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Abstract
We use a new function class called B-function to establish a novel version of
Hermite–Hadamard inequality for weighted ψ -Hilfer operators. Additionally, we
prove two new identities involving weighted ψ -Hilfer operators for differentiable
functions. Moreover, by employing these equalities and the properties of the
B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex
functions. Furthermore, the obtained results are reduced to several well-known and
some new inequalities by making specific choices of the function h.
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1 Introduction & preliminaries
In recent decades, various publications have focused on generalizing the Hermite–
Hadamard inequality and developing trapezoid- and midpoint-type inequalities that pro-
vide bounds for the right- and left-hand sides of the aforementioned inequality. The au-
thors [11] demonstrated various similar trapezoid-type inequalities and developed the
Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Kara et al. [8]
identified the following Hermite–Hadamard inequalities:

Let ψ : [a, b] → R be a monotone increasing function such that the derivative ψ ′ > 0 is
continuous on (a, b). If g is a convex function on [a, b], then

g
(

a + b
2

)
≤ �(β + 1)

2A(ψ ,β)(1)

[
βJ ψ

b– G
(

a + b
2

)
+ βJ ψ

a+ G
(

a + b
2

)]
≤ g(a) + g(b)

2
, (1.1)

where the ψ-Hilfer operators are defined as follows:

βJ ψ

a+ g(x) =
1

�(β)

∫ x

a
ψ ′(t)

(
ψ(x) – ψ(t)

)β–1g(t) dt,

βJ ψ

b– g(x) =
1

�(β)

∫ b

x
ψ ′(t)

(
ψ(t) – ψ(x)

)β–1g(t) dt,

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-024-01889-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-024-01889-5&domain=pdf
mailto:hsyn.budak@gmail.com
http://creativecommons.org/licenses/by/4.0/


Benaissa et al. Boundary Value Problems         (2024) 2024:76 Page 2 of 18

and

G(s) = g(s) + g(a + b – s),

A(ψ ,β)(1) =
(

ψ(b) – ψ

(
a + b

2

))β

+
(

ψ

(
a + b

2

)
– ψ(a)

)β

.

See [3, 7, 9, 12] for further information on comparable results.
In [13], the author introduces a novel class of functions, called h-convex functions.

Definition 1 Let h : J ⊆R→ R, where (0, 1) ⊆ J , be a nonnegative function, h �= 0. We say
that f : I ⊆R →R is an h-convex function if f is nonnegative and for all x, y ∈ I , α ∈ (0, 1)
we have

f
(
αx + (1 – α)y

) ≤ h(α)f (x) + h(1 – α)f (y). (1.2)

If the inequality in (1.2) is reversed, then f is said to be h-concave.

By setting
• h(λ) = λ, Definition 1 reduces to that of the classical convex function.
• h(λ) = 1, Definition 1 reduces to that of P-functions [4, 10].
• h(λ) = λs, Definition 1 reduces to that of s-convex functions [2].
• h(λ) = 1

n
∑n

k=1 λ
1
k , Definition 1 reduces to that of polynomial n-fractional convex

functions [5].
Recently, the authors of [1] presented a new class of function, called B-function.

Definition 2 Let a < b and g : (a, b) ⊂ R → R be a nonnegative function. The function g
is a B-function, or g belongs to the class B(a, b), if for all x ∈ (a, b), we have

g(x – a) + g(b – x) ≤ 2g
(

a + b
2

)
. (1.3)

If the inequality (1.3) is reversed, g is called an A-function, or we say that g belongs to the
class A(a, b).

If we have the equality in (1.3), then g is called an AB-function, or we say that g belongs
to the class AB(a, b).

Corollary 1 Let h : (0, 1) → R be a nonnegative function. The function h is a B-function if
and only if for all λ ∈ (0, 1), we have

h(λ) + h(1 – λ) ≤ 2h
(

1
2

)
. (1.4)

• The functions h(λ) = λ and h(λ) = 1 are AB-functions, B-functions, and A-functions.
• The function h(λ) = λs, s ∈ (0, 1] is a B-function.
• The function h(λ) = 1

n
∑n

k=1 λ
1
k , n, k ∈N is a B-function.

The weighted fractional integrals are defined as follows:
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Definition 3 ([6]) Let [a, b] ⊆ [0, +∞). Let β > 0 and ψ be a positive, increasing differ-
entiable function such that ψ ′(s) �= 0 for all s ∈ [a, b]. The left- and right-sided weighted
fractional integrals of a function f with respect to the function ψ on [a, b] are respectively
defined as follows:

Jβ ,ψ
w,a+ f (x) =

1
w(x)�(β)

∫ x

a
ψ ′(t)

(
ψ(x) – ψ(t)

)β–1w(t)f (t) dt, a < x ≤ b; (1.5)

Jβ ,ψ
w,b– f (x) =

1
w(x)�k(β)

∫ b

x
ψ ′(t)

(
ψ(t) – ψ(x)

)β–1w(t)f (t) dt, a ≤ x < b, (1.6)

where w is a weighted function and the gamma function defined by

�(β) =
∫ ∞

0
tβ–1e–t dt and β�(β) = �(β + 1).

