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Abstract
In this paper, we obtain conditions of the solvability of the Riemann boundary value
problem for sectionally analytic functions in multiply connected domains in Besov
spaces embedded into the class of continuous functions. We indicate a new class of
Cauchy-type integrals, which are continuous on a closed domain with continuous
(not Hölder) density in terms of Besov spaces, and for which the Sokhotski–Plemelj
formulas are valid.
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1 Introduction
Let L = L0 +L1 + · · ·+Lm be a collection of m+1 disjoint closed contours, with L0 containing
all the others. Let D+ be the m + 1 connected domain situated inside the contour L0 and
outside L1, L2, . . . , Lm. By D– we denote the supplement of D+ = D+ + L to the whole plane.
For definiteness, we suppose that the origin of the coordinate system is located in D+. For
the positive direction on the contour L, we take that leaving the domain D+ on the left, i.e.,
the contour L0 is to be traversed anticlockwise, and the contours L1, . . . , Lm, clockwise.

1.1 Formulation of the Riemann boundary value problem
Suppose that on a closed contour L, two functions G(t) and g(t) are given and G(t) does
not vanish. We assume that these functions belong to the Besov space Br

p,θ (L), where the
parameters r > 0, 1 < p < ∞, 1 ≤ θ ≤ ∞ are determined by one of the following conditions:

(I) 1 < p < 2, θ = 1, r = 1/p,
(II) 1 < p < 2, θ ≥ 1, r > 1/p,

(III) p ≥ 2, θ ≥ 1, r > 1 – 1/p.
Moreover, we assume that r + 1/p – 1 < ν ≤ 1 and L ∈ C1

ν , where C1
ν is the class of func-

tions with continuous derivative concerning Hölder with index ν .
It is required to find a sectionally analytic function �(z), consisting of �+(z), analytical

in the domain D+, and �–(z), analytical and domain D–, including z = ∞, that satisfies on
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the contour L either the linear relation

�+(t) = G(t)�–(t) (homogeneous problem) (1.1)

or

�+(t) = G(t)�–(t) + g(t) (nonhomogeneous problem). (1.2)

The boundary values of the functions �+(z) and �–(z) on a closed contour L are denoted
�+(t) and �–(t), respectively.

The function G(t) is called the coefficient of the Riemann boundary value problem, and
the function g(t) is its free term.

1.2 Determination of a sectionally analytic function in accordance with given
jump

Let us consider the Riemann boundary value problem of a certain type, which will be used
later.

Problem 1.1 Let ϕ(t) ∈ Br
p,θ (L). It is required to find a sectionally analytic function �(z)

(�(z) = �+(z) for z ∈ D+, �(z) = �–(z) for z ∈ D–) taking a finite value A ≥ 0 at infinity and
undergoing in passing through the contour L a jump ϕ(t), i.e., satisfying on L the condition

�+(t) – �–(t) = ϕ(t). (1.3)

Problem 1.1 is solvable and has a unique solution (for given A), expressed through a
Cauchy-type integral

�(z) =
1

2π i

∫
L

ϕ(τ )
τ – z

dτ + A (1.4)

as in the case of a simply connected domain. It follows from the Sokhotski–Plemelj formu-
las, which are the same for multiply connected as for simply connected domains, as shown
in [5, Ch. 1, Sect. 8.7],. Under our conditions, the Cauchy-type integral in (1.4) belongs to
the space B1+α

p,θ (D+), α = r + 1/p – 1 ([4, Ch. 1, Lemma 1.2]), embedded in the space C(D+)
of continuous functions in the closed domain D+ [3], and

‖�‖B1+α
p,θ (D+) ≤ M‖ϕ‖Br

p,θ (L), (1.5)

where the constant M > 0 does not depend on ϕ. For the boundary values �+(t) and
�–(t) of the Cauchy-type integral (A = 0), the Sokhotski–Plemelj formula holds ([4, Ch. 1,
Lemma 1.2]; see the proof of Corollary 2).

