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Abstract
This research article introduces a novel approach based on the fuzzy Adomian
decomposition method (FADM) to solve specific time fuzzy fractional partial
differential equations with initial and boundary conditions (IBCs). The proposed
approach addresses the challenge of incorporating both initial and boundary
conditions into the FADM framework by employing a modified approach. This
approach iteratively generates a new initial solution using the decomposition
method. The method presented here offers a significant contribution to solving fuzzy
fractional partial differential equations (FFPDEs) with fuzzy IBCs, a topic that has
received limited attention in the literature. Furthermore, it satisfies a high
convergence rate with minimal computational complexity, establishing a novel
aspect of this research. By providing a series solution with a small number of recursive
formulas, this method enhances accuracy and emerges as a preferred choice for
tackling FFPDEs with mixed initial and boundary conditions. The effectiveness of the
proposed technique is further supported by the inclusion of several illustrative
examples.
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1 Introduction
Fractional partial differential equations (FPDEs) have recently gained traction as a power-
ful modeling tool in diverse scientific fields, encompassing biology, physics, chemistry, and
engineering [1, 7–10, 15, 35]. In FPDEs, the limitations of crisp quantities in represent-
ing inherent imprecision and uncertainty are addressed by employing fuzzy quantities,
resulting in FFPDEs. The solution of FFPDEs has attracted significant research interest in
the last few years due to the inherent challenges associated with obtaining analytical or
numerical solutions. However, researchers have made significant progress in developing
novel methodologies to address this challenge. Some notable methods include the ADM

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-024-01885-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-024-01885-9&domain=pdf
mailto:dr.nagwaabdullah@gmail.com
http://creativecommons.org/licenses/by/4.0/


Saeed and Pachpatte Boundary Value Problems         (2024) 2024:82 Page 2 of 19

[22, 24, 30], the Laplace transform method [16, 26], the natural transform decomposition
approach [37], the Laplace transform decomposition method (LTDM) [29, 34, 36], the
Elzaki transform decomposition approach [5, 28], the finite difference technique [38–40],
the homotopy perturbation method [6], the differential transform method [13], the Bern-
stein spectral numerical method [25], the homotopy analysis method [23, 31, 33], the
Chebyshev spectral method [17], the optimal He–Laplace algorithm [27] and the varia-
tional iteration approach [14, 18].

The phenomenon of diffusion is widespread in nature, characterized by the movement
of molecules from areas of high concentration to those of low concentration. In contrast to
diffusion, where molecules move randomly, reactions involve the bulk flow of molecules.
Many physical processes in nature can be modeled mathematically using the diffusion
equation. While several research works have been conducted on solving FFPDEs using
numerical and analytical techniques, attempts to solve systems of FFPDEs with IBCs re-
main limited.

In this work, we will extend the modified technique of ADM introduced by the authors in
[2, 19, 21] to solve fractional-order diffusion and advection–diffusion equations with IBCs
in a fuzzy concept. The general description of the proposed approach is implemented to
solve some examples of the suggested problems. The analytical solutions of FFPDEs with
fuzzy IBCs are very difficult to investigate. In this work, the analytical solutions of FFPDEs
are obtained in a very simple and straightforward procedure and provide the closed-form
solutions. The less computational work and simplicity are the uniqueness of the present
modified technique. The obtained results are displayed through graphs. The graphical
representations have shown the analytical solutions of the problems at various fractional
orders and uncertainty ς ∈ [0, 1]. The fractional order solutions provide useful informa-
tion about the dynamics of the suggested problems within a fuzzy environment.

2 Fundamental concepts of fractional and fuzzy calculus
This section provides essential definitions from fuzzy set theory and fractional calculus
[3, 4, 32]. We denote the collection of fuzzy numbers byFR, whereas normal, fuzzy convex,
upper semicontinuous, and compactly supported fuzzy sets can be defined on the real line.

Definition 2.1 A fuzzy number q can be expressed in parametric form as [q(ς ),q(ς )], for
0 ≤ ς ≤ 1, if and only if

(i) q(ς ) is a bounded nondecreasing function and left continuous over (0,1],
(ii) q(ς ) is a bounded nonincreasing function and right continuous over (0,1],

(iii) q(ς ) ≤ q(ς ).