For these operators, consider the following space:

X[a, b] =
{

f :‖ f ‖X=
(∫ b

a

∣∣w(t)f (t)
∣∣ψ ′(t) dt

)
< ∞

}
.

For special choices of ψ , w, and β , we get already known results.
(1) Taking w(t) = 1, the operators reduce to the ψ-Hilfer integral operators of order

β > 0.
(2) For ψ(t) = t, we get the weighted Riemann–Liouville operators.
(3) For ψ(t) = t and w(t) = 1, the operators are simplified to Riemann–Liouville integral

operators.
(4) Taking ψ(t) = t, w(t) = 1, and β = 1, the operators reduce to classical Riemann

integrals.
(5) Setting ψ(t) = ln(t) and a > 1, we get the weighted Hadamard operators of order

β > 0.
(6) Setting ψ(t) = ln(t), w(t) = 1, and a > 1, the operators are simplified to Hadamard

operators of order β > 0.
The purpose of this study is to generalize the Hermite–Hadamard inequality given in [8]

for the h-convex function and weighted ψ-Hilfer operator with conditions. For this aim,
we assume h is a B-function.

2 Hermite–Hadamard inequality
This section establishes Hermite–Hadamard-type inequalities for h-convex functions us-
ing ψ-Hilfer operators. Throughout this paper, we consider that 0 ≤ a < b < ∞, β > 0, and
ψ is a positive differentiable increasing function on (a, b).

Theorem 2.1 Let h be a B-function and w a nondecreasing function. If f ∈ X[a, b] is an
h-convex function, then the following inequalities hold:

w(a)
2h( 1

2 )
f
(

a + b
2

)
≤ �(β + 1)w( a+b

2 )
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ 2h
(

1
2

)
w(b)

(
f (b) + f (a)

2

)
,

(2.1)
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where

F(τ ) = f (τ ) + f (a + b – τ ) (2.2)

and

�(ψ ,β) =
(

ψ(b) – ψ

(
a + b

2

))β

+
(

ψ

(
a + b

2

)
– ψ(a)

)β

. (2.3)

Proof Since w is a positive nondecreasing function on [a, b],
(1) for all τ ∈ [a, a+b

2 ], we have 0 < w(a) ≤ w(τ ) ≤ w( a+b
2 ) ≤ w(b), and then

w(a)
β

(
ψ

(
a + b

2

)
– ψ(a)

)β

≤
∫ a+b

2

a

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

w(τ )ψ ′(τ ) dτ

≤ w(b)
β

(
ψ

(
a + b

2

)
– ψ(a)

)β

;

(2.4)

(2) for all τ ∈ [ a+b
2 , b], we have 0 < w(a) ≤ w( a+b

2 ) ≤ w(τ ) ≤ w(b), and then

w(a)
β

(
ψ(b) – ψ

(
a + b

2

))β

≤
∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β–1

w(τ )ψ ′(τ ) dτ

≤ w(b)
β

(
ψ(b) – ψ

(
a + b

2

))β

.

(2.5)

Letting f be an h-convex function, we have for any τ ∈ [a, b],

f
(

a + b
2

)
= f

(
1
2

(a + b – τ ) +
1
2
τ

)

≤ h
(

1
2

)
f (a + b – τ ) + h

(
1
2

)
f (τ ),

and then

f
(

a + b
2

)
≤ h

(
1
2

)
F(τ ). (2.6)

Multiplying (2.6) by (ψ( a+b
2 ) – ψ(τ ))β–1ψ ′(τ )w(τ ) and integrating over τ ∈ [a, a+b

2 ], we ob-
tain

f
(

a + b
2

)∫ a+b
2

a
ψ ′(τ )

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

w(τ ) dτ

≤ h
(

1
2

)∫ a+b
2

a
ψ ′(τ )

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

w(τ )F(τ ) dτ .

