
Zhang Boundary Value Problems         (2024) 2024:80 
https://doi.org/10.1186/s13661-024-01887-7

R E S E A R C H Open Access

Generalized Tikhonov regularization method
for an inverse boundary value problem of the
fractional elliptic equation
Xiao Zhang1*

*Correspondence:
20217221@stu.nmu.edu.cn
1School of Mathematics and
Information Science, North Minzu
University, No.204, Wenchang North
Street, Yinchuan, 750021, Ningxia,
China

Abstract
This research studies the inverse boundary value problem for fractional elliptic
equation of Tricomi–Gellerstedt–Keldysh type and obtains a condition stability result.
To recover the continuous dependence of the solution on the measurement data, a
generalized Tikhonov regularization method based on ill-posedness analysis is
constructed. Under the a priori and a posterior selection rules for the regularization
parameter, corresponding Hölder type convergence results are obtained. On this
basis, this thesis verifies the simulation effect of the generalized Tikhonov method
through numerical examples. The examples show that the method performs well in
dealing with the problem under consideration.
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1 Introduction

In 1993, Podlubny proposed the concept of generalized calculus, which provided a theo-
retical foundation for the study of generalized differential equations [1]. In 2000, Kilbas et
al. introduced the concept of fractional elliptic equations in their study of generalized cal-
culus [2]. In recent years, fractional elliptic equations have been widely applied in various
scientific fields. For example, subsonic and Transonic aerodynamics [3], blow up dynam-
ics [4], microscopic Fermi-liquid [5], etc. Due to the needs of real life, the study of some
types of fractional elliptic equations has gradually deepened, such as Tricomi equation [6],
Gellerstedt equation [7], and Keldysh equation [8]. At the same time, scholars have done
some systematic work in theoretical research, as seen in references [9–15], which provides
a foundation for understanding and applying these equations. Based on this research, this
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paper studies the Tricomi–Gellerstedt–Keldysh type of fractional elliptic equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2a
x u(x, y) – x2βLu(x, y) = 0, (x, y) ∈ [0,∞) × �,

u(x, y) = 0, (x, y) ∈ [0,∞) × ∂�,

u(0, y) = f (y), y ∈ �,

limx→∞ u(x, y) = 0, y ∈ �,

(1.1)

where α ∈ ( 1
2 , 1], β > –α, D2α

x = ∂α
0+,x∂

α
0+,x, � ⊂R

N (N ≥ 1) is a bounded connected domain
with a smooth boundary ∂�, and ∂α

0+,x represents the α-order (0 < α ≤ 1) Caputo fractional
derivative of the variable x [1]:

∂α
0+,xu(x, y) =

1
�(1 – α)

∫ x

0
(x – s)–α∂su(s, y) ds, (1.2)

and L : H2(�) ∩ H1
0 (�) → L2(�) is a symmetric uniformly elliptic operator. In addition,

let ϕn and λn respectively represent the orthonormal eigenfunctions and eigenvalues of
the operator L, such that Lϕn = λnϕn, n = 1, 2, . . . , and λn satisfy 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ,
limn→∞ λn = +∞.

In reference [16], the authors studied the well-posedness of problem (1.1), including
the existence, uniqueness, and stability of generalized solutions. This paper considers the
inverse boundary value problem of problem (1.1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2α
x u(x, y) – x2βLu(x, y) = 0, (x, y) ∈ [0,∞) × �,

u(x, y) = 0, (x, y) ∈ [0,∞) × ∂�,

u(T , y) = g(y), y ∈ �,

limx→∞ u(x, y) = 0, y ∈ �.

(1.3)

The inverse problem is the problem of ill-posedness of determining the unknown param-
eters from the measurement data, i.e., recovering the boundary data f (y) = u(0, y) by data
g(y) = u(T , y), (0 < T < +∞), which contains the measurement error and satisfies

∥
∥gδ – g

∥
∥

L2(�) ≤ δ, (1.4)

where gδ denotes the measurement data and δ > 0 denotes the measurement error bound.
This inverse problem is ill-posed due to the presence of noise. In 2021, the special case

of the inverse problem (1.3) β = 0 was studied in the literature [17] by using an itera-
tive approach. In 2024, [18] utilized a similar regularization method to study the inverse
boundary value problem (1.3). Based on the above current research status, this paper in-
vestigates the conditional stability, regularization theory, and numerical algorithms for
inverse problem (1.3). This research solves the ill-posedness of inverse problems by regu-
larization method, i.e., by adding regularization terms. The generalized Tikhonov regular-
ization method is a commonly used method for dealing with the ill-posedness of inverse
problems and can be applied to different types of inverse problems, see [19–23].