Definition 2.2 The generalized Hukuhara difference (gH-difference) of two fuzzy num-
ber b, e ∈FR is defined as the element c ∈FR such that

b�gH e = c ⇔ (i) b = e⊕ c or (ii) e = b⊕ (–1)c.

Note: If case (i) exists, then there is no need to consider case (ii), but if both cases are
applicable, it signifies that the two types of the difference are same and equal.

Definition 2.3 Let W : J −→ FR, J ∈ R
2. Then gH-partial derivative of first order at the

point (μ0, τ0) ∈ J with respect to variables μ, τ is denoted by ∂W(μ0,τ0)
∂μ

, ∂W(μ0,τ0)
∂τ

and given
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by

∂W(μ0, τ0)
∂μ

= lim
h→0

W(μ0 + h, τ0) �gH W(μ0, τ0)
h

,

∂W(μ0, τ0)
∂τ

= lim
d→0

W(μ0, τ0 + d) �gH W(μ0, τ0)
d

,

provided that ∂W(μ0,τ0)
∂μ

and ∂W(μ0,τ0)
∂τ

∈FR.

Definition 2.4 LetW : J −→FR be gH-partial differentiable with respect to μ at (μ0, τ0) ∈
J. Then

(1) W is (i) gH-partial differentiable with respect to μ at (μ0, τ0) ∈ J. If

[
∂W(μ0, τ0,ς )

∂μ

]
=

[
∂W(μ0, τ0,ς )

∂μ
,
∂W(μ0, τ0,ς )

∂μ

]
, ∀ς ∈ [0, 1].

(2) W is (ii) gH-partial differentiable with respect to μ at (μ0, τ0) ∈ J. If

[
∂W(μ0, τ0,ς )

∂μ

]
=

[
∂W(μ0, τ0,ς )

∂μ
,
∂W(μ0, τ0,ς )

∂μ

]
, ∀ς ∈ [0, 1].

The gH-partial derivative of W with respect to τ at (μ0, τ0) ∈ J are defined similarly.

Remark: We assume the existence of (i) gH-partial differentiability throughout this pa-
per.

We represent the space of all continuous fuzzy-valued functions on I ∈ R by C[IFR]
and we recall the Lebesgue integrable space of fuzzy functions on the bounded interval
I →R by L[I ,FR].

Definition 2.5 Let U(μ) ∈ C[I ,FR] ∩ L[I ,FR], the fuzzy Riemann–Liouville integral of
fuzzy-valued function is defined as

I
ϕU(μ,ς ) =

[
I

ϕU(μ,ς ),IϕU(μ,ς )
]
, ς ∈ [0, 1],

where

I
ϕU(μ,ς ) =

1
�(ϕ)

∫ μ

0
(μ – t)ϕ–1U(t,ς ) dt, μ > 0,

I
ϕU(μ,ς ) =

1
�(ϕ)

∫ μ

0
(μ – t)ϕ–1U(t,ς ) dt, μ > 0.

Definition 2.6 Let U(μ) ∈ C[I ,FR] ∩L[I ,FR]. Then the fuzzy Caputo’s gH-derivative of
order � – 1 < ϕ ≤ �, � ∈ N under (i) gH-differentiability is given by

c
gHD

ϕ
μU(μ,ς ) =

[c
D

ϕ
μU(μ,ς ), c

D
ϕ
μU(μ,ς )

]
,

where

c
D

ϕ
μU(μ,ς )] =

1
�(� – ϕ)

∫ μ

0
(μ – t)�–ϕ–1 U (�)(t,ς ) dt,
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c
D

ϕ
μU(μ,ς ) =

1
�(� – ϕ)

∫ μ

0
(μ – t)�–ϕ–1 U (�)(t,ς ) dt.

