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Abstract
In this work, we introduce a novel idea of generalized (k,ψ )-Hilfer proportional
fractional operators. The proposed operator combines the (k,ψ )-Riemann–Liouville
and (k,ψ )-Caputo proportional fractional operators. Some properties and auxiliary
results of the proposed operators are investigated. Theψ -Laplace transform and its
properties of the proposed operators are established and utilized to solve
Cauchy-type problems. Furthermore, the uniqueness result for a higher-order initial
value problem under (k,ψ )-Hilfer proportional fractional operators is proved by using
Picard’s iterative technique. At the end, examples are provided to present the
theoretical results. This new type of proposed operator can help other researchers
who are still working on real-world problems.

Mathematics Subject Classification: 26A33; 33B15; 34A08; 34A12; 34D20

Keywords: Fractional calculus; (k,ψ )-Hilfer proportional fractional derivative;
Fractional differential equations; Existence and uniqueness; Picard’s iterative method

1 Introduction
The field of mathematical analysis known as fractional calculus (FC) is actively expanding.
It has much applicability to everyday issues because its nonlocal properties are suitable for
describing copious memory phenomena, not only in pure and applied mathematics but
also in biology, physics, chemistry, and engineering; we suggest the reader to the famous
books [1–3]. The history of FC is almost as old as classical calculus that deals with integer
order, but FC focuses on differential and integral operators of noninteger order (fractional
order). The study ofFC currently holds great interest for many academics and researchers.
The abundance of different types of fractional operators derived from various charac-
teristics is one of the fundamental advantages of FC. A variety of these operators have
been applied in many works, and the most illustrious ones are Riemann–Liouville (RL)
and Caputo types. Afterward, many works continuously tried to create and develop some
new fractional operators for over a decade. For example, the Hilfer fractional derivative,
a generalized derivative operator between RL and Caputo, was introduced by Hilfer [4].
Katugampola type is the generalized fractional operator that unifies RL and Hadamard
types into a unique form proposed by Katugampola [5]. Jarad et al. [6] generated pro-
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portional RL and Caputo types of fractional derivatives under exponential kernels. Next,
Ahmed et al. [7] constructed Hilfer type of proportional fractional derivative, which com-
bines the proportionalRL and Caputo types, while Vanterler and Oliveira [8] proposed the
ψ-Hilfer fractional derivative and its properties. Mallah et al. [9] proposed the ψ-Hilfer
proportional fractional derivative operator (ψ-Hilfer-PFDO). However, some researchers
developed many other types of new fractional operators, which helped to expand the frac-
tional calculus field, see [10–15] and the references therein.

Over the years, fractional derivatives and integrals have been in the form of the gamma
function �(·). In [16–18], in recent years, Díaz et al. proposed the k-gamma function �k(·),
it is the generalization of �(·) in which �k(·) → �(·) when parameter k → 1. Recently, a
great deal of research has been done on the idea of fractional derivatives and integrals with
k. The fractional operator has been developed utilizing the k-gamma function, and there
are a lot of fascinating publications available. For example, Mubeen and Habibullah [19]
created the k-RL fractional integral operator, which is the generalized version of the RL-
fractional integral operator. Romero et al. [20] constructed the k-RL fractional derivative,
which is the generalized version of the RL fractional derivative. Moreover, Kucche and
Mali [21] introduced the (k,ψ)-Hilfer fractional derivative operator ((k,ψ)-Hilfer-FDO)
and some crucial outcomes for obtaining the corresponding to the nonlinear differen-
tial equation under the (k,ψ)-Hilfer-FDO. Aljaaidi et al. [22] introduced the generalized
(k,ψ)-proportional fractional operator. For more relevant results, we suggest the reader
to recent application works [23–38] and the references cited therein.

The literature review through the research mentioned above [9, 21, 22, 39] inspired us
to fulfill the gap of the study in this area because this has not yet been taken into ac-
count by the integrated concepts between the ψ-Hilfer-PFDO and (k,ψ)-Hilfer-FDO.
Here, we propose a new concept of the proportional fractional derivative operator, the
so-called (k,ψ)-Hilfer proportional fractional derivative operator ((k,ψ)-Hilfer-PFDO),
a more generalized version covering a broader range of fractional operators. The (k,ψ)-
Hilfer-PFDO has the advantage of allowing you to change the parameters k, ρ , β and the
function ψ , which covers the conventional fractional differentiation operators. This al-
lows us to unify and acquire the attributes of the fractional operators discussed previously.
Some properties are proved. Using the ψ-Laplace transform of the proportional deriva-
tives in RL and Caputo types, we can give the following property that links the RL and
Caputo general proportional fractional derivatives. We explain how fractional integral op-
erators affect differential operators and vice versa. Next, we present the relation between
the fractional proportional derivatives in sense of RL and Caputo types applying the ψ-
Laplace transform. Furthermore, we study the existence and uniqueness of the solutions
for the higher-order initial value problems under (k,ψ)-Hilfer-PFDO using Picard’s itera-
tive technique as follows:

⎧
⎨

⎩

H
a,kD

α,β ,ρ;ψu(t) = λ(kρ)
α
k u(t) + f (t, u(t)), t ∈ [a, T], n – 1 < α ≤ n,

lim
t→a+ a,kI (1–β)(nk–α)–ik,ρ;ψu(t) = θi, θi ∈R, i = 0, 1, . . . , n – 1, λ < 0,

(1)

where H
a,kD

α,β ,ρ;ψ is the (k,ψ)-Hilfer-PFDO of order α and type β , 0 ≤ β ≤ 1, 0 < ρ ≤ 1, k >
0, kD

i,ρ;ψ is the (k,ψ)-proportional derivative of order i, i = 0, 1, . . . , n–1, n ∈N, a,kInk–η,ρ;ψ

is the (k,ψ)-proportional fractional integral of order nk – η > 0, where η = α + β(nk – α),
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and f ∈ C([a, T] × R,R). The Hilfer-type fractional model offers an effective mathemati-
cal framework for describing and comprehending complicated systems and processes in
natural problems. It was widely used to apply numerous theories and cover a wide range
of scientific and technical areas such as anomalous diffusion, viscoelasticity, dynamical
systems, control theory, signal processing, biomedical engineering, geophysics, environ-
mental science, economics, renewable energy, and so on. Especially, no prior discussion of
the existence and uniqueness of solutions to the proposed problem (1) has used this new
fractional formulation.

The remaining section of this work is distributed as follows. Sect. 2 provides some es-
sential definitions, lemmas, and theorems that are applied throughout this work. In Sect.
3, we develop new generalized concepts of (k,ψ)-Hilfer-PFDOs and their properties. In
Sect. 4, we define the ψ-Laplace transform for the proposed operators and provide exam-
ples. In addition, the existence and uniqueness result of the proposed problem is studied.
In Sect. 5, two given examples are shown to illustrate the applicability of our results, while
the conclusion of the paper is presented in Sect. 6.

2 Preliminaries
In this section, we give some definitions and lemmas for the ψ-Hilfer proportional frac-
tional operator and the (k,ψ)-Hilfer fractional operator and their properties.

Assume that J := [a, T], 0 ≤ a < T < ∞ is a finite interval, and ψ : J → R is a strictly
increasing continuous function with ψ ′(t) �= 0. The space of a continuous function x on J
is defined by C(J ,R) equipped with the norm ‖x‖ := supt∈J {|x(t)|}. The space ACn(J ,R)
of n-times absolutely continuous differentiable functions x on J is defined by

ACn(J ,R) :=
{

x : J →R|x(n–1) ∈AC(J ,R)
}

,

and the weighted spaces X := Cσ ,ψ (J ,R) and X
n := Cn

α,ψ (J ,R) of x on J are provided by

Cα,ψ (J ,R) :=
{

x : (a, b] → R|(ψ(t) – ψ(a))αx(t) ∈ C(J ,R)
}

,

Cn
α,ψ (J ,R) :=

{
x : J →R|x(t) ∈ C(n–1)(J ,R), x(n)(t) ∈ Cα,ψ (J ,R)

}
,

equipped with the norms ‖x‖X := supt∈J |(ψ(t) – ψ(a))αx(t)| and ‖x‖Xn :=
∑n–1

i=0 ‖x(i)‖ +
‖x(n)‖X. Note that C0

α,ψ (J ,R) = Cα,ψ (J ,R).

2.1 ψ -Hilfer proportional fractional operators (ψ -Hilfer-PFOs) with properties
For convenience and ease of computation in this work, we define a symbol as follows:

ρ

k �
α
k –1
ψ (t, s) := e

ρ–1
kρ

(ψ(t)–ψ(s))(
ψ(t) – ψ(s)

) α
k –1, a ≤ s < t ≤ T . (2)

Definition 1 (ψ-proportional derivative operators (ψ-PDOs) [40, 41]) Assume that σi ∈
C([0, 1] ×R, [0,∞)), i = 1, 2, ρ ∈ [0, 1], for t ∈R such that

lim
ρ→0+

σ1(ρ, t) = 1, lim
ρ→0+

σ0(ρ, t) = 0, lim
ρ→1–

σ1(ρ, t) = 0, lim
ρ→1–

σ0(ρ, t) = 1,
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and σ1(ρ, t) �= 0, ρ ∈ [0, 1), and σ0(ρ, t) �= 0, ρ ∈ (0, 1]. Then the ψ-PDO of order ρ is given
by

D
ρ;ψ f (t) = σ1(ρ, t)f (t) + σ0(ρ, t)

f ′(t)
ψ ′(t)

. (3)

Especially, by taking σ0(ρ, t) = ρ and σ1(ρ, t) = 1 – ρ , the operator (3) can be rewritten
(called the left-sided ψ-PDO of order ρ) as

D
ρ;ψ f (t) = (1 – ρ)f (t) + ρ

f ′(t)
ψ ′(t)

, (4)

which corresponds to the left-sided ψ-proportional integral operator (ψ-PIO) [40],

aI 1,ρ;ψ f (t) =
1
ρ

∫ t

a

ρ
1�

0
ψ (t, s)ψ ′(s)f (s)ds, where a I 0,ρ;ψ f (t) = f (t). (5)

By applying mathematical induction and changing the order of the integral for (5), we
obtain the following left-sided ψ-PIO of order n equivalent to the left-sided ψ-PDO,
Dn,ρ;ψ f (t), defined by [40]

a I n,ρ;ψ f (t) =
1
ρ

∫ t

a

ρ
1�

0
ψ (t, s1)ψ ′(s1)ds1

1
ρ

∫ s1

a

ρ
1�

0
ψ (s1, s2)ψ ′(s2)ds2 · · ·

× 1
ρ

∫ sn–1

a

ρ
1�

0
ψ (sn–1, sn)ψ ′(sn)f (sn)dsn

=
1

ρn�(n)

∫ t

a

ρ
1�

n–1
ψ (t, s)ψ ′(s)f (s)ds, (6)

where Dn,ρ;ψ = D
ρ;ψ

D
ρ;ψ · · ·Dρ;ψ

︸ ︷︷ ︸
n–times

and �(n) =
∫∞

0 sn–1e–sds, n ∈ N. In addition, the right-

sided ψ-PDO of order ρ is defined by

D
ρ;ψ
	 f (t) = (1 – ρ)f (t) – ρ

f ′(t)
ψ ′(t)

, D
n,ρ;ψ
	 = D

ρ;ψ
	 D

ρ;ψ
	 · · ·Dρ;ψ

	
︸ ︷︷ ︸

n–times

. (7)

Now, by applying (6), the definitions of the left-sided and right-sided ψ-proportional
fractional integral and derivative operators (ψ-PFIO/ψ-PFDO) are introduced as follows.

