )|

x—x*

< lim ‘qs (¢(A2>— 3 b+ / F(E (), €),u(€),(E),V (E), V”(é))d%‘)

ixp>at

—¢( ()= > b+ / (& u€), /), 1 (€), v(E), V),V (9)) é)’:

ix>%
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Therefore, T113 is equicontinuous on X;. Similarly, we can show that T8 is equicontinu-
ous on Xy, too. Thus, TB is equicontinuous on X2.

Step 3: TB: X% — X2 is equiconvergent at x = x; and x = 7.

First, let us prove the equiconvergence at x = x] for i = 1,2,...m. The proof of equicon-
vergence at x = 7" for j = 1,2,...n is analogous.

So, it follows for i = 1,2,...,m that

|(T100,)) () = Tim, (73 01,9)) ()|

< ‘Al(xi —a)— lim Al(x—zz)‘
x—xf

+ Z Iy, — lirn+ Z Iy, + (x; — a) Z Ly — lim+(x—a) Z Iy,
a<x; <x; | a<x; <x a<x) <x; o a<x; <x
xj r
+ / / ¢! <¢(A2)_212i
a Ja

ix;>s

b
+/ S (& u(®),u(€),u"(£),v(§),v'(6),V'(5)) dS) dsdr

i [o g

ix;>s

b
+f f(E,u(&),u/(é),u”(%‘),V(&),V'(E),V”(E))d%‘) dsdr

/:i /:ff’_l(¢(A2) - Zfzi

i:x;>s

< lim
x—xf

b
+/ S (& ul®),u(©),u" (), v(§),v'(6),V'(5)) dé) dsdr| =0,

|(T14,9)) ) - lim (730,1)) @)

< Ly - i I
= Z 1 xlg{ Z 1
a<x) <x; L a<x)<x

xj
+/ ¢_1<¢(A2)—lei
a

ix;>s

b
+/ f(E,M(E),u/(é),u”(%‘),V(E),V'(E),V”(E))d%‘) ds

(o T

ix;>s

b
+f f(%‘,u(&),u/(é),u”(E),V(é),V’(E)IV”(E))dé) ds

/" ¢! (ff’(Az) -y by

ix;>s

< lim
x—xf

b
+/ f(gyM(E),M/(E),u"(E),V(E),V’(E)IV"(E))df) ds| =0,

Page 13 of 31
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and
[(T10,1)) () - lim (T31,9)) ")

=<

b
(0= 2 v [ S u© @0 O 006V @) )

a<x) <xj

(o 2

a<x) <x

b
+/ f(E,u(S),u’(S),u”(S), V(E),V/(S),V//(E)) dé)' =0.

Therefore, T} B is equiconvergent at each point x = x} fori=1,2,...,m.

Analogously, it can be proved that 7,8 is equiconvergent at each point x = 7" for j =
12,...,n

So, TB is equiconvergent at each impulsive point.

Step 4: T : X? — X2 has a fixed point.

Consider
Q:={(wv) e X*: |, v)lx2 <K}

with K > 0 such that
L,|Ag| + |A1(b—a)| +M+M|(b—a)|
C ¢-1(\¢<A2>\ M+ [ pu(s)ds) dsar,
[A1] + M + fab ¢_1(|¢(A2)| + M+ fsb PlL(E)d'f) ds,

¢1(\¢(A2)! M+ [ pu(s)ds),
|Bo| + |Bl(b—a)| +M+M’(b—a)|
+fab I W_l<|lﬁ(32)| +M+ fsb ,02L(S)dg) dsdr,

K := max

IBy| + M + ffw-l(|w(32>| +M+ [ sz@)ds) ds,
w-l(!wwz)y M+ [ sz@)ds)

with L > 0 given by (3.2) and (3.5), and M > 0 defined in (3.3) such that B C €.
According to Step 1, we have

| (T2 v), o, )| o

Ty (u,v) “)(2 }

|7 w2

max{ | 7309

171 (2t V) lloos 1 T3 (85 V) ooy 11 T7 (285 V) [l 0
1T (tt V)lloos | T3 (25 V) ooy 11 T5 (21, V) [l
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So, T2 C ©,and by Theorem 2.7, the operator T'(u, v) = (T1(u,v), T>(u, v)) has a fixed point

(u*,v*).
By standard techniques and Lemma 2.2, it can be shown that this fixed point is a solution
of problem (1.1)—(1.3). O

Example 3.2 Consider the following system of coupled differential equations:

M///(x)
1+(u (x))2

xe€[0,1]\ {(x)}, (3.6)

V" (x) = u(x)v'(x) + cos(ue” (x))v(x) + (i (x))> = V" (x) = 0,

x € [0,1]\ {(5))}

— (u(x))3v(x) + o (x) arctan(v' (x)) + (1" (x))> = SV'(x) = 0,

with the boundary conditions

u(0) =0, u0)=1, u'(1)=0
v(0) =0, V'(0) = -1, Vv'(1) =0,

and the impulsive effects given by

Aulx;) = 2u(x;) + v/ (x) + v(xg),

A (x;) = (' (%)% — " () + v(xy),
(x)) = SinE)

AG(u'(x) = 12, .