3 Analysis of the fuzzy Adomian decomposition method (FADM)
Consider the equation

F
(
U(μ, τ ,ς )

)
= g(μ, τ ,ς ), (1)

where F represents a general fuzzy fractional partial differential operator and g is known
fuzzy-valued function. The linear terms in F(U(μ, τ ,ς )) are decomposed as R̂U(μ, τ ,ς ) +
L̂U(μ, τ ,ς ), where R̂ represent an invertible operator. This operator corresponds to tak-
ing the highest possible derivative and L̂ is the linear operator. Thus, Equation (1) can be
represented as

R̂U(μ, τ ,ς ) + L̂U(μ, τ ,ς ) + N̂U(μ, τ ,ς ) = g(μ, τ ,ς ), (2)

where N̂ represents a nonlinear operator in F(U(μ, τ ,ς )).
Now, applying the operator R̂–1 to both sides of Equation (2), we get

U(μ, τ ,ς ) = ψ + R̂–1
g(μ, τ ,ς ) – R̂–1[L̂U(μ, τ ,ς ) + N̂U(μ, τ ,ς )

]
, (3)

where ψ is the constant of integration and R̂–1ψ = 0.
The parametric form of Equation (3) is given by

U(μ, τ ,ς ) =
[
U(μ, τ ,ς ), U(μ, τ ,ς )

]
,

where

U(μ, τ ,ς ) = ψ + R̂–1
g(μ, τ ,ς ) – R̂–1[L̂U(μ, τ ,ς ) + N̂U(μ, τ ,ς )

]
, (4)

U(μ, τ ,ς ) = ψ + R̂–1
g(μ, τ ,ς ) – R̂–1[L̂U(μ, τ ,ς ) + N̂U(μ, τ ,ς )

]
. (5)

FADM’s solution U(μ, τ ,ς ) is given by the following infinite series:

U(μ, τ ,ς ) =
∞∑
j=o

Uj (μ, τ ,ς ), (6)

U(μ, τ ,ς ) =
∞∑
j=o

Uj (μ, τ ,ς ), (7)

the nonlinear term N̂ is calculated by

N̂U =
∞∑
j=0

Mj and N̂U =
∞∑
j=0

Mj ,

where

Mj =
1
j !

∂j

∂qj

[
N̄

( ∞∑
i

q
iUi

)]
q=0
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and

Mj =
1
j !

∂j

∂pj

[
N̄

( ∞∑
i

p
iUi

)]
p=0

are defined as Adomian polynomials.
Moreover, a recurrence relation is constructed as follows:

U0(μ, τ ,ς ) = ψ + R̂–1
g(μ, τ ,ς ),

Uj+1(μ, τ ,ς ) = R̂–1

(
L̄Uj +

∞∑
j=0

Mj

)
(8)

and

U0(μ, τ ,ς ) = ψ + R̂–1
g(μ, τ ,ς ),

Uj+1(μ, τ ,ς ) = R̂–1

(
L̄Uj +

∞∑
j=0

Mj

)
.

(9)

4 Modification of FADM (MFADM)
To understand the main idea of the MFADM, we examine the following two types of one-
dimensional time FFPDEs.

4.1 Time fuzzy fractional diffusion equations (TFFDEs)

c
D

ϕ
τ U(μ, τ ,ς ) = g(μ)Uμμ(μ, τ ,ς ) + h(μ, τ ,ς ), 0 < ϕ < 1, 0 ≤ μ ≤ a, τ > 0 (10)

with the fuzzy IBCs

U(μ, 0,ς ) = w1(μ,ς ),

U(0, τ ,ς ) = w2(τ ,ς ), U(a, τ ,ς ) = w3(τ ,ς ),
(11)

where g, h, w1, w2, w3 are known fuzzy-valued functions and 0 ≤ ς ≤ 1.
We generate new successive initial solutions U∗

n at each iteration for Equation (10) using
the following novel technique:

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
,

n = 0, 1, 2, . . . (12)

We write Equation (12) in parameter form as follows:

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
.

(13)

Applying FADM procedure, we have R̂ = cDτ , hence R̂–1 = Iϕ .
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By operating with Iϕ on both sides of Equation (10), we have

U(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
[
g(μ)Uμμ(μ, τ ,ς ) + h(μ, τ ,ς )

]
,

U(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
[
g(μ)Uμμ(μ, τ ,ς ) + h(μ, τ ,ς )

]
.