Definition 2 (ψ-RL-proportional fractional integral operator (ψ-RL-PFIO) [40, 41]) As-
sume f ∈ L1(J ,R), α ∈ C, Re(α) > 0, ρ ∈ (0, 1], ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0, and n ∈ N

such that n = 
α� + 1. Then the left-sided and right-sided ψ-PFIO of order α of f are given
by, respectively,

a I α,ρ;ψ f (t) =
1

ρα�(α)

∫ t

a

ρ
1�

α–1
ψ (t, s)ψ ′(s)f (s)ds,

Iα,ρ;ψ
b f (t) =

1
ρα�(α)

∫ b

t

ρ
1�

α–1
ψ (s, t)ψ ′(s)f (s)ds.
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Lemma 1 ([40–42]) Assume α ∈ C, β ∈ C, Re(α) > 0, Re(β) > 0, and ρ ∈ (0, 1]. Then, if f
is a continuous function, we obtain

a I α,ρ;ψ
(

a I β ,ρ;ψ f (t)
)

= a I β ,ρ;ψ
(

a I α,ρ;ψ f (t)
)

= a I α+β ,ρ;ψ f (t).

Definition 3 (ψ-RL proportional fractional derivative operator (ψ-RL-PFDO) [40, 41])
Assume α ∈C, Re(α) > 0, ρ ∈ (0, 1], f ∈ C(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0, and n ∈N

such that n = 
α� + 1. Then the left-sided and right-sided ψ-RL-PFDO of order α of f are
defined by, respectively,

RL
a D

α,ρ;ψ f (t) = D
n,ρ;ψ
(

aI n–α,ρ;ψ f (t)
)

=
Dn,ρ;ψ

ρn–α�(n – α)

∫ t

a

ρ
1�

n–α–1
ψ (t, s)ψ ′(t)f (s)ds,

RL
D

α,ρ;ψ
b f (t) = D

n,ρ;ψ
	
(
In–α,ρ;ψ

b f (t)
)

=
D

n,ρ;ψ
	

ρn–α�(n – α)

∫ b

t

ρ
1�

n–α–1
ψ (s, t)ψ ′(s)f (s)ds.

Definition 4 (ψ-Caputo proportional fractional derivative operator (ψ-Caputo-PFDO)
[40, 41]) Assume α ∈C, Re(α) > 0, ρ ∈ (0, 1], f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0,
and n ∈ N so that n = 
α� + 1. Then the left-sided and right-sided ψ-Caputo-PFDO of
order α of f are defined by, respectively,

C
a D

α,ρ;ψ f (t) = aIn–α,ρ;ψ(
D

n,ρ;ψ f (t)
)

=
1

ρn–α�(n – α)

∫ t

a

ρ
1�

n–α–1
ψ (t, s)ψ ′(s)

(
D

n,ρ;ψ f (s)
)
ds,

C
D

α,ρ;ψ
b f (t) = In–α,ρ;ψ

b
(
D

n,ρ;ψ
	 f (t)

)

=
1

ρn–α�(n – α)

∫ b

t

ρ
1�

n–α–1
ψ (s, t)ψ ′(s)

(
D

n,ρ;ψ
	 f (s)

)
ds.

Definition 5 (ψ-Hilfer proportional fractional derivative operator (ψ-Hilfer-PFDO) [9])
Assume α ∈C, Re(α) > 0, ρ ∈ (0, 1], β ∈ [0, 1], f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0
so that n = 
α� + 1, n = {1, 2, . . .}. Then the left-sided and right-sided ψ-Hilfer-PFDO of
order α and types β of f are defined by, respectively,

H
a D

α,β ,ρ;ψ f (t) = aI β(n–α),ρ;ψ
(
D

n,ρ;ψ(
aI (1–β)(n–α),ρ;ψ f (t)

))
, (8)

H
D

α,β ,ρ;ψ
b f (t) = Iβ(n–α),ρ;ψ

b

(
D

n,ρ;ψ
	
(
I (1–β)(n–α),ρ;ψ

b f (t)
))

. (9)

Lemma 2 ([9, 40–42]) If α, μ ∈C with Re(α) ≥ 0 and Re(μ) > 0, then for any ρ ∈ (0, 1], we
obtain the following relations:

(i) aI α,ρ;ψ
[

ρ
1�

μ–1
ψ (t, a)

]
= �(μ)

ρα�(μ+α)
ρ
1�

μ+α–1
ψ (t, a),Iα,ρ;ψ

b

[
ρ
1�

μ–1
ψ (b, t)

]
= �(μ)

ρα�(μ+α) ×
ρ
1�

μ+α–1
ψ (b, t);

(ii) RL
a D α,ρ;ψ

[
ρ
1�

μ–1
ψ (t, a)

]
= �(μ)

ρα�(μ–α)
ρ
1�

μ–α–1
ψ (t, a),RLD

α,ρ;ψ
b

[
ρ
1�

μ–1
ψ (b, t)

]
= �(μ)

ρα�(μ–α) ×
ρ
1�

μ–α–1
ψ (b, t);

(iii) H
a D

α,β ,ρ;ψ
[

ρ
1�

μ–1
ψ (t, a)

]
= �(μ)

ρα�(μ–α)
ρ
1�

μ–α–1
ψ (t, a),HDα,β ,ρ;ψ

b

[
ρ
1�

μ–1
ψ (b, t)

]
= �(μ)

ρα�(μ–α) ×
ρ
1�

μ–α–1
ψ (b, t).
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2.2 (k,ψ )-Hilfer fractional operators with properties
Definition 6 ((k,ψ)-RL fractional integral operator ((k,ψ)-RL-FIO) [42]) Assume f ∈
L1(J ,R), α ∈ C, Re(α) > 0, and k > 0. Then the left-sided and right-sided (k,ψ)-RL-FIO
of order α of f are defined by, respectively,

a,k I α;ψ f (t) =
1

k�k(α)

∫ t

a

1
k�

α
k –1
ψ (t, s)ψ ′(s)f (s)ds, (10)

Iα,ρ;ψ
b,k f (t) =

1
k�k(α)

∫ b

t

1
k�

α
k –1
ψ (s, t)ψ ′(s)f (s)ds, (11)

where

�k(z) =
∫ ∞

0
sz–1e– sk

k ds, z ∈C, Re(z) > 0. (12)

In addition, some well-known important properties of (12) are as follows:

�k(z + k) = z�k(z), �k(k) = 1, �k(z) = k
z
k –1�
( z

k

)
, �(z) = lim

k→1
�k(z). (13)

Furthermore, Bk(·, ·) is the k-beta function [17], which is given by

Bk(z, w) =
1
k

∫ 1

0
s

z
k –1(1 – s)

w
k –1ds, z, w ∈ C, Re(z), Re(w) > 0. (14)

The following are some important relations between �k(z) and Bk(z, w):

Bk(z, w) =
�k(z)�k(w)
�k(z + w)

and Bk(z, w) =
1
k
B

( z
k

,
w
k

)
. (15)

Definition 7 ((k,ψ)-RL fractional derivative operator ((k,ψ)-RL-FDO) [21]) Assume
α ∈ C, Re(α) > 0, k > 0, f ∈ C(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0, and n ∈ N such that
n = 
α/k� + 1. Then the left-sided and right-sided (k,ψ)-RL-FDO of f of order α are de-
fined by, respectively,

RL
a,kD

α;ψ f (t) = kD
n;ψ(

a,kInk–α;ψ f (t)
)

= kD
n;ψ

k�k(nk – α)

∫ t

a

1
k�

nk–α
k –1

ψ (t, s)ψ ′(s)f (s)ds,

RL
D

α;ψ
b,k f (t) = kD

n;ψ
	
(
Ink–α;ψ

b,k f (t)
)

= kD
n;ψ
	

k�k(nk – α)

∫ b

t

1
k�

nk–α
k –1

ψ (s, t)ψ ′(s)f (s)ds,

where kD
n;ψ = kD

ψ
kD

ψ · · ·kDψ

︸ ︷︷ ︸
n time

=
(

k
ψ(t)

d
dt

)n
and kD

n;ψ
	 = kD

ψ
	kD

ψ
	· · ·kDψ

	
︸ ︷︷ ︸

n time

=
(

– k
ψ(t)

d
dt

)n
,

and the left-sided and right-sided ψ-derivative operator of order α of f are given by, re-
spectively,

kD
ψ f (t) = k

f ′(t)
ψ ′(t)

and kD
ψ
	f (t) = –k

f ′(t)
ψ ′(t)

. (16)

Definition 8 ((k,ψ)-Caputo fractional derivative operator ((k,ψ)-Caputo-FDO) [21])
Assume α ∈ C, Re(α) > 0, k > 0, f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0, n ∈ N such
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that n = 
α/k� + 1. Then the left-sided and right-sided (k,ψ)-Caputo-FDO of order α of f
are defined by, respectively,

C
a,kD

α;ψ f (t) = a,kInk–α;ψ(
kD

n;ψ f (t)
)

=
1

k�k(nk – α)

∫ t

a

1
k�

nk–α
k –1

ψ (t, s)ψ ′(s)
(

kD
n;ψ f (s)
)
ds,

C
D

α;ψ
b,k f (t) = Ink–α;ψ

b,k

(

kD
n;ψ
	 f (t)
)

=
1

k�k(nk – α)

∫ b

t

1
k�

nk–α
k –1

ψ (s, t)ψ ′(s)
(

kD
n;ψ
	 f (s)
)
ds.

Definition 9 ((k,ψ)-Hilfer fractional derivative operator ((k,ψ)-Hilfer-FDO) [21]) As-
sume α ∈ C, Re(α) > 0, k > 0, β ∈ [0, 1], f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0 so
that n = 
α/k� + 1, n ∈ N. Then the left-sided and right-sided (k,ψ)-Hilfer-FDO of order
α and types β of f are defined by, respectively,

H
a,kD

α,β ;ψ f (t) = a,kI β(nk–α);ψ
(

kD
n;ψ(

a,kI (1–β)(nk–α);ψ f (t)
))

, (17)

H
D

α,β ;ψ
b,k f (t) = Iβ(nk–α);ψ

b,k

(

kD
n;ψ
	
(
I (1–β)(nk–α);ψ

b,k f (t)
))

. (18)

Lemma 3 ([21, 42]) If k > 0, β ∈ [0, 1], α, μ ∈ C so that Re(α) ≥ 0 and Re(μ) > 0, then we
obtain the following relations:

(i) a,kI α;ψ
[

1
k�

μ
k –1
ψ (t, a)

]
= �k (μ)

�k (μ+α)
1
k�

μ+α
k –1

ψ (t, a), Iα;ψ
b,k

[
1
k�

μ
k –1
ψ (b, t)

]
= �k (μ)

�k (μ+α) ×
1
k�

μ+α
k –1

ψ (b, t);

(ii) RL
a,kD

α;ψ
[

1
k�

μ
k –1
ψ (t, a)

]
= �k (μ)

�k (μ–α)
1
k�

μ–α
k –1

ψ (t, a),RLD
α;ψ
b,k

[
1
k�

μ
k –1
ψ (b, t)

]
= �k (μ)

�k (μ–α) ×
1
k�

μ–α
k –1

ψ (b, t);

(iii) H
a,kD

α,β ;ψ
[

1
k�

μ
k –1
ψ (t, a)

]
= �k (μ)

�k (μ–α)
1
k�

μ–α
k –1

ψ (t, a),HDα,β ;ψ
b,k

[
1
k�

μ
k –1
ψ (b, t)

]
= �k (μ)

�k (μ–α) ×
1
k�

μ–α
k –1

ψ (b, t).