Av(t) = u(ty) + 3v(T) +V'(T;),

AV (1) = u(t) + v(T;) + 4sin(v () - (V' (1:))?,

Ay (V'(1y) =€

with x; = £ fori=1,2,3,4 and 7; = L forj = 1,2,3.
This problem is a particular case of (1.1)—(1.3) with [a, b] = [0,1],

¢(y2) = arcsinh y,, V(22) = 29, (3.9)
F06, 50,91, ¥2, 20,21, 22) = —Yazo + Y1 arctanzy + y5 — 2z,

(%, Y0, Y1, Y2, 20,21, 22) = —YoZ1 + €08()2) 20 +J’% —Z2

Ag=Ay=By=B,=0, A =1, By =-1,

Io(-, y0, y1,20,21) = 2)0 + ¥1 + 20,

11(',}’0,y1,y2y20,Z1) :yf — Y2 t 2o,

sin(x;)
12(',}’0,_)’1,3/2,20121) = )

i

Jo(-s Y05 Y1520, 21) = Yo + 320 + 21,
: 2
]1('»}’0»}’1,20721;22) =Y t+20 t+ 451nzl _22’

J1( 90,91, 20,21, 22) = €79

and m =4, n=3.
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Itis clear that the functions in (3.9) verify assumption (H1) and f and g satisfy a Nagumo-
type condition in sets such as, for some piecewise continuous functions y,il) (%), I’,((l) (x), k =
1,2,1=0,1,

(%90, Y1, Y2, 20,21, 22) € [0,1] x R®: 1 (%) < 30 < T1(x),
Vi) <y1 <Tj(), ya(x) <20 < Talx), y3(x) <z < Th() |’

with
e1(lya) =Ko +y5, and  ¢a(|za]) := Ky + |22],

where Ky, K are some real positive numbers.
Therefore, by Theorem 3.1, problem (3.6)—(3.8) has at least a solution.

4 Existence and localization results
In addition to the existence of a solution, it is possible to obtain an existence and localiza-
tion theorem, that is, not only it guarantees the existence of at least a solution, but provides
also a strip where this solution is localized.

However, the localization part is obtained for a particular case of impulsive conditions

(1.4), applying lower and upper functions, defined as follows.

Definition 4.1 The pair of functions (o1 (x)aa(x)) € X? such that (¢p(a] (%)), ¥ () (x))) €
(ACla, b))? is a lower solution of problem (1.1), (1.2), (1.4) if

(Do) (X)) +f(x, 1 (%), oy (%), 0] (%), a2 (%), ot (x),2) > 0, forzeR

(Y (g (%)) + g, a1 (%), o (), , a2 (%), oy (x), &5 (x)) > 0, fory e R,

a@) <4,  ofa)<B, 1=0,1,

af(b) < A,, a5 (b) < B, @1)
Aoy (x;) < Toi(xi, 01 (%), @ (2), cea (%), o (x2)),

A () < T, o (%), o (%), ] (%), oo (%), 0y (7)),

Aar (1)) < Joj(T), 01 (7)), 2 (T7), 02 (7)), 5 (7)),

Ay () < J1j(T), (1)), o (1)), e (7)), 5 (7)), 5y (7).

A pair of functions (B;(x), B2(x)) € X* such that (¢(8](x)), ¥ (B, (x))) € (AC[a, b])* is an up-
per solution of problem (1.1), (1.2), (1.4) if the opposite inequalities hold.

To obtain this goal, we consider local monotone assumptions:
(H2) f,g:[a,b] x R* > R are L}-Carathéodory such that

S (301 (%), y1, @ (%), 2 (%), @5 (%), 22) < f (%, Y0, Y1, Y25 20,21, 22)

<f (% B1(x), 31, B] (%), Bo(), By (%), 22),
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for a1 (%) < yo < B1(x), af (%) < y2 < B{ (%), 22(%) < 20 < Bal), a5(%) < 21 < B (),

and (x, y1,22) € [a,b] x R?, and

g, a1 (%), ) (%), 2, 002(), 21, 25 (%)) < (%, Y0, Y15 Y2, Z0, 21, 22)
Sg(x' ﬂl(x)i ﬂi(x)'yZI ﬂZ(x)rzlr ﬂé/(x))’
for a1(x) < yo < B1(x), o} (x) < y1 < B1(x), a2(x) <z < Ba(x), &y (x) < zo < By (%),

and (x, y2,21) € [a, b] x R2,
(HB) 10,‘,]0]‘ € C([d, b] X R4,R) Verify

Iol'(xi,061(xt),Oli(xi),az(xi),aé(xi)) =< IOi(xi;yO;yl;Zle)

