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Abstract
In this paper, we deal with an attraction–repulsion model with a logistic source as
follows:

⎧
⎪⎨

⎪⎩

ut =�u – χ∇ · (u∇v) + ξ∇ · (u∇w) +μuq(1 – u) in Q,

vt =�v – α1v + β1u in Q,

wt =�w – α2w + β2u in Q,

where Q =� ×R
+, � ⊂ R

3 is a bounded domain. We mainly focus on the influence
of logistic damping on the global solvability of this model. In dimension 2, q can be
equal to 1 (Math. Methods Appl. Sci. 39(2):289–301, 2016). In dimension 3, we derive
that the problem admits a global bounded solution when q > 8

7 . In fact, we transfer
the difficulty of estimation to the logistic term through iterative methods, thus,
compared to the results in (J. Math. Anal. Appl. 2:448 2017; Z. Angew. Math. Phys.
73(2):1–25 2022) in dimension 3, our results do not require any restrictions on the
coefficients.
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1 Introduction
Chemotaxis refers to the directional movement of cells or organisms towards chemical
stimuli along a concentration gradient, which plays an essential role in various biological
processes such as wound healing, cancer invasion, and avoidance of predators [4]. The
chemotaxis model was first proposed by Keller and Segel in [5] as follows:

⎧
⎨

⎩

ut = �u – χ∇ · (u∇v), x ∈ �, t > 0,

vt = �v – v + u, x ∈ �, t > 0,
(1.1)
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which describes the cellular slime mold move towards a higher concentration of a chem-
ical signal. Since it was proposed, it has attracted interest of a large number of scholar’s
and they obtained many results about boundedness or blow-up of solutions [6–11]. In
a one-dimensional bounded domain, (1.1) admits a global bounded solution [6]. But in
dimension two, the solution of (1.1) may blow-up, that is, when ‖u0‖L1 < 4π , the classi-
cal solution is global and bounded [7], and when ‖u0‖L1 ≥ 4π , ‖u0‖L1 /∈ {4kπ |k ∈ N}, the
blow-up of the solution may occur in finite or infinite time [8, 9]. In dimension N (N ≥ 3),
a small critical mass condition alone is not enough to prevent the blow-up of the solution
[10, 11].

However, cellular slime mold might experience proliferation or death during the process
of directional movement. Since then, Mimura and Tsujikawa [12] introduced a generalized
K–S model which considers the proliferation and death of bacteria, that is,

⎧
⎨

⎩

ut = �u – χ∇ · (u∇v) + f (u), x ∈ �, t > 0,

τvt = �v – v + u, x ∈ �, t > 0,
(1.2)

where τ ≥ 0, f (u) represents the proliferation and death of bacteria, which we call a lo-
gistic term. Actually, τ = 0 is a simplified form, which represents the case when chemicals
move much faster than bacteria [13]. When τ = 0, we assume that f ∈ C1([0,∞)), and it
satisfies f (s) ≤ c – μs2 for all s ≥ 0, f (s) > 0 if 0 < s < 1, and f (s) < 0 if s > 1, with some pos-
itive constants c, μ. Tello and Winkler [14] derived that the model (1.2) admits a unique
global bounded classical solution when either N ≤ 2 or μ > N–2

N χ . When τ > 0, in 2001,
Osaki and Yagi [15] proved the model (1.2) admits a global bounded classical solution in
R

1, and then in 2002, they also derived similar results in R
2 [16, 17]. In 2010, Winkler [18]

extended their results to arbitrary space dimensions with the condition μ > μ0 for some
μ0 > 0. For other results related to (1.2), please refer to [19–22]. In addition, related mathe-
matical models which describe the chemotaxis phenomenon were widely studied, such as
the chemotaxis–haptotaxis model [23, 24], chemotaxis–fluid model [25, 26], attraction–
repulsion chemotaxis model [27], and so on.

To describe the formation of senile plaques in Alzheimer disease (AD), Luca et al. [28]
proposed a attraction–repulsion chemotaxis system in 2003. The interesting aspect of this
model is that it includes both chemoattraction and chemorepulsion, and the model read
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u – χ∇ · (u∇v) + ξ∇ · (u∇w) + f (u), in Q,

τ1vt = �v – α1v + β1u, in Q,

τ2wt = �w – α2w + β2u, in Q,
∂u
∂n |∂� = ∂v

∂n |∂� = ∂w
∂n |∂� = 0,

u(x, 0) = u0(x), τ1v(x, 0) = v0(x), τ2w(x, 0) = w0(x), x ∈ �,

(1.3)

where Q = � × R
+, � is a bounded domain; ∂

∂n represent the derivative with respect to
the outer normal of ∂�; u, v, w represent the concentration of microglia, the concentra-
tion of chemoattractant and the concentration of chemorepellent, respectively; χ and ξ

are chemotactic coefficients; f (u) represents the proliferation or death of cells; αi,βi > 0
(i = 1, 2) are rates of production and decay of the chemicals, respectively. This model at-
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tracted a large number of scholars, and they obtained many results of this model. First,
we introduce the results if f (u) ≡ 0. In [29], Tao and Wang derived that the model (1.3)
admits a global classical solution in higher dimensions if repulsion prevails over attrac-
tion (ξα2 – χα1 > 0) for the case τ1 = τ2 = 0; they also proved that the model (1.3) admits a
global classical solution in R