This paper is summarized below. In Sect. 2, some necessary preliminary results are
given. Section 3 gives the ill-posedness and conditional stability of the inverse problem. In
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Sect. 4, generalized Tikhonov regularization method to overcome the ill-posedness is con-
structed. In Sect. 5, the corresponding convergence results of Hölder type are given and
proved respectively under the a priori and a posteriori selection rules for regularization
parameter. In Sect. 6, this thesis verifies the simulation effects of the generalized Tikhonov
regularization through numerical examples. It shows that the use of this method to solve
inverse problem in the thesis is feasible.

2 Preliminaries
Definition 2.1 [24] The definition of the three-parameter Mittag-Leffler function is as
follows:

Eα,m,l(z) =
∞∑

n=0

( n∏

k=1

�(1 + α((k – 1)m + l))
�(1 + α((k – 1)m + l + 1))

)

zn, z ∈C, (2.1)

where α, m > 0 and l > – 1
α

.

Lemma 2.2 [25] For α ∈ (0, 1) and z ≥ 0, the following inequality holds:

1
1 + �(1 – α)z

≤ Eα,m,m–1(–z) ≤ 1
1 + �(1+(m–1)α)

�(1+mα) z
. (2.2)

Lemma 2.3 Based on Lemma 2.2, let z =
√

λnTα+β and m = 1 + β

α
, it can be established

that

η1√
λn

≤ E
α,1+ β

α , βα

(
–
√

λnTα+β
) ≤ η2√

λn
, λn ≥ λ1 > 0, (2.3)

where η1 = 1

λ
– 1

2
1 +�(1–α)Tα+β

, η2 = 1
C

α,1+ β
α

Tα+β , and C
α,1+ β

α
= �(1+β)

�(1+α+β) .

Lemma 2.4 Let s ≥ λ1 > 0 and p > 0, it holds that the following inequality is satisfied:

A(s) =
η2

√
s

η12 + μsp+1 ≤ c1μ
– 1

2p+2 , (2.4)

here, c1 = c1(p,η1,η2) > 0 is independent of the values of μ and s.

Proof From lims→0 A(s) = lims→∞ A(s) = 0, it can be inferred that A(s) attains a maximum
value. If let A′(s0) = 0, then s0 = ( η2

1
μ+2μp )

1
p+1 > 0, it can be shown that

A(s) ≤ A(s0) =
η2(2p + 1)

2p+1
2p+2

(2p + 2)η
2p+1
p+1

1

μ
– 1

2p+2 = c1(p,η1,η2)μ– 1
2p+2 . (2.5)

�

Lemma 2.5 Let s ≥ λ1 > 0 and p > 0, the following inequality holds:

B(s) =
μs

p
2 +1

η2
1 + μsp+1 ≤ c2μ

p
2p+2 , (2.6)

where c2 = c2(p,η1) > 0 is independent of μ, s, and η2.
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Proof As lims→0 B(s) = lims→∞ B(s) = 0, it becomes clear that B(s) has a maximum value
as well. By setting B′(s0) = 0, it can be concluded that s0 = [ (p+2)η2

1
pμ

]
1

p+1 > 0, then

B(s) ≤ B(s0) =
p

p
2p+2 (p + 2)

p+2
2p+2

(2p + 2)η
p

p+1
1

μ
p

2p+2 = c2(p,η1)μ
p

2p+2 . (2.7)

�

Lemma 2.6 Let s ≥ λ1 > 0 and p > 0, it can be derived that

C(s) =
μη2s

p+1
2

η2
1 + μsp+1 ≤ c3μ

1
2 , (2.8)

where c3 = c3(η1,η2) > 0 is independent of changes in μ, s, and p.