< Ioi (xi> B (x2), B (%:), Ba(x:), B3 (%))

fori=1,2,...,m1=0,1, ") <y < ), o %) < 2 < B (x) and

Joj(Tj» 1 (1)), 04 (1)), 02 (1)), 05(7))) < Joj(Tj> Y0, 1, 20, 21)

<Joi(7> B1(1), B1 (1), B2 (7)), B5 (%))

forj=1,2,...,n,0=0,1, aY)(x) <y < ﬁil)(x), ag)(x) <z < ﬁg)(x),
and I;,/1j € C([a, b] x R, R) satisfy

L (%1, 01 (%), 1, 2, 002 (67), 00y (%)) < Thi(i5 Y0, Y15 Y25 20, 21)
< Ii(%i, B (%2 1, 2 Ba (%), B3 (x:))
fori= 1) 2: R U [= O) 1, al(x) =Yoo= ﬂl(x)l a;l)(x) =<z =< ﬁél)(x)) V()’l;yz) € RZ and
T (i e (1), &4 (1)), @2 ()), 21, 22) < Jj(T)5 Y0, V15 20, 21, 22)

< 11j(%, B1(%), B1 (1), Ba(T)), 21, 22)

forj=1,2,...,n,1=0,1, otgl)(x) <y < ,BY)(x), ar(x) <z < Ba(x), ¥(z1,20) € R2
The existence and localization theorem is given as follows.

Theorem 4.2 Let Ay, Bx € R, k =0,1,2, and the homeomorphisms ¢ and  verify (H1).
Assume that there are lower and upper solutions of (1.1), (1.2), (1.4), (aY), otg)) and (ﬂ}”, ﬁg)),
respectively, such that

D) < pP(x), «=1,2,1=0,1,Vx € [a,b],

the L'-Carathéodory functions f,g : [a,b] x R* — R satisfy Nagumo conditions as in Def-
inition 2.3 in the set

S* _ (xryOIylyyZ’ZO;ZI;ZZ) € [61, b] X R6 :
W) <y <BP@),af ®) <z <P, =01
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If assumptions (H2) and (H3) hold, then there is at least a pair (u(x), v(x)) € X? solution of
(1.1), (1.2), (1.4) and, moreover,

agl) ) <u®(x) < ,BY)(x), ag) (x) < v (x) < ﬂg) (x), [=0,1,Vx € [a,b],
and

'l <Ni and ||V'| <N,
with Ny and N, given by Lemma 2.4.

Proof Define the truncate functions 8;, : [4,0] x R — R forx =1,2and [ =0,1 given by

BO) it wi> Y (%)
St wy) = {wy if oz,(f)(x) <w < ,3,51) (%) (4.2)

oz,(f) (x) ifw < a,((’) (x).

Consider the following modified coupled system composed by the truncated and per-
turbed differential equations

%, 810(x, u(x)), 011 (x, ' (x)), u” (x),

820 (%, v(x)), 821 (%, V' (%)), V" (%)

b @) _ g
L4811 (04 ()1’ ()] ’

(@"x))) +f

(4.3)
X, 810(95’ u(x)), 811(96, M/(x))) M//(JC),
820(x, v(%)), 821 (%, V' (%)), V" (x)

So1 (V' (6)-V (%) _
* T v v o = O

(W (V' (x)) +g

with the truncated impulsive conditions

Au(x;) = Tog (%, 810 (200> u(x7) ), 811 (s> 1/ (7)) 820 (%2 V(1)) 801 (31, V (%1)) )

Au/(xl-) _ Ill‘ Xiyalo(xi, M(xl‘)),SH(xi,u’(xl,)), %311(965, u/(x,-)),
820 (i, V() 821 (i, V' (1))
(4.4)
Av() = Joj (7> 810 (17> 1(5)) 811 (73> (1)), 820 (1 (), 821 (7, V' (37)),
V() =Jy (Tﬁam(t” o, ”’(”))'5zo(rj,v(rj>>’> ,

81 (7, V' (1)), %521(% V(1))
fori=1,2,...,m,j=1,2,...,n, and boundary conditions (1.2).