By definition, f (x) ∈ Br
p,θ (En), 1 ≤ p < ∞, 1 ≤ θ ≤ ∞, r = r + α, r-integer, 0 < α ≤ 1, and

En is the n-dimensional Euclidean space with finite norm

‖f ‖Br
p,θ (En) = ‖f ‖Lp(En) +

(∫
En

|u|–n–αθ
∥∥	2

uf (r)∥∥θ

Lp(En) dh
) 1

θ

,
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where f (r)
u is the generalized (according to Sobolev) derivative of order r in some direction

u ∈ En.
We denote 	uf (x) = f (x + u) – f (x) and 	m

u f (x) = 	u[	m–1
u f (x)], a finite difference of

order m. If α < 1, then in the seminorm the second difference 	2
u can be replaced by the

first 	u.
The Besov space can be defined by preserving the corresponding embedding theorems.

For example, the theorem for the embedding of different metrics holds for Br
p,θ (D+), where

D+ ⊂ En is a domain with Lipschitz boundary [3]. For other equivalent standards and de-
tails, see [3].

Referring to the above, we note the following interesting result. In condition (I), the
space B1/p

p,1 (L), 1 < p < 2, is embedded in the space C(L) of continuous functions but is not
embedded in the space Cβ (L), 0 < β < 1, of Hölder-continuous functions [3].

In this way, note that the Besov class B1/p
p,1 (L), 1 < p < 2, contains continuous functions

ϕ(t) that are not Hölder continuous on L, the Cauchy-type integral of which is a continuous
function in a closed domain D+, and the Sokhotski–Plemelj formulas are valid. This result
seems interesting because in general it is well known that a Cauchy-type integral with
arbitrary continuous density is not necessarily a continuous function in a closed domain.
Functions from B1/p

p,1 (L), 1 < p < 2, satisfy Hölder’s inequality in the Lp norm.
In conditions (II) and (III), ϕ(t) ∈ Br

p,θ (L) ↪→ Cβ (L) for some 0 < β < 1. Even in these
cases, the belonging of the Cauchy-type integral �(z) to B1+α

p,θ (D+) provides information
about the existence of its generalized derivatives belonging to Bα

p,θ (D+).
Further, the problem of finding a sectionally analytic function for a given jump will be

encountered several times, so it is convenient to formulate it in the form of the following:

Conclusion 1.2 An arbitrary function ϕ(t) ∈ Br
p,θ (L) can be uniquely represented as the

difference of functions �+(t) and �–(t) that are the boundary values of the analytic func-
tions �+(z) and �–(z) with the additional condition �–(∞) = A ≥ 0.

In the famous monographs of Muskhelishvili [9] and Gakhov [5], where the theories of
singular integral equations (with the Cauchy kernel) and boundary value problems for an-
alytic functions of a complex variable are summarized, and the main method of research
is the apparatus of Cauchy-type integrals in the spaces Cβ , 0 < β < 1, and Lp, p ≥ 1. The
works of [1, 2, 6–8, 10] are devoted to the study of various cases of the specified range of
problems in the same spaces (sometimes with weights). The results of these works can be
generalized or refined by applying the above results to specified Besov spaces with rela-
tively simplified data requirements.

2 Solution of the Riemann boundary value problem
2.1 Solution of the homogeneous problem
We use some commonly accepted terms and concepts from [5, 9]. Let us denote by κk =
(1/2π )[arg G(t)]Lk the index of the function G(t) on the contour Lk (k = 1, 2, .., m), where
[·]Lk denotes the increment of the expression enclosed in brackets when going around the
Lk contour once in the positive direction. The value of κ =

∑m
k=0 κk is called the index of

the problem.
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We introduce the function

m∏
k=1

(t – zk)κk ,

where zk are some points lying inside the contours Lk (k = 1, 2, . . . , m). We easily obtain

1
2π

[
arg

m∏
k=1

(t – zk)κk

]

Lj

=
1

2π

[
arg(t – zj)κj

]
Lj

= –κj, (j = 1, 2, . . . , m),

1
2π

[
arg G(t)

m∏
k=1

(t – zk)κk

]

L0

=
1

2π

[
arg G(t)

]
L0

+
1

2π

m∑
k=1

[
arg(t – zk)κk

]
L0

= κ0 +
m∑

k=1

κk = κ.