Proof As lims→0 C(s) = lims→∞ C(s) = 0, it is evident that C(s) has a maximum value. Let
C′(s0) = 0, we obtain s0 = [ η12

μ
]

1
p+1 > 0, it follows that

C(s) ≤ C(s0) =
η2

2η1
μ

1
2 = c3(η1,η2)μ

1
2 . (2.9)

�

3 The ill-posedness and conditional stability of inverse problem
Define the space

D
(
Lq) =

{

ψ ∈ L2(�);
∞∑

n=1

λ2q
n

∣
∣(ψ ,ϕn)

∣
∣2 < ∞

}

, (3.1)

where (·, ·) denotes the inner product in L2(�), then D(Lq) ⊂ L2(�) is a Hilbert space with
the norm given by [26]

‖ψ‖D(Lq) =

( ∞∑

n=1

λ2q
n

∣
∣(ψ ,ϕn)

∣
∣2

) 1
2

. (3.2)

According to reference [16], for f ∈ D(L1), the generalized solution of the forward prob-
lem (1.1) can be expressed as

u(x, y) =
∞∑

n=1

fnE
α,1+ β

α , βα

(
–
√

λnxα+β
)
ϕn(y). (3.3)

Let x = T , then

g(y) = u(T , y) =
∞∑

n=1

fnE
α,1+ β

α , βα

(
–
√

λnTα+β
)
ϕn(y). (3.4)

Denote gn = (g(y),ϕn), the following result can be obtained:

gn = fnE
α,1+ β

α , βα

(
–
√

λnTα+β
)
, (3.5)
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therefore

f (y) =
∞∑

n=1

1
E

α,1+ β
α , βα

(–
√

λnTα+β )
gnϕn(y). (3.6)

Subsequently, the operator equation can be derived by using equation (3.4)

(Kf )(y) =
∫

k(ξ , y)f (ξ ) dξ = g(y), (3.7)

where K : L2(�) → L2(�) is a Fredholm integral operator of the first kind, and k represents
the kernel function defined by

k(ξ , y) =
∞∑

n=1

E
α,1+ β

α , βα

(
–
√

λnTα+β
)
ϕn(y)ϕn(ξ ). (3.8)

It is easy to see that k(ξ , y) = k(y, ξ ), so the operator K is self-adjoint. Moreover, the sin-
gular values of K can be determined from equation (3.4) as σn = E

α,1+ β
α , βα

(–
√

λnTα+β ),
n = 1, 2, . . . . In this paper, the notation ‖ · ‖ is employed to represent the L2-norm.

Theorem 3.1 [27]The operator K defined in (3.7) is a compact operator.

As stated in Theorem 3.1, K is a compact operator. Therefore, the inverse problem (1.3)
is ill-posed, meaning that the solution obtained from noisy data for the inverse bound-
ary value problem (1.3) is not continuous with respect to the measurement data. To es-
tablish the conditional stability of the inverse problem, providing a priori condition that
constrains the range of the exact solution is necessary. Next, under the a priori assump-
tion of the exact solution, the conditional stability result for the inverse problem (1.3) is
presented.

Theorem 3.2 [27]Let f satisfy the a priori bound condition

‖f ‖
D(L

p
2 )

=

( ∞∑

n=1

λp
n
∣
∣(f ,ϕn)

∣
∣2

) 1
2

≤ E, p > 0, E > 0, (3.9)

therefore, the stability result holds

‖f ‖ ≤ CE
1

p+1 ‖g‖ p
p+1 , p > 0, (3.10)

where C = η
– p

p+1
1 is a constant depending on p and η1.

4 The generalized Tikhonov regularization method
In this section, based on the idea from [19], a generalized Tikhonov regularization solution
for the inverse problem (1.3) is constructed. The regularization solution is defined as the
unique minimum value of the following functional:

Jμ(f ) = min
f ∈L2(�)

{∥
∥Kf – gδ

∥
∥2

L2(�) + μ‖f ‖2
D(L

p
2 )

}
, (4.1)
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where p > 0 is a constant, μ denotes the regularization parameter, gδ denotes the measure-
ment data, and δ > 0 denotes the measurement error bound. Let f δ

μ be the regularization
solution of the inverse problem. Through the basic calculation and combining the first-
order necessary condition, it follows that f δ

μ satisfies the Euler equation

(
K∗K + μLp)f δ

μ = K∗gδ , (4.2)

then by utilizing the singular decomposition of the self-adjoint compact operator K , the
generalized Tikhonov regularization solution for the inverse problem can be derived,
which is expressed as follows:

f δ
μ(y) =

∞∑

n=1

E
α,1+ β

α , βα
(–

√
λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gδ
nϕn(y), p > 0, (4.3)

here, gδ
n = (gδ(y),ϕn(y)). Meanwhile, the regularization solution with exact data g(y) can be

represented as

fμ(y) =
∞∑

n=1

E
α,1+ β

α , βα
(–

√
λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gnϕn(y), p > 0, (4.4)

and gn = (g(y),ϕn(y)).