3 Main results
In this section, we define the generalized (k,ψ)-proportional fractional integral and
derivative operators and their properties.

3.1 (k,ψ )-RL proportional fractional operators and properties
Under all assumptions in Definition 1, we give the definition of (k,ψ)-proportional deriva-
tive operators. By taking σ0(ρ, t) = kρ and σ1(ρ, t) = 1 – ρ into (3), the left-sided (k,ψ)-
proportional derivative operator ((k,ψ)-PDO) can be defined as

kD
ρ;ψ f (t) = (1 – ρ)f (t) + kρ

f ′(t)
ψ ′(t)

, (19)

which corresponds to the left-sided (k,ψ)-proportional integral operator ((k,ψ)-PIO),

a,k I 1,ρ;ψ f (t) =
1
ρk

∫ t

a

ρ

k �
0
ψ

(t, s)ψ ′(s)f (s)ds, where a,k I 0,ρ;ψ f (t) = f (t). (20)

By applying mathematical induction, the left-sided (k,ψ)-RL-PIO of order n of f is de-
fined by

a,k I n,ρ;ψ f (t) =
1
ρk

∫ t

a

ρ

k �
0
ψ

(t, s1)ψ ′(s1)ds1
1
ρk

∫ s1

a

ρ

k �
0
ψ

(s1, s2)ψ ′(s2)ds2 · · ·
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× 1
ρk

∫ sn–1

a

ρ
1�

0
ψ (sn–1, sn)ψ ′(sn)f (sn)dsn

=
1

ρnk�k(nk)

∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)f (s)ds, n ∈N, k > 0, (21)

where kD
n,ρ;ψ = kD

ρ;ψ
kD

ρ;ψ · · · kD
ρ;ψ

︸ ︷︷ ︸
n–times

.

On the other hand, the right-sided (k,ψ)-PDO can be defined as

kD
ρ;ψ
	 f (t) = (1 – ρ)f (t) – kρ

f ′(t)
ψ ′(t)

, (22)

which corresponds to the right-sided (k,ψ)-PIO

I1,ρ;ψ
b,k f (t) =

1
ρk

∫ b

t

ρ

k �
0
ψ

(s, t)ψ ′(s)f (s)ds, where I0,ρ;ψ
b,k f (t) = f (t). (23)

By applying mathematical induction, the right-sided (k,ψ)-RL-PIO of order n of f is de-
fined by

In,ρ;ψ
b,k f (t) =

1
ρk

∫ b

t

ρ

k �
0
ψ

(s1, t)ψ ′(s1)ds1
1
ρk

∫ b

s1

ρ

k �
0
ψ

(s2, s1)ψ ′(s2)ds2 · · ·

× 1
ρk

∫ b

sn–1

ρ
1�

0
ψ (sn, sn–1)ψ ′(sn)f (sn)dsn

=
1

ρnk�k(nk)

∫ b

t

ρ

k �
n–1
ψ

(s, t)ψ ′(s)f (s)ds, n ∈N, k > 0, (24)

where kD
n,ρ;ψ
	 = kD

ρ;ψ
	 kD

ρ;ψ
	 · · · kD

ρ;ψ
	

︸ ︷︷ ︸
n–times

.

Lemma 4 Let f be an integrable on J , k > 0, ρ ∈ (0, 1], n ∈N. Then we have

kD
n,ρ;ψ
(

a,kIn,ρ;ψ f (t)
)

= f (t) and kD
n,ρ;ψ
	
(
In,ρ;ψ

b,k f (t)
)

= f (t).

Proof By using (21) and (19), we have

kD
n,ρ;ψ
(

a,kIn,ρ;ψ f (t)
)

= kD
n,ρ;ψ

[
1

kρn�k(nk)

∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)f (s)ds

]

= kD
n–1,ρ;ψ

[

kD
ρ;ψ

(
1

kρn�k(nk)

∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)f (s)ds

)]

=
1

kρn�k(nk) kD
n–1,ρ;ψ

[

(1 – ρ)
∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)f (s)ds

+
kρ

ψ ′(t)
· d

dt

(∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)f (s)ds

)]

=
1

kρn–1�k(nk – k) kD
n–1,ρ;ψ

[∫ t

a

ρ

k �
n–2
ψ

(t, s)ψ ′(s)f (s)ds

]

.
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Repeating the process, it follows that

kD
n,ρ;ψ
(

a,kIn,ρ;ψ f (t)
)

=
1

kρn–(n–1)�k(nk – (n – 1)k) kD
n–(n–1),ρ;ψ

[∫ t

a

ρ

k �
n–n
ψ

(t, s)ψ ′(s)f (s)ds

]

=
1
ρk

[

kD
ρ;ψ

(∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

)]

=
1
ρk

[

(1 – ρ)
∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds +

kρ

ψ ′(t)
d
dt

(∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

)]

= f (t).

The proof is done. �

Now, by applying (21), the definitions of the left-sided and right-sided (k,ψ)-
proportional fractional integral and derivative operators ((k,ψ)-PFIO/(k,ψ)-PFDO) are
introduced as follows.

Definition 10 ((k,ψ)-RL proportional fractional integral operator ((k,ψ)-RL-PFIO))
Let f ∈ L1(J ,R), α ∈ C, Re(α) > 0, k > 0, ρ ∈ (0, 1]. Then the left-sided and right-sided
(k,ψ)-RL-PFIO of order α of f are defined by, respectively,

a,k I α,ρ;ψ f (t) =
1

ρ
α
k k�k(α)

∫ t

a

ρ

k �
α
k –1
ψ (t, s)ψ ′(s)f (s)ds, (25)

Iα,ρ;ψ
b,k f (t) =

1
ρ

α
k k�k(α)

∫ b

t

ρ

k �
α
k –1
ψ (s, t)ψ ′(s)f (s)ds, (26)

where �k(α) is given by (12).

Definition 11 ((k,ψ)-RL proportional fractional derivative operator ((k,ψ)-RL-PFDO))
Let α ∈ C, Re(α) > 0, k > 0, ρ ∈ (0, 1], f ∈ C(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0, and
n ∈N such that n = 
Re(α)/k� + 1. Then the left-sided and right-sided (k,ψ)-RL-PFDO of
f of order α are defined by, respectively,

RL
a,kD

α,ρ;ψ f (t) = kD
n,ρ;ψ(

a,kInk–α,ρ;ψ f (t)
)

= kD
n,ρ;ψ

ρ
nk–α

k k�k(nk – α)

∫ t

a

ρ

k �
nk–α

k –1
ψ (t, s)ψ ′(τ )f (s)ds,

RL
D

α,ρ;ψ
b,k f (t) = kD

n,ρ;ψ
	
(
Ink–α,ρ;ψ

b,k f (t)
)

= kD
n,ρ;ψ
	

ρ
nk–α

k k�k(nk – α)

∫ b

t

ρ

k �
nk–α

k –1
ψ (s, t)ψ ′(s)f (s)ds.

Next, the essential properties of (k,ψ)-RL-PFIO and (k,ψ)-RL-PFDO will be investi-
gated.
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Lemma 5 Let α, ω ∈C, Re(α) ≥ 0, Re(ω) > 0, k > 0, ρ ∈ (0, 1] such that Re(ω)/k > –1. Then
we obtain the following essential relations:

(i) a,kIα,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= �k (ω)

ρ
α
k �k (ω+α)

ρ

k �
ω+α

k –1
ψ (t, a), Re(α) > 0;

(ii) Iα,ρ;ψ
b,k

[
ρ

k �
ω
k –1
ψ (b, t)

]
= �k (ω)

ρ
α
k �k (ω+α)

ρ

k �
ω+α

k –1
ψ (b, t), Re(α) > 0;

(iii) kD
n,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= ρn�k (ω)

�k (ω–nk)
ρ

k �
ω–nk

k –1
ψ (t, a), Re(α) > 0;

(iv) kD
n,ρ;ψ
	
[

ρ

k �
ω
k –1
ψ (b, t)

]
= ρn�k (ω)

�k (ω–nk)
ρ

k �
ω–nk

k –1
ψ (b, t), Re(α) > 0;

(v) RL
a,kD

α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= ρ

α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (t, a), Re(α) ≥ 0;

(vi) RLD
α,ρ;ψ
b,k

[
ρ

k �
ω
k –1
ψ (b, t)

]
= ρ

α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (b, t), Re(α) ≥ 0.

In particular, for m = 0, 1, . . . , n – 1, we have

kD
n,ρ;ψ
[

ρ

k �
m
ψ

(t, a)
]

= 0 and kD
n,ρ;ψ
	
[

ρ

k �
m
ψ

(b, t)
]

= 0.

Proof The proofs for properties (i) and (ii) are fairly similar. We shall prove (i), whereas
the proof of (ii) is equivalent. Property (i) will be directly proven. By applying (2) and
Definition 10, we have

a,kIα,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]

=
1

kρ
α
k �k(α)

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))(
ψ(t) – ψ(s)

) α
k –1e

ρ–1
kρ

(ψ(s)–ψ(a))(
ψ(s) – ψ(a)

) ω
k –1

ψ ′(s)ds

=
e

ρ–1
kρ

(ψ(t)–ψ(a))

kρ
α
k �k(α)

∫ t

a

(
ψ(t) – ψ(s)

) α
k –1(

ψ(s) – ψ(a)
) ω

k –1
ψ ′(s)ds. (27)

Changing the variable (ψ(t) – ψ(a))z = ψ(s) – ψ(a) with (12)–(15), equation (27) can be
rewritten as

a,kIα,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
=

e
ρ–1
kρ

(ψ(t)–ψ(a))

kρ
α
k �k(α)

∫ t

a
(ψ(t) – ψ(a))

α
k –1

×
(

1 –
ψ(s) – ψ(a)
ψ(t) – ψ(a)

) α
k –1(

ψ(s) – ψ(a)
) ω

k –1
ψ ′(s)ds.

=
ρ

k �
α+ω

k –1
ψ (t, a)

ρ
α
k �k(α)

(
1
k

∫ 1

0
(1 – z)

α
k –1z

ω
k –1dz

)

=
�k(ω)

ρ
α
k �k(α + ω)

ρ

k �
α+ω

k –1
ψ (t, a).