Since the origin is located in the domain D+, we have

1
2π

{
arg

[
t–κ

m∏
k=1

(t – zk)κk G(t)

]}

L

= 0. (2.1)

Now we can formulate the conditions of solvability of the homogeneous Riemann
boundary value problem written in the form (1.1).

Theorem 2.1 Let the parameters r, p, θ be determined by one of the conditions (I)–(III).
Let G(t), g(t) ∈ Br

p,θ (L) and G(t) 	= 0, t ∈ L. Then if the index κ of the Riemann boundary
value problem is positive, then problem (1.1) has κ + 1 linearly independent solutions

�+
k (z) =

m∏
k=1

(z – zk)–κk e�+(z)zl, �–
k (z) = e�–(z)zl–κ , l = 0, 1, . . . ,κ, (2.2)

where

�(z) =
1

2π i

∫
L

log G(τ ) dτ

τ – z
.

The general solution contains κ + 1 arbitrary constants and is given by the formula

�+(z) =
m∏

k=1

(z – zk)–κk e�+(z)Pκ(z), �–(z) = z–κe�–(z)Pκ(z), (2.3)

where Pκ(z) is a polynomial of degree not higher than κ with arbitrary complex coefficients.
If κ = 0, then we come to the case of an auxiliary homogeneous problem, and the problem
has a solution of the form

�+(z) = Ae�+(z), �–(z) = Ae�–(z), �–(∞) = A 	= 0.

If κ < 0, then the homogeneous problem has only the trivial solution.
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Proof Let us rewrite the homogeneous problem (1.1) in the form

�+(t) =
tκ∏m

k=1(t – zk)κk

[
t–κ

m∏
k=1

(t – zk)κk G(t)

]
�–(t). (2.4)

The function

G1(t) = t–κ
m∏

k=1

(t – zk)κ
k
G(t) (2.5)

belongs to the space Br
p,θ (L) ([4, Ch. I, Sect. 6]), and its index on L is zero in (2.1). Con-

sequently, log G1(t) is a single-valued function on L, and log G1(t) ∈ Br
p,θ (L). Note that the

Besov space, embedded in the class of continuous functions, is closed under the operation
of multiplying elements [4].

A homogeneous problem with condition (2.4) on L can be reduced to the problem of
finding a sectionally analytic function with zero jump. This is possible if the function
G1(t) ∈ Br

p,θ (L) with zero index is represented as a ratio of the functions �+(t) and �–(t),
which are the boundary values of functions that are analytic in the domains D+, D– and
do not have zeros in these domains. For this, it is necessary to solve the following auxiliary
homogeneous problem:

Find a sectionally analytic function �(z) that is analytic in the domains D+, D– and sat-
isfies the following boundary condition on L:

�1(t) = G1(t)�–
1 (t), �–

1 (∞) = A 	= 0. (2.6)

Taking the logarithms in the boundary condition (2.6), we have

log�+
1 (t) – log�–

1 (t) = log G1(t). (2.7)

For log G1(t), any branch may be taken. It is easy to verify that the final result is indepen-
dent of the choice of a branch. Then, as shown earlier, log G1(t) is a one-valued function,
and log�+

1 (t) and log�–
1 (t) are analytic in the domains D+ and D–, respectively (see also

Conclusion 1.2).
Thus we have arrived at the problem of determining a sectionally analytic function

with the given jump on L (see Problem 1.1). Its solution, under the additional condition
�–

1 (∞) = A 	= 0, is given by the formula

log�1(z) =
1

2π i

∫
L

log G1(τ ) dτ

τ – z
+ log A.

Let us denote for brevity log�1(z) = �(z). It follows directly from the Sokhotski–Plemelj
formulas that the solution of the boundary value problem (2.6) is given by the functions

�+
1 (z) = Ae�+(z), �–

1 (z) = Ae�–(z),

which do not vanish (A 	= 0 by condition).
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In this case, as we can see from (2.7), the function G1(t) can be represented in the form

G1(t) =
e�+(t)

e�–(t) , (2.8)

where

�(z) =
1

2π i

∫
L

log G1(τ ) dτ

τ – z
+ log A ∈ B1+α

p,θ
(
D+)

↪→ C
(
D+

)
.