5 Convergence estimates for the a priori and a posteriori rules
5.1 An a priori selection rule
In this section, the regularization parameter is selected by an a priori rule and a conver-
gence analysis for the generalized Tikhonov regularization method is provided. The so-
lutions for the exact and generalized Tikhonov regularization are presented in equations
(3.6) and (4.3), respectively.

Theorem 5.1 Assuming that the a priori condition (3.9) is satisfied, the exact data g and
the measurement data gδ satisfy (1.4), then

If p > 0 and μ = ( δ
E )2, then the convergence estimate can be derived

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤ (c1 + c2)δ

p
p+1 E

1
p+1 , (5.1)

where c1, c2 are defined in Lemmas 2.4 and 2.5.

Proof According to the triangle inequality, it is known that

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤ ∥

∥f δ
μ(y) – fμ(y)

∥
∥ +

∥
∥fμ(y) – f (y)

∥
∥ = I1 + I2. (5.2)

Firstly, the estimation of I1 is conducted. Using Lemma 2.4 and (1.3), it can be expressed
as

I1 =
∥
∥f δ

μ(y) – fμ(y)
∥
∥
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=

∥
∥
∥
∥
∥

∞∑

n=1

E
α,1+ β

α , βα
(–

√
λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

(
gδ

n – gn
)
ϕn(y)

∥
∥
∥
∥
∥

≤ δ sup
n

E
α,1+ β

α , βα
(–

√
λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

(5.3)

≤ δ
η2

√
λn

η12 + μλnp+1

≤ δc1(p,η1,η2)μ– 1
2p+2 .

Next, an estimate is made for I2. Utilizing Lemma 2.5 and (3.9), it can be derived that

I2 =
∥
∥fμ(y) – f (y)

∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

( E
α,1+ β

α , βα
(–

√
λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gn –
1

E
α,1+ β

α , βα
(–

√
λnTα+β )

gn

)

ϕn(y)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fnϕn(y)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
2
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n
λ

p
2
n fnϕn(y)

∥
∥
∥
∥
∥

(5.4)

≤ E sup
n

μλ
p
2
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

≤ E sup
n

μλ
p
2 +1
n

η2
1 + μλ

p+1
n

≤ c2Eμ
p

2p+2 .

By combining inequalities (5.3) and (5.4), it can obtain the expression

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤ c1δμ

– 1
2p+2 + c2Eμ

p
2p+2 . (5.5)

Next, the regularized parameter μ is chosen as

μ =
(

δ

E

)2

, (5.6)

then, from (5.5) and (5.6), the convergence result can be derived

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤ (c1 + c2)δ

p
p+1 E

1
p+1 . (5.7)

This completes the proof of this theorem. �

5.2 An a posteriori selection rule
In this subsection, an a posteriori choice rule for the regularization parameter μ is con-
sidered, primarily based on Morozov’s discrepancy principle [28]. Using the result of con-
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ditional stability in Theorem 3.2, a convergence result of Hölder type is obtained for the
regularization method.

Let 0 < τδ < ‖gδ‖, the regularization parameter μ is selected using the following equa-
tion:

∥
∥Kf δ

μ(y) – gδ(y)
∥
∥ = τδ. (5.8)

Lemma 5.2 Let θ (μ) = ‖Kf δ
μ(y) – gδ(y)‖, then the following results are true:

(1) θ (μ) is a continuous function;
(2) limμ→0 θ (μ) = 0;
(3) limμ→∞ θ (μ) = ‖gδ‖;
(4) For μ ∈ (0,∞), θ (μ) is a strictly increasing function.

Proof This lemma can be proven by writing

θ (μ) =

( ∞∑

n=1

(
μλ

p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

)2(
gδ

n
)2

) 1
2

. (5.9)

�

To obtain a convergence estimate, the following conclusions are required.