By using the left-hand side of (2.4), we deduce

f
(

a + b
2

)(
ψ

(
a + b

2

)
– ψ(a)

)β

≤ h( 1
2 )�(β + 1)w( a+b

2 )
w(a)

Jβ ,ψ
w,a+ F

(
a + b

2

)
. (2.7)
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Now, multiplying (2.6) by (ψ(τ ) – ψ( a+b
2 ))β–1ψ ′(τ )w(τ ) and integrating over τ ∈ [ a+b

2 , b],
we get

f
(

a + b
2

)∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β–1

ψ ′(τ )w(τ ) dτ

≤ h
(

1
2

)∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β–1

ψ ′(τ )w(τ )F(τ ) dτ .

By using the left-hand side of (2.5), we deduce

f
(

a + b
2

)(
ψ(b) – ψ

(
a + b

2

))β

≤ h( 1
2 )�(β + 1)w( a+b

2 )
w(a)

Jβ ,ψ
w,b– F

(
a + b

2

)
. (2.8)

Adding the inequalities (2.7) and (2.8), we obtain

w(a)
2h( 1

2 )
f
(

a + b
2

)
≤ �(β + 1)w( a+b

2 )
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
. (2.9)

Let us prove the second inequality in (2.1). Since any τ ∈ [a, b] can be written as τ = (1 –
t)a + tb for t ∈ [0, 1], we have

F(τ ) = f
(
(1 – t)a + tb

)
+ f

(
ta + (1 – t)b

)
.

Applying the h-convexity of the function f , we get

F(τ ) = f
(
(1 – t)b + ta

)
+ f

(
(1 – t)a + tb

)
≤ h(1 – t)

[
f (b) + f (a)

]
+ h(t)

[
f (b) + f (a)

]
=

(
h(t) + h(1 – t)

)[
f (b) + f (a)

]
.

Applying (1.4), we deduce

F(τ ) ≤ 2h
(

1
2

)[
f (b) + f (a)

]
. (2.10)

Multiplying (2.10) by (ψ( a+b
2 ) – ψ(τ ))β–1ψ ′(τ )w(τ ) and integrating over τ ∈ [a, a+b

2 ], we
obtain

∫ a+b
2

a
ψ ′(τ )

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

w(τ )F(τ ) dτ

≤ 2h
(

1
2

)[
f (b) + f (a)

]∫ a+b
2

a
ψ ′(τ )

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

w(τ ) dτ .

By using the right-hand side of (2.4), we deduce

�(β + 1)Jβ ,ψ
w,a+ F

(
a + b

2

)
≤ 2h( 1

2 )w(b)
w( a+b

2 )
[
f (b) + f (a)

](
ψ

(
a + b

2

)
– ψ(a)

)β

. (2.11)
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Now, multiplying (2.10) by (ψ(τ ) – ψ( a+b
2 ))β–1ψ ′(τ )w(τ ) and integrating over τ ∈ [ a+b

2 , b],
we get

∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β–1

ψ ′(τ )w(τ )F(τ ) dτ

≤ 2h
(

1
2

)[
f (b) + f (a)

]∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β–1

ψ ′(τ )w(τ ) dτ .

By using the right-hand side of (2.5), we deduce

�(β + 1)Jβ ,ψ
w,b– F

(
a + b

2

)
≤ 2h( 1

2 )w(b)
w( a+b

2 )
[
f (b) + f (a)

](
ψ(b) – ψ

(
a + b

2

))β

. (2.12)

Adding inequalities (2.11) and (2.12), we obtain

�(β + 1)w( a+b
2 )

2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ 2h
(

1
2

)
w(b)

(
f (b) + f (a)

2

)
.

(2.13)

This finishes the proof. �

The following results are dependent on the function h presented in Theorem 2.1. First,
assuming h(α) = α, we get the following result using the weighted ψ-Hilfer operators for
convex functions.

Corollary 2 Let f ∈ X[a, b] be a convex function. Then the following inequalities hold:

w(a)f
(

a + b
2

)
≤ �(β + 1)w( a+b

2 )
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ w(b)
(

f (b) + f (a)
2

)
,

(2.14)

where F(t) and �(ψ ,β) are defined by (2.2) and (2.3), respectively.

By setting h(α) = 1, we get the following result using the weighted ψ-Hilfer operators
with an f being a P-function.

Corollary 3 Let β > 0 and f ∈ X[a, b] be a P-function. Then the following inequalities hold:

w(a)f
(

a + b
2

)
≤ �(β + 1)w( a+b

2 )
�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ 2w(b)
(
f (b) + f (a)

)
,

(2.15)

where F(t) and �(ψ ,β) are defined by (2.2) and (2.3), respectively.

Using h(α) = αs, we obtain the following result through the weighted ψ-Hilfer operators
and s-convex functions.
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Corollary 4 Let β > 0, s ∈ (0, 1], and f ∈ X[a, b] be an s-convex function. Then the following
inequalities hold:

w(a)
21–s f

(
a + b

2

)
≤ �(β + 1)w( a+b

2 )
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ 21–sw(b)
(

f (b) + f (a)
2

)
.