It is clear that the functions F and G, given by

F(x) = f (%, 810 (%, u(x)), 811 (%, ' (%)), 1" (%), 820 (%, V(%)) 821 (%, V (), V' (%))

s S (x, ' (x)) — ' (x)
1+ |611(x, o/ (x) — o/ (%)]
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and

G(x) := g(x, 810 (%, u(x)), 811 (3, ' (%)), " (%), 820 (%, V(%) ), 821 (%, V (%)), V" (%))

801 (6, V(%)) — V(%)
1+ |81 (%, v (x)) =V (%)]

satisfy the Nagumo type conditions, as in Definition 2.3, relative to the set $* with

|F(x, 50,192, 20, 21,22)| < @1 (Iyal) + 1

and

|G Y0, 51, Y2, 20,21, 22) | < @2(1y2]) + 1.

Therefore, applying the same arguments as in Theorem 3.1, it can be proved that prob-
lem (4.3), (1.2), (4.4) has at least a solution (u(x), v(x)).

To prove that this solution is also a solution to the initial problem (1.1), (1.2), (1.4), it
will be enough to show that

V) <uP@) < %), @) <% <P, [=0,1,Vx¢€abl.

For the second inequality, assume, by contradiction, that there is x € [a, ] such that
u'(x) > B1(x), and define

sup (' (x) — B (x)) := /(%) — B} (%) > 0. (4.5)

a<x<b

As, by boundary conditions (1.2) and Definition 4.1, #'(a) — B{(a) <0, then X # a. In the
same way, #”(b™) — B{(b7) <0, therefore x # b.

Then x € (a, b), two possibilities remain to be studied:

(i) Assume that thereis p € {0,1,2,...,n} such that x € (x,,%,,1). Therefore

max (u/(x) - ﬂ{(x)) =u'(®) - B >0

x€(Xp,Xps1)

and

W' (3) - B(R) = 0. (4.6)
Choose € > 0 sufficiently small such that

u(x)-pi(x)>0 and u’(x)-B{(x) <0, Vxe(x,x+e). 4.7)
By (H2), forallx € (x,% + €),

(6" @) = (6(B/ )
> —f (%, 810 (%, u(x)), 811 (%, 4/ (%)), 1" (%), 820 (3, V(x)), 821 (%, V (%)), V" ()
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__nwu @) -wl)
L+ 1811 (%, 1/ (x)) — /(%)
> —f (%, 810 (%, u(x)), B (%), B1 (x), 820 (%, V(x)), 821 (%, V() V" (%))
 A® -
L+[B1(x) —u' (%)
u'(x) - B (%)
ST @ -gwl

£ Bi(x), By (%), B (%), B2(x), B3 (), B3 (%))

+f (% B1(x), B1 (%), B] (%), B2 (%), By (), By (x))

So (¢(u”(x)) — p(B{ (x))) is increasing for Vx € (%, % + €), and, by (4.7), we obtain the
contradiction in (x,% + €) by (4.6) and (4.7):

0=0¢(u" (%) - (B (%)) < d(u"(x)) — d(B] (x) <O0.

Therefore, for x € (%), %41), p=0,1,2,...,n,

u'(x) < B1(x).

(ii) Suppose now that there is p, € {1,2,...,n} such that x = x,,,. That s,

sup (i (x) — By (&) := 1 (xp,) — By (xp,) > 0. (4.8)

x€la,b]

As u, B1 € X, by (i), we obtain the contradiction

u'(xy,) = xEQ};* u'(x) < xEE,}* Bi(x) = B (xp,).

Ifx =x, , suppose

sup (i (x) - By (x)) := u’(x;*) - B (x;*) > 0.

x€la,b)

By (4.4), (H3), and Definition 4.1, we obtain the contradiction

0 < (x,) ~ Bi(x3.) = )

i I xp*r alo(xp*r u(xp*)): 811 (xp*r u/(xp*))r %Sll(xp*» u/(xp*))’
1p« /
P 820 (xp* ’ V(xp* ))1 821 (xp* 4 (xp* ))

- 13; (xp*) - IP* (xp*’ ﬁl (xp*)’ ,Bi (xp*)’ ﬂi/(xp*)! ﬂZ(xp*)’ ﬂé(xp*))
= 1117* (xp* ) ﬁl (xp* )’ ﬂi (xp* )’ ﬁi/(xp* )’ 820 (xp* ’ V(xP* ))’ 821 (xp*’ V/(xp* )))

- Ilp* (xp*: ,31 (xp*): ﬂi (xp*)' ﬁ{/(xp*)7 IBZ(xp* ): ,Bé(xp*)) S 0.

Therefore, 1/ (x) < B'(x) for x € [a, b].