The proof of property (ii) is similarly processed. Next, we will prove property (iii), while
(iv) is analogous. By applying (2) and Definition 11, it follows that

kD
n,ρ;ψ
[

ρ

k �
ω
k –1

ψ (t, a)
]

= kD
n–1,ρ;ψ
(

kD
ρ;ψ [ρ

k �
ω
k –1

ψ (t, a)
])

= kD
n–1,ρ;ψ
[

(1 – ρ)
(

e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

ω
k –1
)

+
kρ

ψ ′(t)
· d

dt

(
e

ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

ω
k –1
)]



Sudsutad et al. Boundary Value Problems         (2024) 2024:83 Page 11 of 32

= ρ(ω – k)kD
n–1,ρ;ψ
[

e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

ω–k
k –1
]

= ρ(ω – k)
(

kD
n–1,ρ;ψ
[

ρ

k �
ω–k

k –1
ψ (t, a)

])
.

Repeating the above process, it follows that

kD
n,ρ;ψ
[

ρ

k �
ω
k –1

ψ (t, a)
]

= ρn (ω – k) (ω – 2k) · · · (ω – (n – 2)k)
ρ

k �
ω–nk

k –1
ψ (t, a)

=
ρn�k(ω)

�k(ω – nk)
ρ

k �
ω–nk

k –1
ψ (t, a).

Finally, we will prove property (v). By using Definition 11, we have

RL
a,kD

α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= kD

n,ρ;ψ
(

a,k I nk–α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

])
. (28)

By using properties (i) and (iii), equation (28) can be written as

RL
a,kD

α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
=

�k(ω)

ρ
nk–α

k �k(ω + nk – α)

(

kD
n,ρ;ψ
[

ρ

k �
ω+nk–α

k –1
ψ (t, a)

])

=
ρ

α
k �k(ω)

�k(ω – α)
ρ

k �
ω–α

k –1
ψ (t, a).

The proof of relation (vi) is the same. �

Lemma 6 Let α ∈ C, Re(α) > 0, k > 0, ρ ∈ (0, 1], and v = ρk
1+ρ(k–1)

. Then we have

(i) a,k I α,ρ;ψ f (t) =
(

v
kρ

) α
k

a I
α
k ,v;ψ f (t) and Iα,ρ;ψ

b,k f (t) =
(

v
kρ

) α
k I

α
k ,v;ψ

b f (t);

(ii) kD
n,ρ;ψ f (t) = [1 +ρ(k – 1)]n

(
Dn,v;ψ f (t)

)
andkD

n,ρ;ψ
	 f (t) = [1 +ρ(k – 1)]n

(
D

n,v;ψ
	 f (t)

)
;

(iii) RL
a,kD

α,ρ;ψ f (t) =
(

v
ρk

)– α
k
(

RL
a D

α
k ,v;ψ f (t)

)
andRLD

α,ρ;ψ
b,k f (t) =

(
v

ρk

)– α
k
(

RLD
α
k ,v;ψ
b f (t)

)
.

Proof We will prove relation (i) by directly proving only the left-sided case, while the right-
sided case is similar. Using (13) and Definition 10 yields

a,k I α,ρ;ψ f (t) =
1

kρ
α
k �k(α)

∫ t

a

ρ

k �
α
k –1
ψ (t, s)ψ ′(s)f (s)ds

=
1

k
α
k ρ

α
k �
(

α
k
)

∫ t

a

ρ

k �
α
k –1
ψ (t, s)ψ ′(s)f (s)ds

=
(

v
kρ

) α
k (

a I
α
k ,v;ψ f (t)

)
.

Next, we will show relation (ii). By (16) with v = ρk
1+ρ(k–1)

, one has

D
v;ψ f (t) = (1 – v)f (t) + v

f ′(t)
ψ ′(t)

=
1

1 + ρ (k – 1)
kD

ρ;ψ f (t),

which implies that

kD
ρ;ψ f (t) = [1 + ρ(k – 1)] Dv;ψ f (t).
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Repeating the process, it follows that

kD
n,ρ;ψ f (t) =

(

[1 + ρ (k – 1)]Dv;ψ · · · [1 + ρ (k – 1)]Dv;ψ
︸ ︷︷ ︸

n–times

f
)

(t)

= [1 + ρ (k – 1)]n
D

n,v;ψ f (t).

The proof of the right-sided case of property (ii) is similar. Finally, we will show relation
(iii). From properties (13), relation (ii), and Definition 11, it becomes

RL
a,kD

α,ρ;ψ f (t) = kD
n,ρ;ψ

kρ
nk–α

k �k(nk – α)

∫ t

a

ρ

k �
nk–α

k –1
ψ (t, s)ψ ′(s)f (s)ds

= kD
n,ρ;ψ

kρ
nk–α

k k
nk–α

k –1�
( nk–α

k
)

∫ t

a

ρ

k �
n– α

k –1
ψ (t, s)ψ ′(s)f (s)ds

=
[1 + ρ(k – 1)]n Dn,v;ψ

ρ
nk–α

k k
nk–α

k �
(
n – α

k
)

∫ t

a
e

v–1
v (ψ(t)–ψ(s))(ψ(t) – ψ(s))n– α

k –1ψ ′(s)f (s)ds

=
(

v
ρk

)n– α
k

[1 + ρ(k – 1)]n
D

n,v;ψ
(

a I n– α
k ,v;ψ f (t)

)

=
(

v
ρk

)– α
k

RL
a D

α
k ,v;ψ f (t).

The proof of the right-sided case of relation (iii) is the same process. �

The semi-group properties of the (k,ψ)-PFIO are shown below.

Lemma 7 Let αi ∈ C, Re(αi) > 0, i = 1, 2, k > 0, and ρ ∈ (0, 1]. Then we have
(i) a,k I α2,ρ;ψ

(

a,k I α1,ρ;ψ f (t)
)

= a,k I α1+α2,ρ;ψ f (t) = a,k I α1,ρ;ψ
(

a,k I α2,ρ;ψ f (t)
)

.

(ii) Iα2,ρ;ψ
b,k

(
Iα1,ρ;ψ

b,k f (t)
)

= Iα1+α2,ρ;ψ
b,k f (t) = Iα1,ρ;ψ

b,k

(
Iα2,ρ;ψ

b,k f (t)
)

.

Proof By directly presenting, we will show only relation (i), but (ii) is a similar process.
From Definition 10 and (13), we get

a,k I α2,ρ;ψ
(

a,k I α1,ρ;ψ f (t)
)

=
1

kρ
α2
k �k(α2)

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(τ ))
(ψ(t) – ψ(τ ))

α2
k –1ψ ′(τ )

×
(

1

kρ
α1
k �k(α1)

∫ τ

a
e

ρ–1
kρ

(ψ(τ )–ψ(s))
(ψ(τ ) – ψ(s))

α1
k –1ψ ′(s)f (s)ds

)

dτ

=
1

k2ρ
α1+α2

k �k(α1)�k(α2)

∫ t

a

∫ τ

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
(ψ(t) – ψ(τ ))

α2
k –1

× (ψ(τ ) – ψ(s))
α1
k –1 ψ ′(τ )ψ ′(s)f (s)dsdτ

=
1

k2ρ
α1+α2

k �k(α1)�k(α2)

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)

×
[∫ t

s
(ψ(t) – ψ(τ ))

α2
k –1(ψ(τ ) – ψ(s))

α1
k –1ψ ′(τ )dτ

]

f (s)ds.
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Setting (ψ(t) – ψ(s))z = ψ(τ ) – ψ(s), it follows that

a,k I α2,ρ;ψ
(

a,k I α1,ρ;ψ f (t)
)

=
1

k2ρ
α1+α2

k �k(α1)�k(α2)

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
(ψ(t) – ψ(s))

α2
k + α1

k –1ψ ′(s)

×
[∫ 1

0
z

α1
k –1(1 – z)

α2
k –1dz

]

f (s)ds

=
1

kρ
α1+α2

k �k(α1 + α2)

∫ t

a+

ρ

k �
α1+α2

k –1
ψ (t, s)ψ ′(s)f (s)ds

= a,k I α1+α2,ρ;ψ f (t).

The proof is done. �

Lemma 8 Assume that f is an integrable on J , k > 0, η ∈ C, Re(η) > 0, ρ ∈ (0, 1], and
0 ≤ m < [Re(η)] + 1. Then we obtain the following relations:

kD
m,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= a,kIη–mk,ρ;ψ f (t), (29)

kD
m,ρ;ψ
	
(
Iη,ρ;ψ

b,k f (t)
)

= Iη–mk,ρ;ψ
b,k f (t). (30)

Proof We will prove relation (29) by directly showing, while (30) is similar. By using Defi-
nition 10, (19), and (16), we get

kD
m,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= kD
m,ρ;ψ

[
1

kρ
η
k �k(η)

∫ t

a

ρ

k �
η
k –1
ψ (t, s)ψ ′(s)f (s)ds

]

= kD
m–1,ρ;ψ

[

kD
ρ;ψ

(
1

kρ
η
k �k(η)

∫ t

a

ρ

k �
η
k –1
ψ (t, s)ψ ′(s)f (s)ds

)]

=
1

kρ
η
k �k(η)

kD
m–1,ρ;ψ

[

(1 – ρ)
∫ t

a

ρ

k �
η
k –1
ψ (t, s)ψ ′(s)f (s)ds

+
kρ

ψ ′(t)
· d

dt

(∫ t

a

ρ

k �
η
k –1
ψ (t, s)ψ ′(s)f (s)ds

)]

=
1

kρ
α
k –1�k(η – k)

kD
m–1,ρ;ψ

[∫ t

a

ρ

k �
η–k

k –1
ψ (t, s)ψ ′(s)f (s)ds

]

= kD
m–1,ρ;ψ
(

a,kIη–k,ρ;ψ f (t)
)

.

Repeating m-times the same process, it follows that

kD
m,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= a,kIη–mk,ρ;ψ f (t).

The proof is done. �
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Lemma 9 Let ω, η ∈ C, Re(η) > 0, Re(ω) > 0, k > 0, ρ ∈ (0, 1], m ∈ N, Re(η) > Re(ω), and
n = 
Re(ω)/k� + 1. Then we obtain the following relations:

RL
a,kD

ω,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= a,kIη–ω,ρ;ψ f (t), (31)

RL
D

ω,ρ;ψ
b,k

(
Iη,ρ;ψ

b,k f (t)
)

= Iη–ω,ρ;ψ
b,k f (t). (32)

Proof We will prove relation (31) by directly showing, while (32) is similar. From Defini-
tion 11, Lemma 7, and relation (29), we have

RL
a,kD

ω,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= kD
n,ρ;ψ
(

a,kInk–ω,ρ;ψ
(

a,kIη,ρ;ψ f (t)
))

= kD
n,ρ;ψ
(

a,kInk–ω+η,ρ;ψ f (t)
)

= a,kIη–ω,ρ;ψ f (t).

The proof of property (32) is similar. The proof is done. �

Lemma 10 Let α ∈C, Re(α) > 0, k > 0, and ρ ∈ (0, 1], then

(i) a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)

= f (t) –
n∑

i=1

ρ
k �

α
k –i
ψ (t,a)

ρ
α–ki

k �k (α+k–ki)

[

kD
n–i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a+)
)]

;

(ii) Iα,ρ;ψ
b,k

(
RLD

α,ρ;ψ
b,k f (t)

)
= f (t) –

n∑

i=1

ρ
k �

α
k –i
ψ (b,t)

ρ
α–ki

k �k (α+k–ki)

[

kD
n–i,ρ;ψ
	
(
Ink–α,ρ;ψ

b,k f (b–)
)]

.