(2.16)

where F(t) and �(ψ ,β) are defined by (2.2) and (2.3), respectively.

Taking h(α) = 1
n
∑n

k=1 α
1
k , we deduce the following result through the weighted ψ-Hilfer

operators and n-fractional polynomial convex functions.

Corollary 5 Let β > 0 and f ∈ X[a, b] be an n-fractional polynomial convex function. Then
the following inequalities hold:

w(a)
Cn

f
(

a + b
2

)
≤ �(β + 1)w( a+b

2 )
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

≤ Cnw(b)
(

f (b) + f (a)
2

)
.

(2.17)

where F(t), �(ψ ,β) are defined by (2.2), (2.3), respectively, and Cn = 2
n
∑n

k=1( 1
2 )

1
k .

Remark 1 If we choose ψ(τ ) = τ and ψ(τ ) = ln τ in Corollaries 3, 4, and 5, we obtain
Hermite–Hadamard inequality for P-functions, s-convex functions, and n-fractional poly-
nomial convex functions involving the weighted Riemann–Liouville fractional operator
and the weighted Hadamard fractional operator, respectively.

3 Weighted trapezoid-type inequalities
This section presents weighted trapezoid inequalities and their particular results utilizing
weighted ψ-Hilfer operators with w being symmetric with respect to a+b

2 (i.e., w(t) = w(b +
a – t)). To accomplish this, we must first establish an equality in the following lemma.

Lemma 3.1 Assume w is a differentiable and symmetric with respect to a+b
2 function, and

suppose h is a B-function. Let f : [a, b] → R be a function where (wf ) is a differentiable
mapping on (a, b). Then the following identity holds:

f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

=
b – a

4	(ψ ,β , w)

∫ 1

0
Aψ ,β (τ )

×
[

(wf )′
(

1 – τ

2
a +

1 + τ

2
b
)

– (wf )′
(

1 + τ

2
a +

1 – τ

2
b
)]

dτ ,

(3.1)

where

	(ψ ,β , w) =
(

ψ(b) – ψ

(
a + b

2

))β

w(b) +
(

ψ

(
a + b

2

)
– ψ(a)

)β

w(a). (3.2)
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Aψ ,β (τ ) =
(

ψ

(
a + b

2

)
– ψ

(
1 + τ

2
a +

1 – τ

2
b
))β

+
(

ψ

(
1 – τ

2
a +

1 + τ

2
b
)

– ψ

(
a + b

2

))β

. (3.3)

Proof Let

J1 =
2

b – a

∫ a+b
2

a

(
ψ

(
a + b

2

)
– ψ(τ )

)β

(wF)′(τ ) dτ . (3.4)

Integrating by parts (3.4) and using (2.2), we get

b – a
2

J1 =
(

ψ

(
a + b

2

)
– ψ(τ )

)β

w(τ )F(τ )
∣∣ a+b

2
a

+ β

∫ a+b
2

a

(
ψ

(
a + b

2

)
– ψ(τ )

)β–1

ψ ′(τ )w(τ )F(τ ) dτ .

Therefore

b – a
2

J1 = –
(

ψ

(
a + b

2

)
– ψ(a)

)β

w(a)F(a) + �(β + 1)w
(

a + b
2

)
Jβ ,ψ
w,a+ F

(
a + b

2

)
. (3.5)

Similarly, let

J2 =
2

b – a

∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β

(wF)′(τ ) dτ . (3.6)

Integrating by parts (3.6), we obtain

b – a
2

J2 =
(

ψ(b) – ψ

(
a + b

2

))β

w(b)F(b) – �(β + 1)w
(

a + b
2

)
Jβ ,ψ
w,b– F

(
a + b

2

)
. (3.7)

Since F(a) = F(b) = f (a) + f (b), we conclude from (3.5) and (3.7) that

b – a
2

(J2 – J1) = 	(ψ ,β , w)
(
f (a) + f (b)

)

– �(β + 1)w
(

a + b
2

)[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
,

thus

f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]

=
b – a

4	(ψ ,β , w)
(J2 – J1).

(3.8)
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On the other hand, since F ′(τ ) = f ′(τ ) – f ′(a + b – τ ) and w(τ ) = w(a + b – τ ), we get

(wF)′(τ ) = w′(τ )
(
f (τ ) + f (a + b – τ )

)
+ w(τ )

(
f ′(τ ) – f ′(a + b – τ )

)
= w′(τ )f (τ ) + w(τ )f ′(τ ) – w′(a + b – τ )f (a + b – τ )

– w(a + b – τ )f ′(a + b – τ ))

= (wf )′(τ ) – (wf )′(a + b – τ ).