(14)

The initial approximation can be given as

U0(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
(
h(μ, τ ,ς )

)
,

U0(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
(
h(μ, τ ,ς )

)
,

(15)

so the iteration formula is

Un+1(μ, τ ,ς ) = I
ϕ
[
g(μ)

(
U∗

n(μ, τ ,ς )
)
μμ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) = I
ϕ
[
g(μ)

(
U∗

n(μ, τ ,ς )
)
μμ

]
, n ≥ 0.

(16)

4.2 Time fuzzy fractional advection–diffusion equations (TFFADEs)

c
D

ϕ
τ U(μ, τ ,ς ) + Uμ(μ, τ ,ς ) = Uμμ(μ, τ ,ς ) + h(μ, τ ,ς ),

0 < ϕ < 1, 0 ≤ μ ≤ a, τ > 0 (17)

with the fuzzy IBCs

U(μ, 0,ς ) = w1(μ,ς ),

U(0, τ ,ς ) = w2(τ ,ς ), U(a, τ ,ς ) = w3(τ ,ς ),
(18)

where h, w1, w2, w3 are known fuzzy-valued functions and 0 ≤ ς ≤ 1.
We generate new successive initial solutions U∗

n at each iteration for Equation (17) using
the following novel technique:

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
,

n = 0, 1, 2, . . . (19)

Now, we write Equation (19) in parameter form as follows:

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
w2 – Un(0, τ ,ς )

]
+ μ

[
w3 – Un(a, τ ,ς )

]
.

(20)

Applying FADM procedure, we have R̂ = cDτ , hence R̂–1 = Iϕ .
By operating with Iϕ on both sides of Equation (17), we have

U(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
[
Uμμ(μ, τ ,ς ) – Uμ(μ, τ ,ς ) + h(μ, τ ,ς )

]
,

U(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
[
Uμμ(μ, τ ,ς ) – Uμ(μ, τ ,ς ) + h(μ, τ ,ς )

]
.

(21)
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The initial approximation can be written as

U0(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
(
h(μ, τ ,ς )

)
,

U0(μ, τ ,ς ) = U(μ, 0,ς ) + I
ϕ
(
h(μ, τ ,ς )

)
,

(22)

so the iteration formula is

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0.

(23)

Remark: The newly obtained initial solutions, denoted by U∗
n , demonstrably satisfy the

IBCs as presented below.

If τ = 0, then U∗
n (μ, 0,ς ) = Un(μ, 0,ς ),

U∗
n (μ, 0,ς ) = Un(μ, 0,ς ),

if μ = 0, then U∗
n (0, τ ,ς ) = w2(τ ,ς ),

U∗
n (0, τ ,ς ) = w2(τ ,ς ),

if μ = a, then U∗
n (a, τ ,ς ) = w3(τ ,ς ),

U∗
n (a, τ ,ς ) = w3(τ ,ς ).

(24)

5 Applications and results
To demonstrate the effectiveness of the MFADM, this section solves several illustrative
examples.

Example 5.1 Consider TFFDE of the following form:

c
D

ϕ
τ U(μ, τ ,ς ) = Uμμ(μ, τ ,ς ) +

�(4 + ϕ)
6

μ4(2 – μ)τ – 4μ2(6 – 5μ)τ 3+μ,

0 ≤ μ ≤ 2, τ > 0, (25)

with the fuzzy IBCs

U(μ, 0,ς ) = k = [ς – 1, 1 – ς ], 0 ≤ ς ≤ 1,

U(0, τ ,ς ) = U(2, τ ,ς ) = k = [ς – 1, 1 – ς ].
(26)

Applying the MFADM, we have

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
k – Un(0, τ ,ς )

]
+ μ

[
k – Un(2, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
k – Un(0, τ ,ς )

]
+ μ

[
k – Un(2, τ ,ς )

]
,

(27)
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where n = 0, 1, 2, . . . . Using FADM solution, we get

U0(μ, τ ,ς ) = k + μ4(2 – μ)3+ϕ +
(20μ3 – 24μ2)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
,

U0(μ, τ ,ς ) = k + μ4(2 – μ)3+ϕ +
(20μ3 – 24μ2)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)

(28)

and

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

]
, n ≥ 0.