Proof From property (29) in Lemma 8 with m = 1, we obtain

kD
ρ;ψ
(

a,kIk,ρ;ψh(t)
)

= h(t). (33)

By using (33) with h(t) replaced by h(t) = a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)

, we have

a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)

= kD
ρ;ψ
(

a,kIk,ρ;ψ
(

a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)))

= kD
ρ;ψ
(

a,kIk+α,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
))

= kD
ρ;ψ

(
1

kρ
k+α

k �k(k + α)

∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s) RL

a,kD
α,ρ;ψ f (s)ds

)

. (34)

By direct computation with integration by parts technique, we get

1

kρ
k+α

k �k(k + α)

∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s)

(
RL
a,kD

α,ρ;ψ f (s)
)

ds

=
1

kρ
k+α

k �k(k + α)

∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s)

[

kD
n,ρ;ψ
(

a,kInk–α,ρ;ψ f (s)
)]

ds

=
1

kρ
k+α

k �k(k + α)

∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s)kD

ρ;ψ
[

kD
n–1,ρ;ψ
(

a,kInk–α,ρ;ψ f (s)
)]

ds
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=
1

kρ
k+α

k �k(k + α)

{∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s) (1 – ρ)

[

kD
n–1,ρ;ψ
(

a,kInk–α,ρ;ψ f (s)
)]

ds

+ kρ

∫ t

a

ρ

k �
α
k
ψ (t, s)

d
ds

[

kD
n–1,ρ;ψ
(

a,kInk–α,ρ;ψ f (s)
)]

ds
}

=
1

kρ
α
k �k(α)

∫ t

a

ρ

k �
α
k –1
ψ (t, s)ψ ′(s)

[

kD
n–1,ρ;ψ
(

a,kInk–α,ρ;ψ f (s)
)]

ds

–
ρ

k �
α
k
ψ (t, a)

ρ
α
k �k(k + α)

[

kD
n–1,ρ;ψ (

a,kInk–α,ρ;ψ f (a+)
) ]

.

Repeating the procedure of integration by parts at nth-step, we obtain

1

kρ
k+α

k �k(k + α)

∫ t

a

ρ

k �
α
k
ψ (t, s)ψ ′(s)

(
RL
a,kD

α,ρ;ψ f (s)
)

ds

=
1

ρ
α
k –n+1k�k(α – nk + k)

∫ t

a

ρ

k �
α
k –n
ψ (t, s)ψ ′(s)

(

a,kInk–α,ρ;ψ f (s)
)

ds

–
n∑

i=1

ρ

k �
α
k –i+1
ψ (t, a)

ρ
α+k–ki

k �k(α + 2k – ki)

[

kD
n–i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a+)
)]

=
1

kρ

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

–
n∑

i=1

ρ

k �
α
k –i+1
ψ (t, a)

ρ
α+k–ki

k �k(α + 2k – ki)

[
kD

n–i,ρ;ψ (
a,kInk–α,ρ;ψ f (a+)

)]
. (35)

Substituting (35) into (34), we have

a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)

= kD
ρ;ψ
[

1
kρ

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

–
n∑

i=1

ρ

k �
α
k –i+1
ψ (t, a)

ρ
α+k–ki

k �k(α + 2k – ki)

[

kD
n–i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a+)
)]]

. (36)

By applying property (iii) in Lemma 5 and Lemma 8, relation (36) can be rewritten as
follows:

a,kIα,ρ;ψ
(

RL
a,kD

α,ρ;ψ f (t)
)

= kD
ρ;ψ
[

1
kρ

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

]

–
n∑

i=1

kD
n–i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a+)
)

ρ
α+k–ki

k �k(α + 2k – ki)
kD

ρ;ψ
[

ρ

k �
α
k –i+1
ψ (t, a)

]

= f (t) –
n∑

i=1

ρ

k �
α
k –i
ψ (t, a)

ρ
α–ki

k �k(α + k – ki)

[

kD
n–i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a+)
)]

.

The proof is done. The process of the proof in relation (ii) is the same. �
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3.2 (k,ψ )-Caputo proportional fractional derivative operator and properties
Definition 12 ((k,ψ)-Caputo proportional fractional derivative operator ((k,ψ)-Caputo-
PFDO)) Let α ∈C, Re(α) > 0, k > 0, ρ ∈ [0, 1], f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R) with ψ ′(t) �= 0,
and n ∈N such that n = 
Re(α)/k� + 1. Then the left-sided and right-sided (k,ψ)-Caputo-
PFDO of order α of f are defined by, respectively,

C
a,kD

α,ρ;ψ f (t) = a,kInk–α,ρ;ψ
(

kD
n,ρ;ψ f (t)

)

=
1

ρ
nk–α

k k�k(nk – α)

∫ t

a

ρ

k �
nk–α

k –1
ψ (t, s)ψ ′(s)

(

kD
n,ρ;ψ f (s)

)
ds,

C
D

α,ρ;ψ
b,k f (t) = Ink–α,ρ;ψ

b,k

(

kD
n,ρ;ψ
	 f (t)

)

=
1

ρ
nk–α

k k�k(nk – α)

∫ b

t

ρ

k �
nk–α

k –1
ψ (s, t)ψ ′(s)

(

kD
n,ρ;ψ
	 f (s)

)
ds.

Lemma 11 Let α, ω ∈ C, Re(α) ≥ 0, Re(ω) > 0, k > 0, ρ ∈ (0, 1] such that Re(ω)/k > –1.
Then

(i) C
a,kD

α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= ρ

α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (t, a);

(ii) CD
α,ρ;ψ
b,k

[
ρ

k �
ω
k –1
ψ (b, t)

]
= ρ

α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (b, t).

In particular, for m = 0, 1, . . . , n – 1, we have

C
a,kD

α,ρ;ψ
[

ρ

k �
m
ψ

(t, a)
]

= 0 and C
D

α,ρ;ψ
b,k

[
ρ

k �
m
ψ

(b, t)
]

= 0.

Proof By applying Definition 12 and properties (i), (iii) in Lemma 5, we have

C
a,kD

α,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

]
= a,kInk–α,ρ;ψ

(

kD
n,ρ;ψ
[

ρ

k �
ω
k –1
ψ (t, a)

])

=
ρn�k(ω)

�k(ω – nk)

(

a,kInk–α,ρ;ψ
[

ρ

k �
ω–nk

k –1
ψ (t, a)

])

=
ρ

α
k �k(ω)

�k(ω – α)
ρ

k �
ω–α

k –1
ψ (t, a).

The proof of property (ii) is similar. �

Lemma 12 Let α ∈C, Re(α) > 0, k > 0, ρ ∈ (0, 1], and v = ρk
1+ρ(k–1)

. Then

(i) C
a,kD

α,ρ;ψ f (t) =
(

v
kρ

)– α
k C

a D
α
k ,v;ψ f (t);

(ii) CD
α,ρ;ψ
b,k f (t) =

(
v

kρ

)– α
k CD

α
k ,v;ψ
b f (t).

Proof By applying property (ii) in Lemma 6 and Definition 12, it follows that

C
a,kD

α,ρ;ψ f (t) = a,kInk–α,ρ;ψ
(

kD
n,ρ;ψ f (t)

)

=
(

v
kρ

) nk–α
k

[1 + ρ(k – 1)]n
[

aIn– α
k ,v;ψ
(
D

n,v;ψ f (t)
)]

=
(

v
kρ

)– α
k

C
D

α
k ,v;ψ
a+ f (t).

The proof of property (ii) is similar. The proof is completed. �
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Lemma 13 Let k, ω, η ∈ C, Re(ω) ≥ 0, Re(η) > 0, ρ ∈ (0, 1], n = 
Re(ω)/k� + 1, and Re(η) >
nk. Then we obtain the following relations:

(i) C
a,kD

ω,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= a,kIη–ω,ρ;ψ f (t);

(ii) CD
ω,ρ;ψ
b,k

(
Iη,ρ;ψ

b,k f (t)
)

= Iη–ω,ρ;ψ
b,k f (t).

Proof We omitted the proof since this lemma is similar to the proof in Lemma 8. �

Lemma 14 Let α ∈C, Re(α) > 0, k > 0, Re(α)/k ∈ (n – 1, n], n ∈ N, and ρ ∈ (0, 1]. Then

(i) a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)

= f (t) –
n∑

i=1

ρ
k �

n–i
ψ

(t,a)

(ρk)n–i(n–i)! kD
n–i,ρ;ψ f (a);

(ii) Iα,ρ;ψ
b,k

(
CD

α,ρ;ψ
b,k f (t)

)
= f (t) –

n∑

i=1

ρ
k �

n–i
ψ

(b,t)

(ρk)n–i(n–i)! kD
n–i,ρ;ψ
	 f (b).

Proof From property (i) in Lemma 8 with m = 1, we obtain

kD
ρ;ψ
(

a,kIk,ρ;ψh(t)
)

= h(t). (37)

Using equation (37) and h(t) = a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)

implies that

a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)

= kD
ρ;ψ
(

a,kIk,ρ;ψ
(

a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)))

= kD
ρ;ψ
(

a,kIk+nk,ρ;ψ
(

kD
n,ρ;ψ f (t)

))

= kD
ρ;ψ
(

1
kρn+1�k(nk + k)

∫ t

a

ρ

k �
n
ψ

(t, s)ψ ′(s)
(

kD
n,ρ;ψ f (s)

)
ds
)

.

By using integration by parts, we have

1
kρn+1�k(nk + k)

∫ t

a

ρ

k �
n
ψ

(t, s)ψ ′(s)
(

kD
n,ρ;ψ f (s)

)
ds

=
1

kρn+1�k(nk + k)

∫ t

a

ρ

k �
n
ψ

(t, s)ψ ′(s)
[

kD
ρ;ψ
(

kDn–1,ρ;ψ f (s)
)]

ds

=
1

kρn+1�k(nk + k)

[

(1 – ρ)
∫ t

a

ρ

k �
n
ψ

(t, s)ψ ′(s)
(

kD
n–1,ρ;ψ f (s)

)
ds

+kρ

∫ t

a

ρ

k �
n
ψ

(t, s)
d
ds

(

kD
n–1,ρ;ψ f (s)

)
ds
]

=
1

kρn+1�k(nk + k)

[

– kρ
ρ

k �
n
ψ

(t, s)
(

kD
n–1,ρ;ψ f (a)

)

+nkρ

∫ t

a

ρ

k �
n–1
ψ

(t, s)ψ ′(s)
(

kD
n–1,ρ;ψ f (s)

)
ds
]

.

Repeating the procedure of integration by parts at nth-step yields that

a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)

= kD
ρ;ψ
[

1
ρk

∫ t

a
e

ρ–1
kρ

(ψ(t)–ψ(s))
ψ ′(s)f (s)ds

–
n∑

i=1

ρ

k �
n+1–i
ψ

(t, a)

(ρk)n+1–i (n + 1 – i)!

(

kD
n–i,ρ;ψ f (a)

)]

.
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By using equation (16), Lemma 5, and Lemma 8, we have

a,kIα,ρ;ψ
(

C
a,kD

α,ρ;ψ f (t)
)

= f (t) –
n∑

i=1

ρ�k (nk + (2 – i)k)
ρ

k �
n–i
ψ

(t, a)

(ρk)n+1–i�k (nk + (1 – i)k) (n + 1 – i)!