By similar arguments, the remaining inequality can be proved, and therefore
aj(x) <u'(x) < Bi(x) forallx e [a,b]. (4.9)

The other inequalities follow similar steps.

Page 20 of 31
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By integration of (4.9) for x € [a, %],
a1(x) < ulx) — u(a) + a1(a) < ulx),
and for x € (x1,x,] we have, by (H3),

a1 (%) < u(x) —u(x}) + o (x7)
< u(x) — u(x1)
— Tt (w1, 810 (21, u(x1)), 811 (31, &/ (%1)), 820 (%1, v(%1)), 821 (31, (1))
way () + oy (0 01 (1), @) (37), oo (), @t (7))

< u(x).
By recurrence, it can be shown, analogously, that
a1(x) <u(x), Vxe(x,x,q1]fori=1,...,m.

Therefore, a1 (x) < u(x), Vx € [a, b].

Analogously, the remaining inequality can be proved, and therefore

a1(x) <ulx) < B1(x) forallx € [a,b]. (4.10)
Analogously, it can be proved that

agl) (x) < W (x) < ,Bg) (x), [=0,1,Vx € [a,b]. O

To illustrate the importance of the location arguments, we consider the following exam-

ple.

Example 4.3 Let the problem be composed by the strongly nonlinear ¢-Laplacian and

p-Laplacian differential equations

u" (%)

+ u(x) — 44/ (x) + v(x) + arctan(v’(x)) = 0,

1+ ()%
x € [0, 1]\ {(x)}, (4.11)
(V' @P2V () + ) - 20 (x) sin* (" (x)) + v(x) ~ 247 = 0,
x € [0,1]\ {(5))}
with p > 1, the boundary conditions
_ / _1 7" —
w0)=0, #0)=3  «'(1)=1 (4.12)

v(0) =0, V(0) =0, v'(1) =1,

Page 21 of 31
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and impulsive conditions are given by

Au(x;) = Lu(xi) + iu’(xi) V()
A (%) = 5= sin(mu (x:)) + 1 () + 15 v(%7), (4.13)
Av() = %u(rj) + Wv(tj) + m,/v (t,),
AV (1)) = M(‘L’/) + v(r,) + o L sin 2” V(1))
with x; = £ fori=1,2,3,4 and 7; = L forj = 1,2,3.
System (4.11)—(4.13) is a particular case of problem (1.1), (1.2), (1.4) with [a, b] = [0, 1],
¢(y2) = arctan(y,), ¥ (22) = 122" 20, (4.14)

S50, 91,52, 20,21, 22) = Yo — 4y1 + 2o + arctan zy,

2%, 90, ¥1,¥2, 20,21, 22) = Yo — 221 5in*(¥2) + 20 — 2/Z1,

1
A=

y Ay =By = 1,
2 2 2
1

Ao =By=B; =0,
1

1
1 ) ) ) ) = .
0(>Y0,¥1,20,21) 3070 " 2071 T 507

L ey s 1
—sin(mwy;) + —y2 + — 20,
o VRV F 10727 100

11('»}’0,3’1;)/2;20,21) =
1 1 1
507 * 20022 * 1000
1 11 [on
2070 0%t sin{ —
yo 20 0 5 Z1

]0(3)’00’1» 20, Zl) =
]1('1}/0:}’1) 20, leZZ)

and m=4,n=3.

It is easy to see that the functions ¢, ¥ : R — R, given in (4.14), verify assumption (H1)
and are increasing homeomorphisms such that ¢(0) = ¢(0) = 0, p(R) = v (R) =

The functions «, : [0,1] = R, x = 1,2, given by

- -1y ifo<x<l , .

- —x f0<x<—

12, il 2 10 10
e —zx ifzcx<z

5 5 5 2 2 'fl <2

1 3 e 3 —X —gx 1E<x_§

1) =4 —e1-3x ifZcx<? as(x) =

5 5 5 2 9 if 2 9

1 4 e 3 4 —X —Ex 1§<xfﬁ
et —Zx f2<cx<3z

5 5 5 2 r 9

. a —x*-x  if5<x<1,

- —x 1f§<x§1,

and B, :[0,1] = R, k = 1,2, given by

if0<x

IA
Gl
=
(=]
A
K
A

o x4 Lx 1
. 10 =X*¥=T10
ex1+§x lfé<x§§ s . )
- . 3 x°+ Ex 1f1—0<x§§
Pilx)=3et+3x ifZcx<? Bo(x) =
5 5 5 2, 9 2 9
. 5 . X+ T 1f—<x§m
iy ifdcx<i
5 5 5 5
. X+ X 1fE< x <1,
&+ 1f§<x§1,
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Figure 1 Relationship between nonlinearities depending on the lower and upper solutions, given by the
inequalities: a) (P (e} (x))) + f(x, oty (), &} (), @ (), 2 (), @y (%), @y (x)) = 0 = (@ (B () + F(x, B1 (%), B (%), B (),
Ba(x), B5(x), B5()); b) (W (e ()" + glx, ot (x), ot (), 07 (x), 02 (x), 05 (x), e () = 0 = (W (B () + glx, B (x), By (x),