(29)

Now, we use the IBCs in Equation (27) for n = 0.

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
k – U0(0, τ ,ς )

]
+ μ

[
k – U0(2, τ ,ς )

]
,

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
k – U0(0, τ ,ς )

]
+ μ

[
k – U0(2, τ ,ς )

]
,

(30)

which implies

U∗
0 (μ, τ ,ς )

= k + μ4(2 – μ)τ 3+ϕ +
(20μ3 – 24μ2)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
–

16μ�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
,

U∗
0 (μ, τ ,ς )

= k + μ4(2 – μ)τ 3+ϕ +
(20μ3 – 24μ2)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
–

16μ�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
.

(31)

From Equation (29), we have

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

]
,

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

]
.

(32)

We get

U1(μ, τ ,ς ) = I
ϕ

[(
24μ2 – 20μ3)τ 3+ϕ +

(120μ – 48)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)

]

=
(24μ2 – 20μ3)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
+

(120μ – 48)�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
,

(33)

U1(μ, τ ,ς ) = I
ϕ

[
μ4(2 – μ)3+ϕ +

(120μ – 48)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)

]

=
(24μ2 – 20μ3)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
+

(120μ – 48)�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
.

(34)
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Now, for n = 1, Equation (27) becomes

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
k – U1(0, τ ,ς )

]
+ μ

[
k – U1(2, τ ,ς )

]

= k +
(24μ2 – 20μ3 + 64μ)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
–

120μ�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
,

(35)

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
k – U1(0, τ ,ς )

]
+ μ

[
k – U1(2, τ ,ς )

]

= k +
(24μ2 – 20μ3 + 64μ)�(4 + ϕ)τ 3+2ϕ

�(4 + 2ϕ)
–

120μ�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
.

(36)

From Equation (29), we obtain

U2(μ, τ ,ς ) = I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]

=
(48 – 120μ)�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
,

(37)

U2(μ, τ ,ς ) = I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]

=
(48 – 120μ)�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
.

(38)

For n = 2, Equation (27) becomes

U∗
2 (μ, τ ,ς ) = U2(μ, τ ,ς ) + (1 – μ)

[
k – U2(0, τ ,ς )

]
+ μ

[
k – U2(2, τ ,ς )

]

= k +
120μ�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
,

(39)

U∗
2 (μ, τ ,ς ) = U2(μ, τ ,ς ) + (1 – μ)

[
k – U2(0, τ ,ς )

]
+ μ

[
k – U2(2, τ ,ς )

]

= k +
120μ�(4 + ϕ)τ 3+3ϕ

�(4 + 3ϕ)
.

(40)

From Equation (29), we obtain

U3(μ, τ ,ς ) = I
ϕ
[(

U∗
2(μ, τ ,ς )

)
μμ

]

= 0,
(41)

U3(μ, τ ,ς ) = I
ϕ
[(

U∗
2(μ, τ ,ς )

)
μμ

]

= 0.

...

(42)

Thus, the MFADM solution is

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= k + μ4(2 – μ)τ 3+ϕ ,

(43)

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= k + μ4(2 – μ)τ 3+ϕ].

(44)
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Figure 1 2D graph of the analytical lower and upper solutions of Ex. 5.1 at μ = 0.2 and τ = 3

Figure 2 3D graph of the analytical lower and upper solutions of Ex. 5.1 at μ = 0.5 (a) and at τ = 0.8 (b)

In Fig. 1, we plot the analytical fuzzy solutions for Example 5.1 corresponding to different
fractional order and uncertainty ς .

Further, we present in Fig. 2(a,b) surface plots of the analytical fuzzy solutions for Ex-
ample 5.1 corresponding to given fractional order and at different values of μ and τ as well
as of uncertainty ς .