From (3.4), we get

J1 =
2

b – a

∫ a+b
2

a

(
ψ

(
a + b

2

)
– ψ(τ )

)β(
(wf )′(τ ) – (wf )′(a + b – τ )

)
dτ .

By changing the variable τ = 1+s
2 a + 1–s

2 b, we obtain

J1 =
∫ 1

0

(
ψ

(
a + b

2

)
– ψ

(
1 + s

2
a +

1 – s
2

b
))β

×
[

(wf )′
(

1 + s
2

a +
1 – s

2
b
)

– (wf )′
(

1 – s
2

a +
1 + s

2
b
)]

ds.

Similarly, from (3.6) we deduce

J2 =
∫ 1

0

(
ψ

(
1 – s

2
a +

1 + s
2

b
)

– ψ

(
a + b

2

))β

×
[

(wf )′
(

1 – s
2

a +
1 + s

2
b
)

– (wf )′
(

1 + s
2

a +
1 – s

2
b
)]

ds.

Consequently,

J2 – J1 =
∫ 1

0
Aψ ,β (s)

[
(wf )′

(
1 – s

2
a +

1 + s
2

b
)

– (wf )′
(

1 + s
2

a +
1 – s

2
b
)]

ds. (3.9)

Finally, we acquire the needed equality (3.1) by substituting (3.9) into (3.8). �

Remark 2 Putting w = 1 in Lemma 3.1, we get [8, Lemma 3.1].

Theorem 3.1 Under the hypotheses of Lemma 3.1, if |(wf )′| is an h-convex mapping on
[a, b] and h is a B-function, then the trapezoid-type inequality holds, namely

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ (b – a)h( 1

2 )
2	(ψ ,β , w)

[∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣] ∫ 1

0

∣∣Aψ ,β (s)
∣∣ds.

(3.10)
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Proof Taking the absolute value of the identity (3.1) and using the h-convexity of the func-
tion |(wf )′|, we get

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ b – a

4	(ψ ,β , w)

∫ 1

0

∣∣Aψ ,β (s)
∣∣[∣∣∣∣(wf )′

(
1 – s

2
a +

1 + s
2

b
)∣∣∣∣

+
∣∣∣∣(wf )′

(
1 + s

2
a +

1 – s
2

b
)∣∣∣∣

]
ds

≤ b – a
4	(ψ ,β , w)

∫ 1

0

∣∣Aψ ,β (s)
∣∣[h

(
1 – s

2

)
+ h

(
1 + s

2

)][∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣]ds,

Given that h is a B-function, setting α = 1–s
2 and 1 – α = 1+s

2 yields

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ (b – a)h( 1

2 )
2	(ψ ,β , w)

∫ 1

0

∣∣Aψ ,β (s)
∣∣[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣]ds. �

The following results are obtained via the weighted ψ-Hilfer operators and depend on
the function h given in Theorem 3.1.

Corollary 6
(1) If |(wf )′| is a convex mapping on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ b – a

4	(ψ ,β , w)
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣Aψ ,β (s)
∣∣ds.

Particularly, putting w = 1, we get [8, Corollary 3.4].
(2) If |(wf )′| is a P-function on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ b – a

2	(ψ ,β , w)
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣Aψ ,β (s)
∣∣ds.

(3) If |(wf )′| is an s-convex mapping on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ b – a

2s+1	(ψ ,β , w)
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣Aψ ,β (s)
∣∣ds.
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(4) If |(wf )′| is an n-fractional polynomial convex mapping on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ (b – a)Cn

4	(ψ ,β , w)
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣Aψ ,β (s)
∣∣ds,

where 	(ψ ,β , w), Aψ ,β (s) are defined by (3.2), (3.3), respectively, and
Cn = 2

n
∑n

k=1( 1
2 )

1
k .

Theorem 3.2 Let p > 1 and 1
p′ + 1

p = 1. If |(wf )′|p is an h-convex mapping on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣

≤ (b – a)(2h( 1
2 ))

1
p

4	(ψ ,β , w)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p) 1

p

≤ (b – a)(2h( 1
2 ))

1
p

4	(ψ ,β , w)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣).