(

kD
n–i,ρ;ψ f (a)

)

= f (t) –
n∑

i=1

ρ

k �
n–i
ψ

(t, a)

(ρk)n–i (n – i)!

(

kD
n–i,ρ;ψ f (a)

)
.

The proof of property (ii) is similar. The proof is completed. �

3.3 (k,ψ )-Hilfer proportional fractional derivative operators and properties
Definition 13 ((k,ψ)-Hilfer proportional fractional derivative operator ((k,ψ)-Hilfer-
PFDO)) Let α ∈ C, Re(α) > 0, k > 0, ρ ∈ (0, 1], β ∈ [0, 1], f ∈ Cn(J ,R), ψ(t) ∈ Cn(J ,R)
with ψ ′(t) �= 0 so that n = 
Re(α)/k� + 1, n ∈ N. Then the left-sided and right-sided (k,ψ)-
Hilfer-PFDO of order α and types β of f are defined by, respectively,

H
a,kD

α,β ,ρ;ψ f (t) = a,kI β(nk–α),ρ;ψ
(

kD
n,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (t)
))

, (38)

H
D

α,β ,ρ;ψ
b,k f (t) = Iβ(nk–α),ρ;ψ

b,k

(

kD
n,ρ;ψ
	
(
I (1–β)(nk–α),ρ;ψ

b,k f (t)
))

. (39)

Lemma 15 Let α, ω ∈C, Re(α) ≥ 0, Re(ω) > 0, k > 0, ρ ∈ (0, 1] so that Re(ω)/k > –1. Hence

(i) H
a,kD

α,β ,ρ;ψ
[

ρ

k �
ω
k –1

ψ (t, a)
]

= ρ
α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (t, a);

(ii) HD
α,β ,ρ;ψ
b,k

[
ρ

k �
ω
k –1

ψ (b, t)
]

= ρ
α
k �k (ω)

�k (ω–α)
ρ

k �
ω–α

k –1
ψ (b, t).

In particular, for m = 0, 1, . . . , n – 1, we have

H
a,kD

α,β ,ρ;ψ
[

ρ

k �
m
ψ

(t, a)
]

= 0 and H
D

α,β ,ρ;ψ
b,k

[
ρ

k �
m
ψ

(b, t)
]

= 0.

Proof Definition 13, property (i) in Lemma 5, and property (i) in Lemma 8 imply that

H
a,kD

α,β ,ρ;ψ
[

ρ

k �
ω
k –1

ψ (t, a)
]

= a,kIβ(nk–α),ρ;ψ
(

kD
n,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ
[

ρ

k �
ω
k –1

ψ (t, a)
]))

=
�k(ω)

ρ
(1–β)(nk–α)

k �k(ω + (1 – β)(nk – α))
a,kIβ(nk–α),ρ;ψ

(

kD
n,ρ;ψ
[

ρ

k �
ω+(1–β)(nk–α)

k –1
ψ (t, a)

])

=
ρn�k(ω)

ρ
(1–β)(nk–α)

k �k(ω + (1 – β)(nk – α) – nk)

(

a,kIβ(nk–α),ρ;ψ
[

ρ

k �
ω–α–β(nk–α)

k –1
ψ (t, a)

])

=
ρ

α
k �k(ω)

�k(ω – α)
ρ

k �
ω–α

k –1
ψ (t, a).

The proof of property (ii) is similar. �

Lemma 16 Let α ∈C, Re(α) > 0, k > 0, ρ ∈ (0, 1], and v = ρk
1+ρ(k–1)

. Then

(i) H
a,kD

α,β ,ρ;ψ f (t) =
(

υ
kρ

)– α
k H

a D
α
k ,β ,υ;ψ f (t);
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(ii) HD
α,β ,ρ;ψ
b,k f (t) =

(
υ

kρ

)– α
k HD

α
k ,β ,υ;ψ
b f (t).

Proof Definition 13, properties (i) and (iii) in Lemma 6 yield that

H
a,kD

α,β ,ρ;ψ f (t) = a,kIβ(nk–α),ρ;ψ
(

kD
n,ρ;ψ
(

a,kI(1–β)(nk–α),ρ;ψ f (t)
))

=
(

υ

kρ

)– α
k

aI
β(nk–α)

k ,υ;ψ
(
D

n,υ;ψ
(

aI(1–β)
(

n– α
k

)
,υ;ψ f (t)

))

=
(

υ

kρ

) –α
k

H
a D

α
k ,β ,υ;ψ f (t).

The proof of property (ii) is similar. �

Lemma 17 Let ω, η ∈ C, Re(ω) ≥ 0, Re(η) > 0, k > 0, ρ ∈ (0, 1], n = 
Re(ω)/k� + 1, and
Re(η) > nk. Then we obtain the following relations:

(i) H
a,kD

ω,β ,ρ;ψ
(

a,kIη,ρ;ψ f (t)
)

= a,kIη–ω,ρ;ψ f (t);

(ii) HD
ω,β ,ρ;ψ
b,k

(
Iη,ρ;ψ

b,k f (t)
)

= Iη–ω,ρ;ψ
b,k f (t).

Proof We omitted the proof because the process is similar to that in Lemma 8. �

Lemma 18 Let α ∈C, Re(α) > 0, k > 0, ρ ∈ (0, 1], and η = Re(α) + β(nk – Re(α)). Then
(i) a,kIα,ρ;ψ

(
H
a,kD

α,β ,ρ;ψ f (t)
)

= a,kIη,ρ;ψ
(

RL
a,kD

η,ρ;ψ f (t)
)

;

(ii) Iα,ρ;ψ
b,k

(
HD

α,β ,ρ;ψ
b,k f (t)

)
= Iη,ρ;ψ

b,k

(
RLD

η,ρ;ψ
b,k f (t)

)
.

Proof By applying Definition 13 and property (i) in Lemma 7, we have

a,kIα,ρ;ψ
(

H
a,kD

α,β ,ρ;ψ f (t)
)

= a,kIα,ρ;ψ
(

a,kIβ(nk–α),ρ;ψ
(

kD
n,ρ;ψ
(

a,kI(1–β)(nk–α),ρ;ψ f (t)
)))

= a,kIα,ρ;ψ
(

a,kIη–α,ρ;ψ
(

RL
a,kD

η,ρ;ψ f (t)
))

= a,kIη,ρ;ψ
(

RL
a,kD

η,ρ;ψ f (t)
)

.

Using property (i) in Lemma 10 yields that

a,kIα,ρ;ψ
(

H
a,kD

α,β ,ρ;ψ f (t)
)

= f (t) –
n∑

i=1

ρ

k �
η
k –i
ψ (t, a)

ρ
η–ki

k �k(η + k – ki)

[

kD
n–i,ρ;ψ
(

a,kInk–η,ρ;ψ f (a+)
)]

.

The proof is completed. �

4 ψ -Laplace transform and uniqueness result
4.1 ψ -Laplace transform for the (k,ψ )-Hilfer-PFOs
In this subsection, we investigate some basic properties of (k,ψ)-HPFOs, which are pro-
posed below.
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Definition 14 ([43]) Assume that f : [a,∞) → R is a real-valued function, ψ ∈ C([a,∞),
R) with ψ ′(t) > 0. Then the ψ-Laplace transform of f is given by

Lψ {f (t)} =
∫ ∞

a
e–s(ψ(s)–ψ(a))f (t)ψ ′(t)dt, ∀s, (40)

where the right-hand side of the above equation is valid.

Definition 15 ([43]) A function f : [0,∞) →R is said to be of ψ-exponential order if there
are nonnegative numbers c, M, and T so that |f (t)| ≤ Mecψ(t) for all t ≥ T .

Theorem 1 ([43]) Let f ∈ Cα,ψ (J ,R) and ψ(t)-exponential order so that f [1](t) is piecewise
continuous on J . Then the ψ-Laplace transform of f [1](t) exists, where

Lψ

{
f [1](t)
}

= sLψ {f (t)} – f (a), f [1](t) =
f ′(t)
ψ ′(t)

.

Now, the generalized convolution integral is given as follows.

Corollary 1 ([43]) Assume f ∈ Cn–1
α,ψ (J ,R) so that f [i], i = 0, 1, 2, . . . , n – 1, are of ψ-

exponential order and f [n] is a piecewise continuous function on J . Then the generalized
Laplace transform of f [n](t) exists where

Lψ

{
f [n](t)
}

= snLψ

{
f (t)
}

–
n–1∑

i=0

sn–i–1f [i](a).

Next, we provide some details about the Mittag-Leffler (ML) functions, which are used
to studying the theory of fractional calculus.

Lemma 19 ([44]) Assume z ∈ C, α > 0, and β > 0. Then the ML functions for one param-
eter and two parameters are provided by, respectively,

Eα(z) =
∞∑

k=0

zk

�(kα + 1)
and Eα,α+β(z) =

∞∑

k=0

zk

�((k + 1)α + β)
.

If Eα(·) and Eα,β (·) are two nonnegative functions, we have the following properties:

Eα(z) := Eα,1(z) ≤ 1 and Eα,β (z) ≤ 1
�(β)

, ∀z < 0, (41)

with Eα(0) = 1 and Eα,β(0) = 1/�(β).

The ψ-Laplace transforms of basic functions were defined as in Lemma 20.

Lemma 20 ([43]) Let α, β ∈ C, Re(α) > 0, Re(β) > 0, and
∣
∣ λ

sα
∣
∣ < 1. Then we have the follow-

ing properties:
(i) Lψ {1} = 1

s , s > 0;
(ii) Lψ

{
(ψ(t) – ψ(a))β

}
= �(β+1)

sβ+1 , s > 0;
(iii) Lψ

{
eλ(ψ(t)–ψ(a))} = 1

s–λ
, s > λ;
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(iv) Lψ

{
eλ(ψ(t)–ψ(a))f (t)

}
= Lψ {f (t)}(s – λ);

(v) Lψ

{
(ψ(t) – ψ(a))β–1

Eα,β
(
λ(ψ(t) – ψ(a))α

)}
= sα–β

sα–λ
.

The ψ-convolution integral operator of two functions is given below.

Definition 16 ([43]) Assume that f and g are two piecewise continuous functions on J
and of ψ-exponential order. The ψ-convolution of f and g is given by

(
f ∗ψ g
)

(t) =
∫ t

a
f (s)g
(
ψ–1 (ψ(t) + ψ(a) – ψ(s))

)
ψ ′(s)ds,

where (f ∗ψ g)(t) = (g ∗ψ f )(t).

Definition 17 ([43]) Assume that f and g are two piecewise continuous functions on J
and of ψ-exponential order. Then we have the following relation:

Lψ {f (t) ∗ψ g(t)} = Lψ {f (t)}Lψ {g(t)}.

Next, the ψ-Laplace transforms of (k,ψ)-PFDO, (k,ψ)-PFIO, and (k,ψ)-HPFDO are
provided as follows.

Theorem 2 Assume that f ∈ Cα,ψ (J ,R) and is of ψ-exponential order such that kD
ρ;ψ is

piecewise continuous on J . Then the ψ-Laplace transform of kD
ρ;ψ is defined by

Lψ

{
kD

ρ;ψ f (t)
}

= (1 – ρ + kρs)Lψ {f (t)} – kρf (a).