Lemma 5.3 For fixed τ > 1, the regularization parameter μ determined by the discrepancy
principle (5.8) satisfies

μ
– 1

2p+2 ≤
(

c3

τ – 1

) 1
p+1

(
E
δ

) 1
p+1

. (5.10)

Proof From the a posteriori choice rule (5.8),

τδ =

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gδ
nϕn(y)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

(
gδ

n – gn
)
ϕn(y)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gnϕn(y)

∥
∥
∥
∥
∥

≤ δ +

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
2
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

E
α,1+ β

α , βα

(
–
√

λnTα+β
)
λ

p
2
n fnϕn(y)

∥
∥
∥
∥
∥

≤ δ + E sup
n

μλ
p
2
n

( η1√
λn

)2 + μλ
p
n

η2√
λn

≤ δ + E sup
s

μη2s
p+1

2

η2
1 + μsp+1 .

(5.11)
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On the other hand, from Lemma 2.6 we can obtain that

τδ ≤ δ + Ec3μ
1
2 . (5.12)

After a straightforward calculation, it follows that

μ
– 1

2p+2 ≤
(

c3

τ – 1

) 1
p+1

(
E
δ

) 1
p+1

. (5.13)

�

Theorem 5.4 Assuming that the a priori condition (3.9) is satisfied, the exact data g and
measurement data gδ satisfy (1.4), then:

If p > 0, a convergence estimate is derived

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤

(

c1

(
c3

τ – 1

) 1
p+1

+
(

τ + 1
η1

) p
p+1

)

E
1

p+1 δ
p

p+1 , (5.14)

where c1, c3 are given in Lemmas 2.4 and 2.6.

Proof According to the triangle inequality,

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤ ∥

∥f δ
μ(y) – fμ(y)

∥
∥ +

∥
∥fμ(y) – f (y)

∥
∥ = I3 + I4. (5.15)

Firstly, an estimation of I3 is conducted. Lemma 5.3 provides the necessary information
for this estimation.

I3 =
∥
∥f δ

μ(y) – fμ(y)
∥
∥ ≤ c1δμ

– 1
2p+2 ≤ c1

(
c3

τ – 1

) 1
p+1

E
1

p+1 δ
p

p+1 . (5.16)

On the other hand, an estimation of I4 can be deduced as follows:

I4 =
∥
∥fμ(y) – f (y)

∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fnϕn(y)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
nE

α,1+ β
α , βα

(–
√

λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fn

E
α,1+ β

α , βα
(–

√
λnTα+β )

ϕn(y)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

[ μλ
p
nE

α,1+ β
α , βα

(–
√

λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fnϕn(y)
] p

p+1

×
[ μλ

p
nE

α,1+ β
α , βα

(–
√

λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fn

(E
α,1+ β

α , βα
(–

√
λnTα+β ))p+1

ϕn(y)
] 1

p+1
∥
∥
∥
∥
∥

.

By Hölder inequality, it follows that

I4 ≤
∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
nE

α,1+ β
α , βα

(–
√

λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fnϕn(y)

∥
∥
∥
∥
∥

p
p+1
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×
∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
nE

α,1+ β
α , βα

(–
√

λnTα+β )

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fn

(E
α,1+ β

α , βα
(–

√
λnTα+β ))p+1

ϕn(y)

∥
∥
∥
∥
∥

1
p+1

=

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gnϕn(y)

∥
∥
∥
∥
∥

p
p+1

×
∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

fn

(E
α,1+ β

α , βα
(–

√
λnTα+β ))p

ϕn(y)

∥
∥
∥
∥
∥

1
p+1

.

From (1.4), (5.8), (3.9) one can get that

I4 ≤
(∥

∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

(
gn – gδ

n
)
ϕn(y)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

μλ
p
n

(E
α,1+ β

α , βα
(–

√
λnTα+β ))2 + μλ

p
n

gδ
nϕn(x)

∥
∥
∥
∥
∥

) p
p+1

∥
∥
∥
∥
∥

∞∑

n=1

(√
λn

η1

)p

fnϕn(y)

∥
∥
∥
∥
∥

1
p+1

≤ (δ + τδ)
p

p+1 η
– p

p+1
1 E

1
p+1

=
(

τ + 1
η1

) p
p+1

E
1

p+1 δ
p

p+1 . (5.17)

According to (5.15), (5.16), and (5.17), the estimate is obtained

∥
∥f δ

μ(y) – f (y)
∥
∥ ≤

(

c1

(
c3

τ – 1

) 1
p+1

+
(

τ + 1
η1

) p
p+1

)

E
1

p+1 δ
p

p+1 .