(3.11)

Proof Taking absolute value of (3.1) and using the well-known Hölder’s inequality, we
obtain

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣
≤ b – a

4	(ψ ,β , w)

∫ 1

0

∣∣Aψ ,β (s)
∣∣
∣∣∣∣(wf )′

(
1 – s

2
a +

1 + s
2

b
)∣∣∣∣ds

+
b – a

4	(ψ ,β , w)

∫ 1

0

∣∣Aψ ,β (s)
∣∣
∣∣∣∣(wf )′

(
1 + s

2
a +

1 – s
2

b
)∣∣∣∣ds

≤ b – a
4	(ψ ,β , w)

(∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′
×

(∫ 1

0

∣∣∣∣(wf )′
(

1 – s
2

a +
1 + s

2
b
)∣∣∣∣

p

ds
) 1

p

+
b – a

4	(ψ ,β , w)

(∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′
×

(∫ 1

0

∣∣∣∣(wf )′
(

1 + s
2

a +
1 – s

2
b
)∣∣∣∣

p

ds
) 1

p
.

Notice that for p > 1, A, B ≥ 0, A
1
p + B

1
p ≤ 21– 1

p (A + B)
1
p , and |(wf )′|p an h-convex function,

we get

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣

≤ b – a
4	(ψ ,β , w)

(∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′
21– 1

p

×
[∫ 1

0

∣∣∣∣(wf )′
(

1 – s
2

a +
1 + s

2

)∣∣∣∣
p

ds +
∫ 1

0

∣∣∣∣(wf )′
(

1 + s
2

a +
1 – s

2

)∣∣∣∣
p

ds
] 1

p

≤ b – a
4	(ψ ,β , w)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′
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×
(∫ 1

0

[
h
(

1 – s
2

)
+ h

(
1 + s

2

)][∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p]ds

) 1
p

.

Since h is a B-function, we get

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)w( a+b

2 )
2	(ψ ,β , w)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]∣∣∣∣

≤ (b – a)(2h( 1
2 ))

1
p

4	(ψ ,β , w)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p) 1

p .

This proves the first inequality in (3.11).
Notice that the inequality Ap + Bp ≤ (A + B)p yields the second inequality in (3.11). �

Setting w = 1 and h(s) = s in Theorem 3.2, we get the following corollary.

Corollary 7 Let p > 1 and 1
p′ + 1

p = 1. If |f ′|p is a convex mapping on [a, b], then

∣∣∣∣ f (a) + f (b)
2

–
�(β + 1)
2�(ψ ,β)

[
βJ ψ

b– F
(

a + b
2

)
+ βJ ψ

a+ F
(

a + b
2

)]∣∣∣∣

≤ b – a
4�(ψ ,β)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣f ′(a)
∣∣p +

∣∣f ′(b)
∣∣p) 1

p

≤ b – a
4�(ψ ,β)

(
2
∫ 1

0

∣∣Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣),

(3.12)

which is a better estimate compared with [8, Theorem 3.5].

4 Weighted midpoint-type inequalities
This section establishes some weighted midpoint inequalities for weighted ψ-Hilfer op-
erators using the identity in the following lemma.

Lemma 4.1 Under the hypothesis of Lemma 3.1, the following identity holds:

�(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)

=
b – a

4�(ψ ,β)w( a+b
2 )

×
∫ 1

0

(
�(ψ ,β)

– Aψ ,β (s)
)[

(wf )′
(

1 – s
2

a +
1 + s

2
b
)

– (wf )′
(

1 + s
2

a +
1 – s

2
b
)]

ds,

(4.1)

where �(ψ ,β) and Aψ ,β (τ ) are defined in (2.3) and (3.3), respectively.

Proof Let

R1 =
2

b – a

∫ a+b
2

a

[(
ψ

(
a + b

2

)
– ψ(a)

)β

–
(

ψ

(
a + b

2

)
– ψ(τ )

)β]
(wF)′(τ ) dτ . (4.2)
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By using (3.4), we get

b – a
2

R1 =
∫ a+b

2

a

(
ψ

(
a + b

2

)
– ψ(a)

)β

(wF)′(τ ) dτ

–
∫ a+b

2

a

(
ψ

(
a + b

2

)
– ψ(τ )

)β

(wF)′(τ ) dτ

=
(

ψ

(
a + b

2

)
– ψ(a)

)β

(wF)(τ )
∣∣ a+b

2
a –

2
b – a

J1

=
(

ψ

(
a + b

2

)
– ψ(a)

)β

2(wf )
(

a + b
2

)

–
(

ψ

(
a + b

2

)
– ψ(a)

)β

(wF)(a) –
2

b – a
J1.

Applying (3.5), we obtain

b – a
2

R1 = 2
(

ψ

(
a + b

2

)
– ψ(a)

)β

(wf )
(

a + b
2

)

– �(β + 1)w
(

a + b
2

)
Jβ ,ψ
w,a+ F

(
a + b

2

)
.