1), B2(x), B5(x), By (X))

Table 1 Impulsive conditions for functions ey and By

i Xi Ay (x) loilatr) loi(B1) ABi(x) Ao (x) hiloer) hi(B1) AB(x)
1 02 -0.0400 —-0.0349 0.0349 0.0400 -0.2000 -0.1989 0.1989 0.2000
2 04 —-0.0800 -0.0537 0.0537 0.0800 -0.2000 -0.1124 0.1124 0.2000
3 0.6 -0.1200 —-0.0841 0.0841 0.1200 -0.2000 -0.0375 0.0375 0.2000
4 0.8 -0.1600 -0.1163 0.1163 0.1600 -0.2000 -0.0697 0.0697 0.2000
Table 2 Impulsive conditions for functions az; and B

j T Ao (1)) Jojlatz) Joi(B2) ABy (1)) Ad)(T) Jijlez) J1j(B2) AB(T)
1 0.1 —-0.0300 -0.0092 0.0092 0.0300 —-0.3000 -0.1395 0.1395 0.2000
2 04 —-0.2000 -0.0155 0.0155 0.2000 —-0.5000 -0.3691 0.3691 0.5000
3 09 -0.0900 -0.0386 0.0386 0.0900 —-0.1000 -0.0921 0.0921 0.1000

when x5 = 74 = 1, are, respectively, lower and upper solutions of problem (4.11)—(4.13)

according to Definition 4.1. The differential inequalities are verified in the interval [0, 1],

as shown in Fig. 1.

The boundary conditions

1 1 1 1
0)=—= <0, 0)=—= -~ <=, "(1) =
a1(0) e< 0[1() e 5<2 0‘1()
1
a5(0) =0, a5 (0) = 1o < 0, ay(l)=-2<1,
BO=250, BO=—+252,  BD=1
1 e ) 1 e 5 2’ 1 b

B2(0) =0,

and impulsive conditions verify the inequalities of Definition 4.1, as shown in Table 1 and

Table 2.
Let

1
ﬁé(o) =—> 07
e

2(1)=2>1,

L > max{floa () l1x,, 181 (%) l1x,, lleta () 13, 11B2@) 1, },

-1<1,
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then f and g are L!-Carathéodory functions with

V(x¢y0)y1’y27ZO’thz2)| =< 6L +1:= plL(x)’

|lg(x, y0, 71, 92,20, 21,22) | < AL + 2¥/L 1= por (),

and the sum of the jumps is bounded.
The functions f and g satisfy the Nagumo condition relative to the sets

S =

(x;yO)ylryZIZOer!ZZ) € [0! 1] X R6 :
o’ () <31 < ), o (v) <z < B (0),1=0,1

Consider a constant i > 0, k = 1,2, and u as defined in (2.5), then, in S,

f (%, 50,1, 92, 20, 21,22) | = [y0 — 4y1 + 20 + arctanzy |

<Ki:=o¢1(ly2l)

and

g%, Y0, 71,32, 20, 21, 22) | = |0 — 221 sin*(y2) + 20 — 221 |
< Ks = ¢3(l221),

it is trivial that

N U Ol vy i)
T ds=+00 and e ds = +oo.
o) 1971+ Ky vy V) + Ky

So, by Theorem 4.2, there is at least one pair of functions (u(x), v(x)) € X2, a solution of
problem (4.11)—(4.13); moreover,

a1 (x) < u(x) < pr(x), oy (x) < v(x) < Ba(w),

o) =u'®) < pilx),  apx) V) <Byx), Vxel01],
as shown in Fig. 2 and Fig. 3, and

lu'l <Ni and [V <N,
with N; and N, given by Lemma 2.4.

5 Singular ¢-Laplacian equations in special relativity

Relativity implies that physical laws do not depend on the chosen reference frame. In spe-
cial relativity, the speed of light c is recognized as the maximum speed with which infor-
mation can travel in free space from one frame of reference to another [4]. Let us con-
sider two frames of reference Py and P in uniform relative motion to each other, that is,
moving with relative speed v. Taking into account the upper limit c of the speed of infor-
mation propagation, the space—time coordinates of the frames Py and P must be related
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Figure 2 At least one solution (u(x), v(x)) of problem (4.11)—(4.13) is located in the colored region, when
x€[0,1]

Figure 3 Localization for the first derivative of the solution of problem (4.11)—(4.13), when x € [0, 1]

by Lorentz transformations [13]. The Lorentz factor depends nonlinearly on the relative

velocity v and is defined by

The theory of special relativity is fundamental in the development of the modern theory
of classical electrodynamics. The fact that an electric charge g generates an electric field
E and in motion generates a magnetic field B is intuitively compatible with the statement
that the electric and magnetic fields are covariant under a Lorentz transformation from
one inertial system to another [20].