Proof By using equation (16), Theorem 1, and Definition 17, it follows that

Lψ

{
kD

ρ;ψ f (t)
}

= Lψ

{

(1 – ρ)f (t) + kρ
f ′(t)
ψ ′(t)

}

= (1 – ρ)Lψ {f (t)} + kρLψ

{
f ′(t)
ψ ′(t)

}

= (1 – ρ)Lψ {f (t)} + kρ
[
sLψ {f (t)} – f (a)

]

= (1 – ρ + kρs)Lψ{f (t)} – kρf (a).

The proof is completed. �

Corollary 2 Assume f ∈ Cn–1
ψ ([a,∞),R) is such that f [i], i = 1, 2, . . . , n – 1, are of ψ-

exponential order on J and f [n] is a piecewise continuous function on J . Then the ψ-
Laplace transform of kD

n,ρ;ψ is given by

Lψ

{
kD

n,ρ;ψ f (t)
}

= (1 – ρ + kρs)nLψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
(

kD
i,ρ;ψ f (a)

)
.

Proof It is easy to show by mathematical induction. We omit the proof. �

Now, we will show the only the ψ-Laplace transform of the left-sided (k,ψ)-PFIO.
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Theorem 3 Assume α ∈C, Re(α) > 0, and ρ ∈ (0, 1]. Suppose that f is a piecewise contin-
uous function on [a, t] and of ψ-exponential order. Then we have

Lψ

{
a,kIα,ρ;ψ f (t)

}
=

Lψ {f (t)}
(kρs – ρ + 1)

α
k

.

Proof By applying Definition 10, Definition 17, and Lemma 20, it follows that

Lψ

{
a,kIα,ρ;ψ f (t)

}
=

1
kρ

α
k �k(α)

Lψ

{

f ∗ψ e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

α
k –1
}

=
1

kρ
α
k �k(α)

Lψ {f (t)}Lψ

{

e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

α
k –1
}

=
1

kρ
α
k �k(α)

Lψ {f (t)}Lψ

{
(ψ(t) – ψ(a))

α
k –1
}(

s –
ρ – 1

kρ

)

=
�
(

α
k
)

kρ
α
k �k(α)
(

s – ρ–1
kρ

) α
k
Lψ {f (t)}

=
Lψ {f (t)}

(kρs – ρ + 1)
α
k

.

The proof is completed. �

Next, the ψ-Laplace transform of the left-sided (k,ψ)-RL-PFDO is analyzed.

Theorem 4 Assume α ∈ C, Re(α) > 0, Re(α)/k ∈ (n – 1, n), k > 0, ρ ∈ (0, 1], f ∈ ACn
α,ψ (J ,

R), ψ ∈ Cn(J ,R) so that ψ ′ > 0, and a,kInk–α–ik,ρ;ψ f is of ψ-exponential order, i =
0, 1, . . . , n – 1, n ∈N. Then

Lψ

{RL
a,kD

α,ρ;ψ f (t)
}

= (1 – ρ + kρs)
α
k Lψ {f (t)}

–kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
(

a,kInk–α–ik,ρ;ψ f (a+)
)

.

Proof Using Definition 11, Corollary 2, and Theorem 3 implies that

Lψ

{RL
a,kD

α,ρ;ψ f (t)
}

= Lψ

{

kDn,ρ;ψ
(

a,kInk–α,ρ;ψ f (t)
)}

= (1 – ρ + kρs)nLψ

{

a,kInk–α,ρ;ψ f (t)
}

–kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
[

kD
i,ρ;ψ
(

a,kInk–α,ρ;ψ f (a)
)]

=
(1 – ρ + kρs)n

(kρs – ρ + 1)
nk–α

k
Lψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
(

a,kInk–α–ik,ρ;ψ f (a)
)

= (1 – ρ + kρs)
α
k Lψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
(

a,kInk–α–ik,ρ;ψ f (a)
)

.

The proof is done. �
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Next, the ψ-Laplace transform of the left-sided (k,ψ)-Caputo-PFDO is proved.

Theorem 5 Let α ∈ C, Re(α) > 0, Re(α)/k ∈ (n – 1, n), k > 0, ρ ∈ (0, 1], f ∈ ACn
α,ψ (J ,R),

ψ ∈ Cn(J ,R) so that ψ ′ > 0, and kD
i,ρ;ψ f is of ψ-exponential order, i = 0, 1, . . . , n – 1, n ∈N.

Then

Lψ

{C
a,kD

α,ρ;ψ f (t)
}

= (1 – ρ + kρs)
α
k

[

Lψ {f (t)}–kρ

n–1∑

i=0

(1 – ρ + kρs)–i–1
(

kD
i,ρ;ψ f (a)

)]

.

Proof Using Definition 12, Corollary 2, and Theorem 3 yields that

Lψ

{C
a,kD

α,ρ;ψ f (t)
}

= Lψ

{

a,kInk–α,ρ;ψ
(

kD
n,ρ;ψ f (t)

)}

=
1

(kρs – ρ + 1)
nk–α

k
Lψ

{

kD
n,ρ;ψ f (t)

}

=
1

(kρs – ρ + 1)
nk–α

k

[

(1 – ρ + kρs)nLψ {f (t)}

–kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
(

kD
i,ρ;ψ f (a)

)]

= (1 – ρ + kρs)
α
k Lψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)
α
k –1–i
(

kD
i,ρ;ψ f (a)

)
.

The proof is finished. �

This result studies the ψ-Laplace transform of the left-sided (k,ψ)-Hilfer-PFDO.

Theorem 6 Assume α ∈ C, Re(α) > 0, Re(α)/k ∈ (n – 1, n), k > 0, ρ ∈ (0, 1], f ∈ ACn
α,ψ (J ,

R), ψ ∈ Cn(J ,R) so that ψ ′(t) > 0, and a,kI (1–β)(nk–α),ρ;ψ f is of ψ-exponential order, i =
0, 1, . . . , n – 1, n ∈N. Then we have

Lψ

{H
a,kD

α,β ,ρ;ψ f (t)
}

= (1 – ρ + kρs)
α
k Lψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)
αβ
k +n(1–β)–1–i

×
[

kD
i,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (a)
)]

.

Proof By applying Definition 13 and Theorem 3, we have

Lψ

{H
a,kD

α,β ,ρ;ψ f (t)
}

= Lψ

{

a,kIβ(nk–α),ρ;ψ
(

kD
n,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (t)
))}

=
1

(1 – ρ + kρs)
β(nk–α)

k
Lψ

{

kD
n,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (t)
)}

. (42)

From Corollary 2 and Theorem 3, we obtain

Lψ

{

kD
n,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (t)
)}
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= (1 – ρ + kρs)n Lψ

{

a,kI (1–β)(nk–α),ρ;ψ f (t)
}

–ρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
[

kD
i,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (a)
)]

=
(1 – ρ + kρs)n

(1 – ρ + kρs)
(1–β)(nk–α)

k
Lψ {f (t)}

–kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
[

kD
i,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (a)
)]

. (43)

Substituting (43) into (42), we obtain the following result:

Lψ

{H
a,kD

α,β ,ρ;ψ f (t)
}

=
1

(1 – ρ + kρs)
β(nk–α)

k

(
(1 – ρ + kρs)n

(1 – ρ + kρs)
(1–β)(nk–α)

k
Lψ {f (t)}

–kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i
[

kD
i,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (a)
)]
)

= (1 – ρ + kρs)
α
k Lψ {f (t)} – kρ

n–1∑

i=0

(1 – ρ + kρs)n–1–i

(1 – ρ + kρs)
β(nk–α)

k

×
[

kD
i,ρ;ψ
(

a,kI (1–β)(nk–α),ρ;ψ f (a)
)]

.

The proof is done. �

This part considers the Cauchy-type problem in the context of (k,ψ)-Hilfer-PFDO.

Example 1 The Cauchy-type initial value problem under the (k,ψ)-Hilfer-PFDO

⎧
⎪⎨

⎪⎩

H
a,kD

α,β ,ρ;ψu(t) = λ(kρ)
α
k u(t) + f (t), α/k ∈ (n – 1, n), k > 0, ρ ∈ (0, 1], λ < 0,

lim
t→a+ a,kI (1–β)(nk–α)–ik,ρ;ψu(t) = ci, ci ∈R, β ∈ [0, 1], i = 0, 1, . . . , n – 1, n ∈N,

(44)

has the solution u(t), where

u(t) = (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)

ψ ′(s)f (s)ds

+
n–1∑

i=0

ci
ρ

k �
i+ β(nk–α)+α

k –n
ψ (t, a)

(kρ)i+ β(nk–α)+α
k –n

E α
k ,1+i+ β(nk–α)+α

k –n

(
λ(ψ(t) – ψ(a))

α
k
)

. (45)

By using the ψ-Laplace transform to the first equation of (44), we obtain the result

Lψ

{H
a,kD

α,ρ;ψu(t)
}

= Lψ

{
(kρ)

α
k λu(t)
}

+ Lψ {f (t)}. (46)

From Theorem 6, equation (46) can be written as

[
(1 – ρ + kρs)

α
k – (kρ)

α
k λ
]
Lψ {u(t)} = Lψ

{
f (t)
}

+ kρ

n–1∑

i=0

ci(1 – ρ + kρs)n–1–i

(1 – ρ + kρs)
β(nk–α)

k
.
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Then

u(t) = L–1
ψ

{ n–1∑

i=0

ci
(
s – ρ–1

kρ

)n–1–i– β(nk–α)
k

((
s – ρ–1

kρ

) α
k – λ
)

(kρ)i+ β(nk–α)+α
k –n

}

+ L–1
ψ

{
(kρ)– α

k

(
s – ρ–1

kρ

) α
k – λ

Lψ {f (t)}
}

. (47)

From Lemma 20, it follows that

Lψ

{
e

ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))i+ β(nk–α)+α

k –n
E α

k ,1+i+ β(nk–α)+α
k –n

(
λ(ψ(t) – ψ(a))

α
k
)}

=

(
s – ρ–1

kρ

)n–1–i– β(nk–α)
k

(
s – ρ–1

kρ

) α
k – λ

and

Lψ

{
e

ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

α
k –1

E α
k , αk

(
λ(ψ(t) – ψ(a))

α
k
)}

=
1

(
s – ρ–1

kρ

) α
k – λ

.

Equation (47) can be computed as

u(t)

= L–1
ψ

{

(kρ)– α
k Lψ

{
e

ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

α
k –1

E α
k , αk

(
λ(ψ(t) – ψ(a))

α
k
)}

Lψ {f (t)}
}

+L–1
ψ

{ n–1∑

i=0

[

(kρ)n–i– β(nk–α)+α
k
(

a,kI (1–β)(nk–α)–ik,ρ;ψu(a)
)

×Lψ

{

e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))i+ β(nk–α)+α

k –n

×E α
k ,1+i+ β(nk–α)+α

k –n

(
λ (ψ(t) – ψ(a))

α
k
)
}]}

= L–1
ψ

{
(kρ)– α

k Lψ

{
e

ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))

α
k –1

E α
k , αk

(
λ(ψ(t) – ψ(a))

α
k
)

∗ f (t)
}}

+
n–1∑

i=0

[

e
ρ–1
kρ

(ψ(t)–ψ(a))
(ψ(t) – ψ(a))i+ β(nk–α)+α

k –n
E α

k ,1+i+ β(nk–α)+α
k –n

(
λ(ψ(t) – ψ(a))

α
k
)

×(kρ)n–i– β(nk–α)+α
k
(

a,kI (1–β)(nk–α)–ik,ρ;ψu(a)
)
]

= (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)

ψ ′(s)f (s)ds

+
n–1∑

i=0

[

ci
ρ

k �
i+ β(nk–α)+α

k –n
ψ (t, a)E α

k ,1+i+ β(nk–α)+α
k –n

(
λ(ψ(t) – ψ(a))

α
k
)

(kρ)n–i– β(nk–α)+α
k

]

.