(4.3)

Similarly, let

R2 =
2

b – a

∫ b

a+b
2

[(
ψ(b) – ψ

(
a + b

2

))β

–
(

ψ(τ ) – ψ

(
a + b

2

))β]
(wF)′(τ ) dτ . (4.4)

Using (3.6), then we have

b – a
2

R2 =
∫ b

a+b
2

(
ψ(b) – ψ

(
a + b

2

))β

(wF)′(τ ) dτ

–
∫ b

a+b
2

(
ψ(τ ) – ψ

(
a + b

2

))β

(wF)′(τ ) dτ

=
(

ψ(b) – ψ

(
a + b

2

))β

(wF)(τ )
∣∣b

a+b
2

–
2

b – a
J2

=
(

ψ(b) – ψ

(
a + b

2

))β

(wF)(b)

– 2
(

ψ(b) – ψ

(
a + b

2

))β

(wf )
(

a + b
2

)
–

2
b – a

J2,

and applying (3.7), we get

b – a
2

R2 = �(β + 1)w
(

a + b
2

)
Jβ ,ψ
w,b– F

(
a + b

2

)

– 2
(

ψ(b) – ψ

(
a + b

2

))β

(wf )
(

a + b
2

)
.

(4.5)
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From (4.3) and (4.5), we have

b – a
4�(ψ ,β)w( a+b

2 )
(R2 – R1)

=
�(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)
.

(4.6)

In addition, according to (4.2),

R1 =
2

b – a

∫ a+b
2

a

[(
ψ

(
a + b

2

)
– ψ(a)

)β

–
(

ψ

(
a + b

2

)
– ψ(τ )

)β]

× (
(wf )′(τ ) – (wf )′(a + b – τ )

)
dτ

=
∫ 1

0

[(
ψ

(
a + b

2

)
– ψ(a)

)β

–
(

ψ

(
a + b

2

)
– ψ

(
1 + s

2
a +

1 – s
2

b
))β]

×
[

(wf )′
(

1 + s
2

a +
1 – s

2
b
)

– (wf )′
(

1 – s
2

a +
1 + s

2
b
)]

ds.

Similarly, from (4.4) we get

R2 =
2

b – a

∫ b

a+b
2

[(
ψ(b) – ψ

(
a + b

2

))β

–
(

ψ(τ ) – ψ

(
a + b

2

))β]

× (
(wf )′(τ ) – (wf )′(a + b – τ )

)
dτ

=
∫ 1

0

[(
ψ(b) – ψ

(
a + b

2

))β

–
(

ψ

(
1 – s

2
a +

1 + s
2

b
)

– ψ

(
a + b

2

))β]

×
[

(wf )′
(

1 – s
2

a +
1 + s

2
b
)

– (wf )′
(

1 + s
2

a +
1 – s

2
b
)]

ds.

As a result,

R2 – R1 =
∫ 1

0

(
�(ψ ,β) – Aψ ,β (s)

)

×
[

(wf )′
(

1 – s
2

a +
1 + s

2
b
)

– (wf )′
(

1 + s
2

a +
1 – s

2
b
)]

ds.
(4.7)

To obtain the desired equality (4.1), substitute (4.7) into (4.6). �

Remark 3 Put w = 1 in Lemma 4.1, we get [8, Lemma 4.1].

Theorem 4.1 If |(wf )′| is an h-convex mapping on [a, b] and h is a B-function, then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ (b – a)h( 1

2 )
2�(ψ ,β)w( a+b

2 )
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds.

(4.8)
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Proof Taking the absolute value of the identity (4.1) and using the h-convexity of |(wf )′|
and inequality (1.4), we deduce

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ b – a

4�(ψ ,β)w( a+b
2 )

∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣

×
[∣∣∣∣(wf )′

(
1 – s

2
a +

1 + s
2

b
)∣∣∣∣ +

∣∣∣∣(wf )′
(

1 + s
2

a +
1 – s

2
b
)∣∣∣∣

]
ds

≤ b – a
4�(ψ ,β)w( a+b

2 )

∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣

×
[(

h
(

1 – s
2

)
+ h

(
1 + s

2

))(∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣)]ds

=
(b – a)h( 1

2 )
2�(ψ ,β)w( a+b

2 )
[∣∣(wf )′(a)

∣∣ +
∣∣(wf )′(b)

∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds.

This ends the proof. �

The following results are obtained using the weighted ψ-Hilfer operators and depend
on the function h given in Theorem 4.1.

Corollary 8
(1) If |(wf )′| is a convex mapping on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ b – a

4�(ψ ,β)w( a+b
2 )

[∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds.

Particularly, putting w = 1, we get [8, Theorem 4.2].
(2) If |(wf )′| is a P-function on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ b – a

2�(ψ ,β)w( a+b
2 )

[∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds.