The proof of this theorem is completed. �

6 Numerical experiments
In this section, the effectiveness of the generalized Tikhonov regularization method is
demonstrated through numerical examples. Let � = (0,π ), L : H2(0,π ) ∩ H1

0 (0,π ) →
L2(0,π ) = – ∂2

∂y2 , λn = n2, and ϕn(y) =
√

2
π

sin(ny) for n = 1, 2, . . . . Generally, the a priori
bound E is hard to obtain accurately. Therefore, the numerical results are presented solely
under the a posteriori selection rule for the regularization parameter.

6.1 Expression of solution
This paper considers the following forward problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2α
x u(x, y) + x2βuyy(x, y) = 0, (x, y) ∈ [0,∞) × (0,π ),

u(x, 0) = u(x,π ) = 0, x ∈ [0,∞),

u(0, y) = f (y), y ∈ (0,π ),

limx→∞ u(x, y) = 0, y ∈ (0,π ).

(6.1)

For the given function f (y), the solution of problem (6.1) can be written as

u(x, y) =
∞∑

n=1

fnE
α,1+ β

α , βα

(
–
√

λnxα+β
)
ϕn(y). (6.2)
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Let T = 1, the exact data is given as

g(y) = u(1, y) =
√

2
π

∞∑

n=1

fnE
α,1+ β

α , βα
(–n) sin(ny), (6.3)

here, the inner product fn = (fn(y),ϕn(y)) is calculated by adopting the composite trape-
zoidal rule. The measurement data gδ is generated by adding random noise to g

gδ = g + ε · g · (2 · rand(M + 1) – 1
)
. (6.4)

The measurement error bound is calculated by δ = ε‖g‖l2 , where ‖g‖l2 =
√

1
M+1

∑M+1
i=1 (gi)2.

Based on (4.3), the regularization solution of (6.1) is computed by

f δ
μ(y) =

√
2
π

∞∑

n=1

E
α,1+ β

α , βα
(–n)

(E
α,1+ β

α , βα
(–n))2 + μn2p gδ

n sin(ny). (6.5)

To conduct a sensitivity analysis on numerical results, [0,π ] is evenly divided into M parts,
and the relative root mean square error is calculated by

ε1(f ) =

√
1

M+1
∑M+1

i=1 |f (yi) – f δ
μ(yi)|2

√
1

M+1
∑M+1

i=1 |f (yi)|2
. (6.6)

6.2 Conjugate gradient method
From (4.1), it is known that

Jμ
(
f k) = min

f k∈L2(�)

{∥
∥Kf k – gδ

∥
∥2 + μ

∥
∥f k∥∥2

D(L
p
2 )

}
, (6.7)

let

J
(
f k) =

∥
∥Kf k – gδ

∥
∥2 + μ

∥
∥f k∥∥2

D(L
p
2 )

, (6.8)

so

Jμ
(
f k) = min

f k∈L2(�)
J
(
f k). (6.9)

The conjugate gradient method is employed to find the minimizer of J(f k), and the fun-
damental principle of this method can be outlined as follows.

Given the initial guess f 0, it is assumed that the f k of the k – th iteration step is known.
Subsequently, an appropriate step size rk > 0 is selected, and update f k by

f k+1 = f k + rkdk , (6.10)

where the iteration direction dk is

dk =

⎧
⎨

⎩

–J ′(f k), if k = 0,

–J ′(f k) + skdk–1, if k > 0,
(6.11)

with sk = ‖J ′(f k )‖2

‖J ′(f k–1)‖2 , rk = arg minr≥0 J(f k + rdk).
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To obtain f k+1, the next step involves finding dk and rk . Based on (6.8), it is known that

J(f ) =
∥
∥Kf – gδ

∥
∥2 + μ‖f ‖2

D(L
p
2 )

, (6.12)

so

∂J(f )
∂f

= 2f ‖K‖2 – 2
(
K , gδ

)
+ 2f μLp, (6.13)

substituting f k into equation (6.13) yields

J ′(f k) = 2f k‖K‖2 – 2
(
K , gδ

)
+ 2f kμLp.

= –
∞∑

n=1

(
E

α,1+ β
α , βα

(–n)
)2f k

n – E
α,1+ β

α , βα
(–n)gδ

n + μn2pf k
n .