Example 5.2 Consider the following TFFDE:

c
D

ϕ
τ U(μ, τ ,ς ) =

1
2
μ2Uμμ(μ, τ ,ς ), 0 ≤ μ ≤ 1, τ > 0 (45)

having the fuzzy IBCs as follows:

U(μ, 0,ς ) = kμ2,

U(0, τ ,ς ) = 0, U(1, τ ,ς ) = kEϕ(τ ),
(46)

where Eϕ(τ ) =
∑∞

j=0
τϕ

�(ϕj+1) .
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Applying the MFADM, we have

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
kμ2 – Un(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – Un(1, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
kμ2 – Un(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – Un(1, τ ,ς )

]
,

(47)

where n = 0, 1, 2, . . . . Using FADM solution, we have

U0(μ, τ ,ς ) = kμ2,

U0(μ, τ ,ς ) = kμ2
(48)

and

Un+1(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

]
, n ≥ 0.

(49)

Now, we use the IBCs in Equation (47) for n = 0.

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U0(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U0(2, τ ,ς )

]

= kμ2 + kμ
[
Eϕ(τ ) – 1

]
,

(50)

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U0(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U0(1, τ ,ς )

]
= kμ2 + kμ

[
Eϕ(τ ) – 1

]
.

(51)

From Equation (49), we have

U1(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

]
=

kμ2τϕ

�(ϕ + 1)
, (52)

U1(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

]
=

kμ2τϕ

�(ϕ + 1)
. (53)

Now, for n = 1, Equation (47) becomes

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U1(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U1(1, τ ,ς )

]

=
kμ2τϕ

�(ϕ + 1)
+ kμ

[
Eϕ(τ ) –

τϕ

�(ϕ + 1)

]
,

(54)

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U1(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U1(1, τ ,ς )

]

=
kμ2τϕ

�(ϕ + 1)
+ kμ

[
Eϕ(τ ) –

τϕ

�(ϕ + 1)

]
.

(55)

From Equation (49), we obtain

U2(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]
=

kμ2τ 2ϕ

�(2ϕ + 1)
. (56)

U2(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]
=

kμ2τ 2ϕ

�(2ϕ + 1)
. (57)
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For n = 2, Equation (47) becomes

U∗
2 (μ, τ ,ς ) = U2(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U2(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U2(1, τ ,ς )

]

=
kμ2τϕ

�(ϕ + 1)
+ kμ

[
Eϕ(τ ) –

τ 2ϕ

�(2ϕ + 1)

]
,

(58)

U∗
2 (μ, τ ,ς ) = ν2(μ, τ ,ς ) + (1 – μ)

[
kμ2 – U2(0, τ ,ς )

]
+ μ

[
kEϕ(τ ) – U2(1, τ ,ς )

]

=
kμ2τϕ

�(ϕ + 1)
+ kμ

[
Eϕ(τ ) –

τ 2ϕ

�(2ϕ + 1)

]
.

(59)

From Equation (49), we obtain

U3(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]
=

kμ2τ 3ϕ

�(3ϕ + 1)
, (60)

U3(μ, τ ,ς ) =
1
2
μ2

I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]
=

kμ2τ 3ϕ

�(3ϕ + 1)
.

...

(61)

The MFADM solution is

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·

= kμ2
[

1 +
τϕ

�(ϕ + 1)
+

τ 2ϕ

�(2ϕ + 1)
+

τ 3ϕ

�(3ϕ + 1)
+ · · ·

]
= kμ2Eϕ(τ ),

(62)

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·

= kμ2
[

1 +
τϕ

�(ϕ + 1)
+

τ 2ϕ

�(2ϕ + 1)
+

τ 3ϕ

�(3ϕ + 1)
+ · · ·

]
= kμ2Eϕ(τ ).

(63)

In Fig. 3, we plot the analytical fuzzy solutions for Example 5.2 corresponding to different
fractional order and uncertainty ς .

Further, we present in Fig. 4(a,b) surface plots of the analytical fuzzy solutions for Ex-
ample 5.2 corresponding to given fractional order and at different values of μ and τ as well
as of uncertainty ς .