The function G1(t) ∈ Br
p,θ (L) with zero index is represented as the ratio of the functions

�+
1 (t) and �–

1 (t), which are boundary values on L of the solution to the auxiliary homoge-
neous problem, which does not vanish anywhere (and on L).

Let us arrive at a homogeneous problem with condition (2.4). Introducing representa-
tion (2.8) of the function G1(t), we rewrite it in the form

m∏
k=1

(z – zk)κk
�+(z)
e�+(z) = zκ

�–(z)
e�–(z) ,

from which it is clear that the function
∏m

k=1(z – zk)κk �+(z)
e�+(z) is analytic in the domain D+,

and the function zκ �–(z)
e�–(z) is analytic in the domain D–, except at infinity, where it can

have a pole of order not higher than κ, constitute the analytic continuation of each other
through the contour L. Consequently, they are branches of a unique analytic function that
can have, in the entire plane, only one singularity, a pole of order not higher than κ at
infinity. According to the generalized Liouville theorem, this function is a polynomial of
degree not higher than κ with arbitrary complex coefficients. Hence we obtain the general
solution of the problem

�+(z) =
m∏

k=1

(z – zk)–κk e�+(z)Pκ(z), �–(z) = z–κe�–(z)Pκ(z), (2.9)

where Pκ(z) is a polynomial of degree not higher than κ with arbitrary complex coeffi-
cients.

Thus, if the index κ of the Riemann boundary value problem is positive, then the prob-
lem has κ + 1 linearly independent solutions:

�+
k (z) =

m∏
k=1

(z – zk)–κk e�+(z)zl, �–
k (z) = e�–(z)zl–κ , l = 0, 1, . . . ,κ. (2.10)

The general solution contains κ + 1 arbitrary constants and is given by formula (2.9). If
κ = 0, then we come to the case of an auxiliary homogeneous problem, and the problem
has a solution of the form

�+(z) = Ae�+(z), �–(z) = Ae�–(z),

where

�(z) =
1

2π i

∫
L

log G(τ ) dτ

τ – z
, �–(∞) = A 	= 0.

If κ < 0, then the homogeneous problem only has the trivial solution.
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It follows from formula (2.9) that �–(∞) is equal to the coefficient of zκ in the polyno-
mial Pκ(z). Therefore, under the condition �–(∞) = 0, the general solution of the problem
can be represented in the form (2.9), where the polynomial Pκ(z) must be replaced by the
polynomial Pκ–1(z) of degree κ – 1. In this case, the problem has κ linearly independent
solutions. This completes the proof. �

2.2 Nonhomogeneous problem
To solve the nonhomogeneous problem, it is convenient to use the representation of the
coefficient G(t) of the problem in the form G(t) = X+(t)/X–(t), where X(z) is some particu-
lar solution of a homogeneous problem that does not vanish in the entire finite part of the
plane; this implies that the boundary values of this solution also do not vanish anywhere
on L. This type of solution is usually called canonical. It is assumed that this solution at
infinity may have a pole. The existence and form of the required functions X+(t), X–(t) can
be obtained from equations (2.5) and (2.8):

X+(t) =
m∏

k=1

(t – zk)–κk e�+(t), X–(t) = t–κe�–(t). (2.11)

For κ ≥ 0, the function X(z) is a solution to the homogeneous problem and X+(t) ∈
Br

p,θ (L) ([4, Ch. I, Sect. 6]). If κ < 0, then it has a pole of order κ at infinity.
The next result shows the conditions of the solvability of the nonhomogeneous problem

(1.2).

Theorem 2.2 Let the parameters r, p, θ be determined by one of conditions (I)–(III). Let
G(t), g(t) ∈ Br

p,θ (L) and G(t) 	= 0, t ∈ L. Then if κ ≥ 0, then the general solution to the non-
homogeneous problem, vanishing at infinity, is given by

�(z) =
X(z)
2π i

∫
L

g(τ ) dτ

X+(τ )(τ – z)
+ X(z)Pκ–1(z), (2.12)

where Pκ–1 is an arbitrary polynomial of degree not higher than κ – 1, and for κ = 0, we
should consider Pκ–1 ≡ 0. If κ < 0, then for a solution to exist, it is necessary and sufficient
that the following conditions are satisfied:

∫
L

τ kg(τ )
X+(τ )

dτ = 0, k = 1, 2, . . . , –κ – 1. (2.13)

In this case, the solution is given by formula (2.12), where Pκ(z) ≡ 0.