(6.14)

According to (6.8), the following can be derived:

J
(
f k + rdk

)
=

∥
∥K

(
f k + rdk

)
– gδ

∥
∥2 + μ

∥
∥f k + rdk

∥
∥2

D(L
p
2 )

, (6.15)

so

∂J(f k + rdk)
∂r

= 2
(
Kdk , Kf k – gδ

)
+ 2μLp(f k , dk

)
+ 2r‖Kdk‖2 + 2rμLp‖dk‖2.

Let ∂J(f k +rdk )
∂r = 0, the step size rk can be determined as

rk = –
(Kdk , Kf k – gδ) + μLp(f k , dk)

‖Kdk‖2 + μLp‖dk‖2

= –
∞∑

n=1

(E
α,1+ β

α , βα
(–n))2f k

n – E
α,1+ β

α , βα
(–n)gδ

n + μn2pf k
n

(E
α,1+ β

α , βα
(–n))2‖dk‖2 + μn2p‖dk‖2 dkϕn(y).

The iterative steps of the conjugate gradient method for numerical reconstruction of
unknown inverse boundary value f (y) can be expressed as follows:

Step 1: Let k = 0, select the initial guess f 0 and the error accuracy ε > 0;
Step 2: Calculate the initial iterative direction d0 = –J ′(f 0);
Step 3: Compute the initial step size

r0 = –
∞∑

n=1

(E
α,1+ β

α , βα
(–n))2f 0

n – E
α,1+ β

α , βα
(–n)gδ

n + μn2pf 0
n

(E
α,1+ β

α , βα
(–n))2‖d0‖2 + μn2p‖d0‖2 d0ϕn(y).

Update f 1 = f 0 + r0d0;
Step 4: For k = 1, 2, . . . , calculate the conjugate direction

dk = –J ′(f k) + skdk–1, (6.16)

with sk = ‖J ′(f k )‖2

‖J ′(f k–1)‖2 .
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Compute the step size

rk = –
∞∑

n=1

(E
α,1+ β

α , βα
(–n))2f k

n – E
α,1+ β

α , βα
(–n)gδ

n + μn2pf k
n

(E
α,1+ β

α , βα
(–n))2‖dk‖2 + μn2p‖dk‖2 dkϕn(y).

Update f k+1 = f k + rkdk , if ‖J ′(f k+1)‖ ≤ ε, out put f k+1 and stop;
Step 5: Set k + 1 ⇒ k and go to step 4.
To perform sensitivity analysis on numerical results, [0,π ] is evenly divided into M parts,

and the relative root mean square error is calculated by

ε2(f ) =

√
1

M+1
∑M+1

i=1 |f (yi) – f k+1(yi)|2
√

1
M+1

∑M+1
i=1 |f (yi)|2

. (6.17)

6.3 Numerical examples
This section presents two numerical methods to verify the effectiveness of the generalized
Tikhonov regularization method through two examples of smooth and piecewise function.

In Example 1 and Example 2, let M = 100, n = 1, 2, . . . , 50, τ = 1.01, ε = 0.01. When cal-
culating based on a regularization solution expression, the regularization parameter μ

is selected by the a posteriori rule (5.9). When calculated using the conjugate gradient
method, the regularization parameter μ is selected as μ in 6.1 by the a priori rule, and
take ε = 0.001.

Example 1 Consider the case where the solution is a smooth function

f (y) =
√

3
3π

(
y3 – 1

)
sin(3y), 0 ≤ y ≤ π .

For α = 0.7, 0.9, β = 0.1, 0.9, p = 1, 2, and ε = 0.1, 0.01, 0.001, the simulation results for
the exact and generalized Tikhonov regularization solutions are shown in Figs. 1–4, re-
spectively. The simulation results of two numerical methods are shown in Fig. 5.

Figure 1 β = 0.1, p = 1, ε = 0.01
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Figure 2 α = 0.7, p = 1, ε = 0.01

Figure 3 α = 0.7, β = 0.1, ε = 0.01

Table 1 β = 0.1, p = 1, relative root mean square error for various α

α 0.7 0.75 0.8 0.85 0.9

ε1(f ) 0.01462 0.01578 0.01752 0.02036 0.02571
ε2(f ) 0.01635 0.01698 0.02259 0.03635 0.05892

According to Figs. 1–3, α, β , and p have little effect on regularization resolution. As
shown in Fig. 4, the simulation effect is slightly worse when ε = 0.1 and better when ε =
0.01 and ε = 0.001. Overall, the proposed method is stable and feasible.