Equation (45) is obtained.
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4.2 Uniqueness result
This section studies the existence and uniqueness of solutions of the proposed problem
(1). By applying the ψ-Laplace transform to the proposed problem (1), it follows that

u(t) = (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)

ψ ′(s)f (s, u(s))ds

+
n–1∑

i=0

θi
ρ

k �
i+ β(nk–α)+α

k –n
ψ (t, a)

(kρ)i+ β(nk–α)+α
k –n

E α
k ,1+i+ β(nk–α)+α

k –n

(
λ(ψ(t) – ψ(a))

α
k
)
. (48)

Next, we will establish the existence and uniqueness result for the proposed problem (1)
by using Picard’s iterative technique, see [45] for more details.

Theorem 7 Suppose that there is a positive constant M so that supt∈J
{

f (t, u(t))
} ≤ M,

and there is a positive number γ so that
∣
∣f (t, u1(t)) – f (t, u2(t))

∣
∣≤ γ |u1(t) – u2(t)|, ∀t ∈ J ,

ui ∈ Cn(J ,R), i = 1, 2. Then there is one and only one solution u(t) of the proposed problem
(1) on J provided that

γ

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)

< 1. (49)

Proof It is easy to present that the proposed problem (1) has a solution corresponding to
the solution of equation (48). Firstly, we define

u0(t) =
n–1∑

i=0

θi
ρ

k �
i+ β(nk–α)+α

k –n
ψ (t, a)

(kρ)i+ β(nk–α)+α
k –n

E α
k ,1+i+ β(nk–α)+α

k –n

(
λ(ψ(t) – ψ(a))

α
k
)
, (50)

uj(t) = u0(t) + (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, uj–1(s))ds, (51)

where j ∈ N. Clearly, the term uj(t) = u0(t) +
∑j

l=1[ul(t) – ul–1(t)] is a partial sum of the
series term u0(t) +

∑∞
l=1[ul(t) – ul–1(t)]. The goal is to demonstrate that a sequence {uj(t)}

converges to u(t). By using mathematical induction, for t ∈ J , it follows that

∥
∥uj – uj–1

∥
∥ = Mγ j–1

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)j

, i ∈N. (52)

Using (50)–(51) and property (i) in Lemma 5 implies that

‖u1 – u0‖ =
∥
∥
∥
∥(kρ)– α

k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, u0(s))ds

∥
∥
∥
∥

≤ M(kρ)– α
k

�
(

α
k
)

∥
∥
∥
∥

∫ t

a
(ψ(t) – ψ(s))

α
k –1ψ ′(s)ds

∥
∥
∥
∥

≤ M
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

.

Then, for j = 1, we have that inequality (52) is satisfied.
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Next, we will show that inequality (52) is satisfied for j = r. Since

‖ur+1 – ur‖

= (kρ)– α
k

∥
∥
∥
∥

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, ur(s))ds

–
∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, ur–1(s))ds

∥
∥
∥
∥

≤ γ (kρ)– α
k

∥
∥
∥
∥
∥

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s) |ur(s) – ur–1(s)|ds

∥
∥
∥
∥
∥

≤ Mγ r
(

(ψ(T) – ψ(a))
α
k

αρ
α
k �k(α)

)r

(kρ)– α
k

∥
∥
∥
∥
∥

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)ds

∥
∥
∥
∥
∥

≤ Mγ r
(

(ψ(T) – ψ(a))
α
k

αρ
α
k �k(α)

)r+1

,

it implies that inequality (52) is satisfied for j = r + 1. By using mathematical induction,
(52) is satisfied for each j ∈N, and for all t ∈ J , we get

∞∑

j=1

‖uj – uj–1‖ ≤ M
∞∑

j=1

[

γ j–1

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)j]

. (53)

From assumption (49), the right-hand side of (53) is convergent. Therefore, the term
∑∞

j=1 ‖uj – uj–1‖ is also convergent, which implies that u0 +
∑∞

l=1 ‖ul – ul–1‖ converges.
By setting u∗ = u0 +

∑∞
l=1 ‖ul – ul–1‖, we obtain

∥
∥uj – u∗∥∥→ 0 as j → ∞, (54)

which yields that the solution of the proposed problem (1) exists. From (54), one has

∥
∥f (·, uj–1(·)) – f (·, u∗(·))∥∥≤ γ

∥
∥uj–1 – u∗∥∥→ 0 as j → ∞.

Hence,

lim
j→∞ f (t, uj–1(t)) = f (t, u(t)). (55)

Taking the limit j → ∞ in (51) and using (55), it follows that

u(t) = (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)

ψ ′(s)f (s, u(s))ds

+
n–1∑

i=0

θi
ρ

k �
i+ β(nk–α)+α

k –n
ψ (t, a)

(kρ)i+ β(nk–α)+α
k –n

E α
k ,1+i+ β(nk–α)+α

k –n

(
λ(ψ(t) – ψ(a))

α
k
)
,

which shows a solution of the proposed problem (1).
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Finally, we will show that problem (1) has a unique solution. Assume that u(t) and ũ(t)
are the solution of problem (1), we obtain that

∥
∥u – ũ
∥
∥ = (kρ)– α

k sup
t∈J

∣
∣
∣
∣
∣

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, u(s))ds

–
∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)f (s, ũ(s))ds

∣
∣
∣
∣
∣

≤ γ (kρ)– α
k

∫ t

a

ρ

k �
α
k –1
ψ (t, s)E α

k , αk

(
λ(ψ(t) – ψ(s))

α
k
)
ψ ′(s)
∣
∣u(s) – ũ(s)

∣
∣ds

≤ γ

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)
∥
∥u – ũ
∥
∥ .

Hence, it follows from assumption (49) that
∥
∥u – ũ
∥
∥ = 0, that is, u(t) = ũ(t). �

5 Some examples
This section gives two examples of the proposed problem (1) to show the theoretical main
results.

Example 2 Consider the following Cauchy-type initial value problem under the (k,ψ)-
Hilfer-PFDO:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
0, 8

10
D

ln 2, 2
3 , 17

20 ; e2t–9
5 u(t) =

3t2 + 2t
ln(2t + 5)

– 6
(

17
25

) 10 ln 2
8

u(t)

+
9e–2t

2(t2 + 3t + 1)
· |u(t)|

5 + 2|u(t)| ,

lim
t→0+ 0, 8

10
I 4–5 ln 2

15 , 17
20 ; e2t–9

5 u(t) =
4
3

.

(56)

From the proposed problem (56), we obtain that α = ln 2, β = 2/3, ρ = 17/20, k = 8/10,
ψ(t) = exp(2t – 9)/5, λ = –6, a = 0, T = 5, θ0 = 4/3. Then

f (t, u(t)) =
3t2 + 2t

ln(2t + 5)
+

9e–2t

2(t2 + 3t + 1)
· |u(t)|

5 + 2|u(t)| .

For ui ∈ R, i = 1, 2, and t ∈ [0, 5], we can compute that |f (t, u1(t)) – f (t, u2(t))| ≤
(9/10)|u1(t) – u2(t)|. The assumption in Theorem 7 is satisfied with γ = 9/10. Hence,

γ

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)

≈ 0.7797850224 < 1.

Since all conditions in Theorem 7 are satisfied, the proposed problem (56) has a unique
solution.
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Example 3 Consider the following Cauchy-type initial value problem under the (k,ψ)-
Hilfer-PFDO:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
0, 9

10
D

√
3, 4

5 , 7
10 ;ln(2t+3)u(t) =

cos(t2 + 2t)
e3t+2 – 3

(
63

100

) 10
√

3
9

u(t)

+
4 sin(t2 + 2t)
5 + ln(3t + 1)

· |u(t)|
2 + |u(t)| ,

lim
t→0+ 0, 9

10
I 9–5

√
3

25 , 7
10 ;ln(2t+3)u(t) =

7
10

,

lim
t→0+

9
10
D

7
10 ;ln(2t+3)

(

0, 9
10
I 9–5

√
3

25 , 7
10 ;ln(2t+3)u(t)

)
=

6
5

.

(57)

From the proposed problem (57), we obtain that α =
√

3, β = 4/5, ρ = 7/10, k = 9/10,
ψ(t) = ln(2t + 3), λ = –3, a = 0, T = 3, θ0 = 7/10, and θ1 = 6/5. Then

f (t, u(t)) =
cos(t2 + 2t)

e3t+2 +
4 sin(t2 + 2t)
5 + ln(3t + 1)

· |u|
2 + |u| .

For ui ∈ R, i = 1, 2, and t ∈ [0, 3], we can compute that |f (t, u1(t)) – f (t, u2(t))| ≤ 2
5 |u1(t) –

u2(t)|. The assumption in Theorem 7 is satisfied with γ = 2/5. Hence,

γ

(
(ψ(T) – ψ(a))

α
k

αρ
α
k �k(α)

)

≈ 0.6245508422 < 1.

Since all conditions in Theorem 7 are satisfied, the proposed problem (57) has a unique
solution.

6 Conclusion
In this study, we proposed the most generalized version of the Hilfer derivative operator,
which is (k,ψ)-Hilfer-PFDO, and developed certain essential properties. The ψ-Laplace
transform has shown to be an excellent tool for investigating the characteristics of the pro-
posed operators and solving the Cauchy-type problem with an initial condition under the
(k,ψ)-Hilfer-PFDO. In addition, the existence and uniqueness result for the higher-order
initial value problem under (k,ψ)-Hilfer-PFDO has been established by using Picard’s iter-
ative technique. To demonstrate the usefulness of our results, we provided some examples
that illustrated the new extensions.

Finally, we argued that the obtained results are novel and generalize previous ones from
the literature. It is important to note that the proposed operator combines the current ones
in terms of (k,ψ)-RL-PFDO and (k,ψ)-Caputo-PFDO, respectively. For different func-
tions ψ and the different parameters β , ρ , and k, the proposed operator reduced different
types of fractional derivative operators, which were previously constructed. The details
can be shown in Table 1. This achievement can be viewed as an advance in the qualita-
tive part of extended fractional calculus. Furthermore, the obtained results are a major
motivator for academics and researchers to study this form of extended fractional calcu-
lus. Then, we will concentrate our efforts on applying these extension fractional operators
to real-world problems and researching novel features and inequalities associated with
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such operators in the future. Especially, an intriguing challenge is to provide an extension
of Gronwall’s inequality using the (k,ψ)-proportional fractional integral and to investi-
gate the existence and uniqueness of the initial/boundary value problems using the (k,ψ)-
Hilfer proportional fractional derivative. On the other hand, it appears that the (k,ψ)-
Hilfer proportional fractional operator may be generalized by simply taking the variable
order α(t) and type β(t) ∈ (0, 1].
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