The study developed in this article can be adapted and applied to a system of singular
¢-Laplacian equations, that is, to the system of equations (1.1), with two restrictions:

« In Lemma 2.4, the constants N; and N, must be chosen such that

O0<Ni<n and O0<N;<vy;
« Assumption (H1) must be replaced by
(Hs) ¢ : (-n,n) > Rand ¢ : (-y,y) — R for some 0 <5 < +00 and 0 < y < +00 are

increasing homeomorphisms with ¢(0) = ¥(0) = 0, ¢(-n,n) =R and ¥ (-y,y) =R
such that

o' w)| <o (Iwl) and |y~ (w)| <y (Iwl).
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In this case, a solution to problem (1.1)—(1.3) is a pair of functions (u(x), v(x)) € X2 such
that (" (x),v"(x)) € (-=n,n) x (=y,y) for all x € [a, b] satisfying (1.1)—(1.3).

Example 5.1 Consider the problem

(%)/ + 5 ux) = 2 (' (x))* + 2V )|V (x)| =0,

€ L1\ {(x)},
(W)’ wu) = 30/ () + g/ )|/ (%)] = 0,

e [-L1\ {(5)}

with the boundary conditions

u(-1)=0, W(-1)=3 W)=

1
’ 2 (5.2)
v(-1)=0, V(-1)=-1, V()=0,

and impulsive conditions are given by

Au(x;) = ﬁ arctan(u(x;) + 1),
Au'(x;) = iu(xi) - Lu’(xi),
A1) = 155

AV(7) = & s1n2(2nv (1)),

(5.3)
v(r]) +

withx1=0andt1-—§,r2—0 13—5

System (5.1)—(5.3) is a particular case of problem (1.1), (1.2), (1.4), with [a, b] = [-1,1],

d(y2) =

Y2
) V(z2) = , (5.4)
V1-9 ’ 1-2

1 5 1
S50, 91,92, 20,21, 22) = — Yo — )ﬁ lezll

12

1 2
g%, 90,51,¥2,20,21,22) = 2%~ 521 gyl lyil,
Ap=Byp=B,=0 A—l A—1 B—l
0=Do=D2=VY, 1—3) 2—2; 1= 2r

1
Io(+, v0,¥1,%0,21) = — arctan(yg + 1),
0(*» Y0, Y1520, 21) yp o +1)

1
10

( ’ ’ ’ ) 5
} : 120, Z Z
0 yO yl 0,41 100 0

Li(: )’0»)’10’2,20,21) —)’0 Pt

1
]1('»}’0;)11,20,21,22) =5 Sln2(27T21),
3

andm=1,n=3.
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As the functions ¢ : (-1,1) - R and ¥ : (-3,3) — R given in (5.4) are increasing home-
omorphisms such that ¢(0) = (0) =0, ¢(-1,1) =R, ¥(-3,3) = R,

SRS DA 14
¢ (w) =y (w) NiwsTA

and

Iwl

-1 _
47wl = A

=o' (Iwl),

then assumption (Hs) holds.
The functions ¢, : [0,1] = R, « = 1,2, given by

$x5+1—18x3+2—10 if —1<x<0
o (x) = 1.5, 1.3, 1 ;
0%+ 3% + 35 if0<x<1,
L sin(rx) if —1<x<-1
2 -7 =2
—zi(sin(nx) +1) if-l<cx<o0
_ 7 2
oz(x) = 1 . 1
—5,- sin(mx) ifo<x <3
1 (e 1
5 (sin(mrx) =1)  if 5 <x<1,
and B, : [0,1] = R, k = 1,2, given by
1./ 3 if —1<x<
B1(x) = i (x-lrS) if —1<x<0
g+l ifo<x<l,
1,3, 1,2 1 if _1
—3X° + SxT X+ 5 if —1<x< 5
AP - -Ix+ 5 if-1<x=<0
Ba(x) =
A2 -3x+2 ifo<cx<!
6 0% 75 =3
1.3,1,2,1,.,2 1
—EX gt g+ s ifg<x<1,

are, respectively, lower and upper solutions of problem (5.1)—(5.3) according to Definition
4.1. In fact, the differential inequalities are verified in the interval [-1, 1], as shown in Fig. 4.