As shown in Fig. 5, when the exact solution is a smooth function, the difference between
the expression of solution and the conjugate gradient method is not significant.

The effects of α and β on the numerical results are shown in Tables 1–2 respectively.
According to Tables 1–2, it becomes evident that as α increases, both ε1(f ) and ε2(f )

increase, and ε2(f ) increases more and more. When β increases, both ε1(f ) and ε2(f ) in-
crease, and the impact on ε2(f ) is slightly greater.
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Figure 4 α = 0.7, β = 0.1, p = 1

Figure 5 Expression of solution and conjugate gradient method

Table 2 α = 0.7, p = 1, relative root mean square error for various β

β 0.1 0.3 0.5 0.7 0.9

ε1(f ) 0.01462 0.01501 0.01521 0.01528 0.01525
ε2(f ) 0.01635 0.01628 0.01616 0.01494 0.01500

Example 2 Consider the case where the solution is a smooth function

f (y) =

⎧
⎪⎪⎨

⎪⎪⎩

y, 0 ≤ y ≤ π
3 ,

y sin(2y – π
6 ), π

3 < y ≤ 2π
3 ,

y – π , 2π
3 < y ≤ π .

For α = 0.7, 0.9, β = 0.1, 0.9, p = 1, 2, and ε = 0.1, 0.01, 0.001, the simulation results for
the exact and generalized Tikhonov regularization solutions are shown in Figs. 6–9, re-
spectively. The simulation results of two numerical methods are shown in Fig. 10.

According to Figs. 6–8, α, β , and p have little effect on regularization solution. As shown
in Fig. 9, when ε = 0.001, the regularization solution and exact solution are basically the
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Figure 6 β = 0.1, p = 1, ε = 0.01

Figure 7 α = 0.7, p = 1, ε = 0.01

Figure 8 α = 0.7, β = 0.1, ε = 0.01
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Figure 9 α = 0.7, β = 0.1, p = 1

Figure 10 Expression of solution and conjugate gradient method

Table 3 β = 0.1, p = 1, relative root mean square error for various α

α 0.7 0.75 0.8 0.85 0.9

ε1(f ) 0.03052 0.03306 0.03660 0.04191 0.05076
ε2(f ) 0.04390 0.04199 0.07031 0.05959 0.11261

same at nonsmooth points. When ε = 0.01, the regularization solution and exact solution
are not significantly different at nonsmooth points. When ε = 0.1, the simulation effect at
nonsmooth points is not as good as that under smooth conditions.

From Fig. 10, it can be seen that when the exact solution is a nonsmooth function, the
regularization solution obtained based on the expression of the solution is better than
the regularization solution obtained by the conjugate gradient method, especially at non-
smooth points where the difference can be clearly seen.

The effects of α and β on the numerical results are shown in Tables 3–4 respectively.
According to Tables 3–4, it is observable that as α increases, ε1(f ) keeps increasing, while

ε2(f ) fluctuates up and down but shows an overall upward trend; when β increases, ε1(f )
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Table 4 α = 0.7, p = 1, relative root mean square error for various β

β 0.1 0.3 0.5 0.7 0.9

ε1(f ) 0.03052 0.03139 0.03188 0.03209 0.03209
ε2(f ) 0.04390 0.03665 0.03454 0.04829 0.03462

also increases, but the impact is relatively small compared to the impact on ε2(f ), which
shows a slightly greater change.

7 Conclusions
This paper considers an inverse boundary value problem for fractional elliptic equation of
Tricomi–Gellerstedt–Keldysh type. Firstly, this article establishes a result of conditional
stability of Hölder type for the inverse problem. And then, based on the ill-posedness anal-
ysis, a generalized Tikhonov regularization method is proposed to restore the continuous
dependence of solution on the noisy data. Meanwhile, the corresponding convergence
results of Hölder type are derived under the a priori and a posteriori selection rules for
regularized parameter. Some numerical results show that this method is stable and fea-
sible when it is used to solve the considered problem. Given the novelty of the inverse
problem addressed in this paper and its significant applications across various scientific
research fields, future efforts will focus on further exploring the regularization theory and
numerical algorithms pertaining to this problem.
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