Example 5.3 Consider the following TFFAD equation:

c
D

ϕ
τ U(μ, τ ,ς ) + Uμ(μ, τ ,ς ) = Uμμ(μ, τ ,ς ) +

�(β + 1)
�(β + 1 – ϕ)

eμτβ–ϕ (64)

with the fuzzy IBCs

U(μ, 0,ς ) = k,

U(0, τ ,ς ) = τβ , U(1, τ ,ς ) = eτβ ,
(65)

where 0 ≤ μ ≤ 1, τ > 0.
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Figure 3 2D graph of the analytical lower and upper solutions of Ex. 5.2 at μ = 0.2 and τ = 1

Figure 4 3D graph of the analytical lower and upper solutions of Ex. 5.2 at μ = 0.6 (a) and τ = 0.2 (b)

Applying the MFADM, we have

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
τβ – Un(0, τ ,ς )

]
+ μ

[
etβ – Un(1, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
τβ – Un(0, τ ,ς )

]
+ μ

[
eτβ – Un(1, τ ,ς )

]
,

(66)

where n = 0, 1, 2, . . . .
Using FADM solution, we get

U0(μ, τ ,ς ) = k + eμτβ ,

U0(μ, τ ,ς ) = k + eμτβ
(67)

and

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0.

(68)
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Now, we put the IBCs in Equation (66) for n = 0.

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
τβ – U0(0, τ ,ς )

]
+ μ

[
eτβ – U0(1, τ ,ς )

]

= 2k + eμτβ ,
(69)

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
τβ – U0(0, τ ,ς )

]
+ μ

[
eτβ – U0(1, τ ,ς )

]
= 2k + eμτβ .

(70)

From Equation (68), we have

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

–
(
U∗

0(μ, τ ,ς )
)
μ

]

= I
ϕ
[
eμτβ – eμτβ

]
= 0,

(71)

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

–
(
U∗

0(μ, τ ,ς )
)
μ

]

= I
ϕ
[
eμτβ – eμτβ

]
= 0.

...

(72)

The MFADM solution is

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= k + eμτβ ,

(73)

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= k + eμτβ .

(74)

In Fig. 5, we plot the analytical fuzzy solutions for Example 5.3 to different values of τ and
uncertainty ς with β = 5.

Further, we present in Fig. 6(a,b) surface plots of the analytical fuzzy solutions for Ex-
ample 5.3 corresponding to different values of μ and τ as well as of uncertainty ς with
β = 5.

Example 5.4 Consider the following TFFADE:

c
D

ϕ
τ U(μ, τ ,ς ) + Uμ(μ, τ ,ς ) = Uμμ(μ, τ ,ς ) + h(μ, τ ,ς ), 0 ≤ μ ≤ 1, τ > 0 (75)

having the fuzzy IBCs as follows:

U(μ, 0,ς ) = kμ(1 – μ),

U(0, τ ,ς ) = U(1, τ ,ς ) = 0,
(76)

where h(μ, τ ,ς ) = k
[ 2μ(1–μ)

�(3–ϕ) τ 2–ϕ + (3 – 2μ)(τ 2 + 1)
]
.
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Figure 5 2D graph of the analytical lower and upper solutions of Ex. 5.3 at μ = 0.5

Figure 6 3D graph of the analytical lower and upper solutions of Ex. 5.3 at μ = 0.2 (a) and τ = 0.5 (b)

Applying the MFADM, we have

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
0 – Un(0, τ ,ς )

]
+ μ

[
0 – Un(1, τ ,ς )

]
,

U∗
n (μ, τ ,ς ) = Un(μ, τ ,ς ) + (1 – μ)

[
0 – Un(0, τ ,ς )

]
+ μ

[
0 – Un(1, τ ,ς )

]
,

(77)

where n = 0, 1, 2, . . . .
Using the FADM procedure, we have

U0(μ, τ ,ς ) = kμ(1 – μ)
(
τ 2 + 1

)
+ k(3 – 2μ)

[
2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]
,

U0(μ, τ ,ς ) = kμ(1 – μ)
(
τ 2 + 1

)
+ k(3 – 2μ)

[
2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

] (78)
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and

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0,

Un+1(μ, τ ,ς ) = I
ϕ
[(

U∗
n(μ, τ ,ς )

)
μμ

–
(
U∗

n(μ, τ ,ς )
)
μ

]
, n ≥ 0.