The boundary conditions

1 ) 11 L1
0{1(—1)=—£ <0, al(—1)=1<§, Oll(].)z 2,
w(-1)=0,  aj-D=-=, a}(1)=0,

1 ) V2 1 p
AD=2V2>0, Bi-D=-S>3 )=z,

1 ) 11 |
Ba(-1) = D >0, ,32(—1)=—E > By (1) = g >0,

and impulsive conditions verify the inequalities of Definition 4.1, as shown in Table 3 and
Table 4.
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a b

Figure 4 Relationship between nonlinearities depending on the lower and upper solutions, given by the

inequalities: a) (e (x)))" + f(x, a1 (), &} (), @ (), 2 (), @5 (%), @ (x)) = 0 = (@ (B ()" + F(x, B1 (), B (%), B (),

Ba(x), B5(x), By (x)); b) (W (e () + glx, ot (x), ot (x), 07 (x), 02 (x), 05 (x), 06 (x)) = 0 = (W (B () + glx, B (x), By (x),
100, B2(x), B5(x), B (x))

Table 3 Impulsive conditions for functions a1 and B

i Xi A (x) loilatr) loi(B1) ABy(x;) Ao (x) hilar) hi(B1) AB;(x;)
1 0.0 0.0500 0.0644 0.0859 0.1340 0.0000 0.0050 0.0433 0.0670

Table 4 Impulsive conditions for functions a; and B

j T Ao (7)) Jojle) Joj(B2) ABa(T) Ad(T) Jijlaz) Jij(B2) ABS(T)

1 -05 0.1592 0.1651 0.1680 0.1954 0.0000 0.0000 0.0155 0.0375

2 0.0 0.1592 0.1651 0.1703 0.2400 0.0000 0.0000 0.0367 0.1000

3 0.5 0.1592 0.1651 0.1735 0.2271 0.0000 0.0000 0.0219 0.0292
Let

L > max{ o () lx,, 181(%)l1x,, lleea () 13y, 11B2®) 1, },

then f and g are L!-Carathéodory functions with

18,
(x¢y01y17y27207zlxz2) < L+ -L":= plL(x)1
12 3

18,
|g(x¢y0ry1’y2rZO’ZlyZ2)| = EL + gL = 102L(x)¢

and the sum of the jumps is bounded.
The functions f and g satisfy the Nagumo condition relative to the sets

S, = (xxyo;ylﬁyZ;ZOyzlsz) € [_1! 1] X ]R6 :
2 0] 0] ] () /= :
o1 (x) <yn= ,61 (x): (%) (x) <z < ,32 (x); =0,1

Consider a constant i > 0, k = 1,2, and uy as defined in (2.5), then, in Ss,

1

[f (Y0, 31,5220, 21, 22) | = | —= —§y2+lz|z|
2y Y0 V15 V25405 <1542 12021611

<Ki:=e1(ly2l)
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Figure 5 At least one solution (u(x), v(x)) of problem (5.1)—(5.3) is located in the colored region, when
xe[-1,1]

Figure 6 Localization for the first derivative of the solution of problem (5.1)—(5.3), when x € [-1,1]

and

1 5, 1
g%, 50,51, 20,21, 22)| = 370~ 34 + gl

< Ky := ga(l22),

it is trivial that

/'”O lp~ ()] ds= 100 and /”O [y 1(s)] s = 400
oy 1071+ Ky W) 1UTHE) ]+ KCy )

So, by Theorem 4.2, there is at least one pair of functions (u(x), v(x)) € X2, a solution of

problem (5.1)—(5.3); moreover,

a1(x) Sulx) < fi(x), o) <v(x) < Balx),

oar(x) <u'(x) < Bi(x),  ay(x) <V(x) < Byx), Vxe[-1,1],
as shown in Fig. 5 and Fig. 6, and
lu’| <Ni<1 and ||V'[|<N»<3

with N; and N, given by Lemma 2.4.
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6 Conclusion

This work shows, mainly, that local monotonies on the nonlinearities and the impulsive
functions are sufficient conditions for the solvability of a third-order impulsive coupled
system with two differential equations involving different Laplacians, fully discontinuous
nonlinearities, and two-point boundary conditions. The localization information given by
the lower and upper solutions had been underused to obtain qualitative data on the solu-
tions, such as growth type, sign, and estimation of the unknown function and its deriva-
tives, as it is illustrated in both examples. To the best of our knowledge, it is the first time
where impulsive coupled systems with strongly nonlinear fully differential equations and
generalized impulse effects are considered simultaneously. There remain arguments and
techniques to be used, to obtain the localization part for coupled systems with jumps on
the Laplacians.
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