Proof Let X(z) be the canonical solution indicated above, and represent the coefficient of
the problem in the form

G(t) =
X+(t)
X–(t)

.

Then we can reduce the boundary condition (1.2) to the form

�+(t)
X+(t)

–
�–(t)
X–(t)

=
g(t)

X+(t)
, t ∈ L,

where g(t)
X+(t) ∈ Br

p,θ (L), since X+(t) ∈ Br
p,θ (L) and does not vanish on L ([4, Ch. I, Sect. 6]).
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We again come to the problem of finding a sectionally analytic function with a given
jump, considered in Problem 1.1. The behavior of the canonical solution of the homoge-
neous problem X(z) at infinity is described above by (2.11). It follows that the function
�–(z)
X–(z) at infinity has an order of growth not higher than κ > 0. Therefore, reasoning as in
Problem 1.1, we obtain

�(z)
X(z)

=
1

2π i

∫
L

g(τ ) dτ

X+(τ )(τ – z)
+ Pκ(z),

where Pκ(z) is an arbitrary polynomial of degree κ. Then we obtain the general solution
of the nonhomogeneous problem (1.2):

�(z) =
X(z)
2π i

∫
L

g(τ ) dτ

X+(τ )(τ – z)
+ X(z)Pκ(z). (2.14)

Thus, for κ ≥ 0, the nonhomogeneous problem (1.2) is solvable for any free term, and
its solution is given by formula (2.14), and for κ = 0, we should assume that Pκ ≡ 0. If
κ < 0, then the function X(z) has a pole of order –κ at infinity, and therefore in formula
(2.14), we should set Pκ ≡ 0. The Cauchy-type integral in the general case has a first-order
zero at infinity. Consequently, �–(z) has a pole of order at infinity not higher than –κ – 1.
Therefore, if κ < –1, then the nonhomogeneous problem (1.2) is generally unsolvable. It
will be solvable only if the free term satisfies some additional conditions. To obtain these
conditions, we expand in a series the indicated Cauchy-type integral from (2.14) in the
vicinity of infinity:

∞∑
k=1

ckz–k , ck = –
1

2π i

∫
L

g(τ )
X+(τ )

τ k–1 dτ .

From here it is easy to see that for the nonhomogeneous problem to be solvable in the
case of κ < –1, it is necessary and sufficient that the following conditions are satisfied:

∫
L

g(τ )
X+(τ )

τ k–1 dτ = 0, k = 1, 2, . . . , –κ – 1. (2.15)

If κ = –1, then the nonhomogeneous problem (1.2) is also solvable and has a unique so-
lution.

If we require that the desired solution vanishes at infinity, then in formulas (2.14) the
polynomial Pκ(z) should be replaced by the polynomial Pκ–1(z) of degree κ – 1.

Thus, if κ ≥ 0, then the general solution to the nonhomogeneous problem, vanishing at
infinity, is given by

�(z) =
X(z)
2π i

∫
L

g(τ ) dτ

X+(τ )(τ – z)
+ X(z)Pκ–1(z), (2.16)

where Pκ–1 is an arbitrary polynomial of degree not higher than κ – 1, and for κ = 0, we
should consider Pκ–1 ≡ 0.

If κ < 0, then for a solution to exist, it is necessary and sufficient that the following
conditions are satisfied:

∫
L

τ kg(τ )
X+(τ )

dτ = 0, k = 1, 2, . . . , –κ – 1. (2.17)



Bliev and Yerkinbayev Boundary Value Problems         (2024) 2024:70 Page 9 of 9

In this case, the solution is given by the formula

�(z) =
X(z)
2π i

∫
L

g(τ ) dτ

X+(τ )(τ – z)
. (2.18)

Note that for κ = 0, there is always a unique solution that vanishes at infinity; for κ < 0, a
solution that vanishes at infinity, if it exists, is also unique; for κ < 0, the solution depends
on κ arbitrary constants. This completes the proof. �
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