(79)

Now, we put the IBCs in Equation (77) for n = 0.

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
0 – U0(0, τ ,ς )

]
+ μ

[
0 – U0(1, τ ,ς )

]

= kμ(1 – μ)
(
τ 2 + 1

)
,

(80)

U∗
0 (μ, τ ,ς ) = U0(μ, τ ,ς ) + (1 – μ)

[
0 – U0(0, τ ,ς )

]
+ μ

[
0 – U0(1, τ ,ς )

]
= kμ(1 – μ)

(
τ 2 + 1

)
.

(81)

From Equation (79), we have

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

–
(
U∗

0(μ, τ ,ς )
)
μ

]

= –k(3 – 2μ)
[

2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]
,

(82)

U1(μ, τ ,ς ) = I
ϕ
[(

U∗
0(μ, τ ,ς )

)
μμ

–
(
U∗

0(μ, τ ,ς )
)
μ

]

= –k(3 – 2μ)
[

2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]
.

(83)

Now, for n = 1, Equation (77) becomes

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
0 – U1(0, τ ,ς )

]
+ μ

[
0 – U1(1, τ ,ς )

]

= –k(3 – 2μ)
[

2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]
+ k(3 – 2μ)

[
2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]

= 0,

U∗
1 (μ, τ ,ς ) = U1(μ, τ ,ς ) + (1 – μ)

[
0 – U1(0, τ ,ς )

]
+ μ

[
0 – U1(1, τ ,ς )

]

= –k(3 – 2μ)
[

2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]
+ k(3 – 2μ)

[
2τϕ+2

�(ϕ + 3)
+

τϕ

�(ϕ + 1)

]

= 0.

From Equation (79), we obtain

U2(μ, τ ,ς ) = I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]

= 0.
(84)

U2(μ, τ ,ς ) = I
ϕ
[(

U∗
1(μ, τ ,ς )

)
μμ

]

= 0.

...

(85)
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Figure 7 2D graph of the analytical lower and upper solutions of Ex. 5.4 at μ = 0.5

Figure 8 3D graph of the analytical lower and upper solutions of Ex. 5.4 at μ = 0.5 (a) and τ = 0.01 (b)

The MFADM solution is

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= kμ(1 – μ)

(
τ 2 + 1

)
,

(86)

U(μ, τ ,ς ) = U0(μ, τ ,ς ) + U1(μ, τ ,ς ) + U2(μ, τ ,ς ) + · · ·
= kμ(1 – μ)

(
τ 2 + 1

)
.

(87)

In Fig. 7, we plot the analytical fuzzy solutions for Example 5.4 corresponding to different
values of τ and uncertainty ς .

Further, we present in Fig. 8(a,b) surface plots of the analytical fuzzy solutions for Ex-
ample 5.4 corresponding to different values of μ and τ as well as of uncertainty ς .

6 Conclusion
In this article, we applied the FADM incorporating novel modifications to solve FFPDEs
with IBCs. The MFADM observed to be efficient and simple in handling the solution of
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fuzzy fractional boundary value problems as compared to other analytical methods [18,
31]. The method we discussed used for solving some special examples of TFFDEs and
TFFADEs under (i) gH-partial differentiability. Furthermore, when we substitute k = 0 in
Example 5.1 and Example 5.3, we recover the analytical solutions of the fractional-order
problems as in [19] and [12] respectively. Also, when we substitute k = 1 in Example 5.2
and Example 5.4, we recover the analytical solutions of the fractional-order problems as
in [20] and [11] respectively. Therefore, the fractional operator with fuzziness provides
the global dynamic of the proposed model more than the classical integer and fractional-
order model. This suggests that combining fuzzy concepts with fractional calculus leads
to a better representation of the dynamics of physical phenomena. Future work will focus
on using the proposed method to solve various types of nonlinear FFPDEs.
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