(3) If |(wf )′| is an s-convex mapping on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ b – a

2s+1�(ψ ,β)w( a+b
2 )

[∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds.
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(4) If |(wf )′| is an n-fractional polynomial convex mapping on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ (b – a)Cn

4�(ψ ,β)w( a+b
2 )

[∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣] ∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣ds,

where �(ψ ,β), Aψ ,β (s) are defined by (2.3), (3.3), respectively, and Cn = 2
n
∑n

k=1( 1
2 )

1
k .

Theorem 4.2 Let p > 1 and 1
p′ + 1

p = 1. If |(wf )′|p is an h-convex mapping on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣

≤ (b – a)(2h( 1
2 ))

1
p

4�(ψ ,β)w( a+b
2 )

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′

× (∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p) 1

p

≤ (b – a)(2h( 1
2 ))

1
p

4�(ψ ,β)w( a+b
2 )

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣(wf )′(a)
∣∣ +

∣∣(wf )′(b)
∣∣).

(4.9)

Proof Taking the absolute value of (4.1) and using the well-known Hölder’s inequality, we

obtain

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣
≤ b – a

4�(ψ ,β)w( a+b
2 )

∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣
∣∣∣∣(wf )′

(
1 – s

2
a +

1 + s
2

b
)∣∣∣∣ds

+
b – a

4�(ψ ,β)w( a+b
2 )

∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣
∣∣∣∣(wf )′

(
1 + s

2
a +

1 – s
2

b
)∣∣∣∣ds

≤ b – a
4�(ψ ,β)w( a+b

2 )

(∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′

×
(∫ 1

0

∣∣∣∣(wf )′
(

1 – s
2

a +
1 + s

2

)∣∣∣∣
p

ds
) 1

p

+
b – a

4�(ψ ,β)w( a+b
2 )

(∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′

×
(∫ 1

0

∣∣∣∣(wf )′
(

1 + s
2

a +
1 – s

2

)∣∣∣∣
p

ds
) 1

p
.
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Noticing that A
1
p + B

1
p ≤ 21– 1

p (A + B)
1
p and |(wf )′|p is an h-convex function, we conclude

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣

≤ b – a
4�(ψ ,β)w( a+b

2 )

(∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′
21– 1

p

×
[∫ 1

0

∣∣∣∣(wf )′
(

1 – s
2

a +
1 + s

2

)∣∣∣∣
p

ds +
∫ 1

0

∣∣∣∣(wf )′
(

1 + s
2

a +
1 – s

2

)∣∣∣∣
p

ds
] 1

p

≤ b – a
4�(ψ ,β)w( a+b

2 )

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′

×
(∫ 1

0

[
h
(

1 – s
2

)
+ h

(
1 + s

2

)][∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p]ds

) 1
p

.

Putting α = 1–s
2 and 1 – α = 1+s

2 yields

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣

≤ (b – a)(2h( 1
2 ))

1
p

4�(ψ ,β)w( a+b
2 )

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣(wf )′(a)
∣∣p +

∣∣(wf )′(b)
∣∣p) 1

p .

This proves the first inequality in (4.9).
The second inequality in (4.9) is clear from the inequality Ap + Bp ≤ (A + B)p. �

Setting w = 1 and h(s) = s in Theorem 4.2, we get the following corollary.

Corollary 9 Let p > 1 and 1
p′ + 1

p = 1. If |f ′|p is a convex mapping on [a, b], then

∣∣∣∣ �(β + 1)
2�(ψ ,β)

[
Jβ ,ψ
w,b– F

(
a + b

2

)
+ Jβ ,ψ

w,a+ F
(

a + b
2

)]
– f

(
a + b

2

)∣∣∣∣

≤ b – a
4�(ψ ,β)

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣f ′(a)
∣∣p +

∣∣f ′(b)
∣∣p) 1

p

≤ b – a
4�(ψ ,β)

(
2
∫ 1

0

∣∣�(ψ ,β) – Aψ ,β (s)
∣∣p′

ds
) 1

p′ (∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣),

(4.10)

which is a better estimate compared with [8, Theorem 4.5].

5 Conclusions
In this study, we recalled a new function class, namely that of B-functions, and utilized it to
derive a novel version of the Hermite–Hadamard inequality for weighted ψ-Hilfer opera-
tors. We also established two new identities involving weighted ψ-Hilfer operators for dif-
ferentiable functions. By combining these identities and the properties of the B-function,
we obtained several trapezoid- and midpoint-type inequalities for h-convex functions.
Our results not only extend the existing literature on inequalities involving fractional op-
erators but also provide new insights into the behavior of h-convex functions under these
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operators. Additionally, our methods can be applied to other fractional integral operators
by using B-functions.
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