2 if repulsion prevails over attraction for the case τ1 = τ2 = 1
which needs the smallness assumption on the initial data u0. Then Jin [30] removed the
smallness assumption on u0 in [29], and proved that model (1.3) admits a unique nonneg-
ative classical solution when τ1 = τ2 = 1 in R

2. The global solvability of the model (1.3) for
the case ξα2 –χα1 = 0 in R

2 was established in [31]. The results in [32] indicated that even
for the case ξα2 – χα1 < 0, (1.3) admits a global classical solution in R

2 for the parabolic–
parabolic system.

For the case f (u) 
= 0, there are also many results. When τ1 = τ2 = 0, f (u) ≤ λ – μup,
Li and Zhao [33] proved that the model (1.3) admits a unique global bounded classical
solution if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N ≥ 1, ξβ2 > χβ1, and p ≥ 1,

N ≥ 2, ξβ2 = χβ1, and p > 1
2 (

√
N2 + 2N – N + 2),

N ≥ 2, ξβ2 < χβ1, and p > 2 or p = 2 and μ > N–2
N (χβ1 – ξβ2),

N = 1, ξβ2 ≤ χβ1, and p ≥ 1.

The results indicated that the model (1.3) admits a global bounded classical solution under
the weak logistic damping in the case ξβ2 > χβ1, but when ξβ2 < χβ1, the logistic damping
must be stronger. Xu and Zheng [34] improved the the results in [33] for the case ξβ2 = χβ1

by proving that a weaker restriction p > 2N+2
N+2 is sufficient to ensure the global boundedness

of solutions. When τ1 = τ2 = 0, f (u) ≤ μu(1 – u), Zhang and Li [35] proved that the model
(1.3) admits a unique global bounded classical solution if one of the following assumptions
holds:

(a) χα1 – ξα2 ≤ μ,

(b) N ≤ 2,

(c)
N – 2

N
(χα1 – ξα2) < μ, N ≥ 3.

When τ1 = τ2 = 1, f (u) ≤ λu – μup with p ≥ 1, ξβ2 = χβ1, Wang, Zhuang, and Zheng [36]
proved that the model (1.3) admits a global bounded classical solution if

N ≤ 3, or

p > pN := min

{
N + 2

4
,

N
√

N2 + 6N + 17 – N2 – 3N + 4
4

}

, with N ≥ 2.

In [2], Li et al. proved that when τ1 = τ2 = 1, f (u) = u(1 – μup) with p ≥ 1, the model (1.3)
admits a global bounded classical solution if αi(i = 1, 2) ≥ 1

2 , μ ≥ max{( 41
2 χβ1 + 9ξβ2)

p,
(9χβ1 + 41

2 ξβ2)p} in R
3. In 2022, Ren and Liu [3] improved their results in [2] by avoiding

any restriction on αi (i = 1, 2).
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In this paper, we consider the following attraction–repulsion model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = �u – χ∇ · (u∇v) + ξ∇ · (u∇w) + μuq(1 – u), in Q,

vt = �v – α1v + β1u, in Q,

wt = �w – α2w + β2u, in Q,
∂u
∂n |∂� = ∂v

∂n |∂� = ∂w
∂n |∂� = 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ �,

(1.4)

where Q = �×R
+, � ⊂R

3 is a bounded domain. All the coefficients χ , ξ , μ, α1, α2, β1, β2

are positive. Actually, the model (1.4) admits a global classical solution when q ≥ 1 in R
2

[1], which requires no restrictions on the coefficients, and the logistic damping is weak.
Our results indicate that the model (1.4) admits a global classical solution when q > 8

7 in
dimension 3. Compared to the results in [2, 3], our results do not require any restrictions
on the coefficients. In fact, we transferred the difficulty of estimation to the logistic term.
Our proof is mainly divided into two parts, that is, we consider the case q ≥ 2 and 8

7 < q < 2.
When 8

7 < q < 2, we use the iterative method to improve the regularity of u.
Then we give the assumptions of this paper:

⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C0(�), u0 ≥ 0, and u0 
≡ 0,

v0 ∈ W 1,∞(�), v0 ≥ 0,

w0 ∈ W 1,∞(�), w0 ≥ 0.

(H)

Our main results read as follows:

Theorem 1.1 Let � ⊂ R
3 be a bounded domain. Assume that (H) holds and q > 8

7 . Then
for any χ , ξ ,μ,α1,α2,β1,β2 > 0, (1.4) admits a unique global bounded classical solution
which satisfies

∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

W 1,∞(�) +
∥
∥w(·, t)

∥
∥

W 1,∞(�) ≤ C for all t > 0,

where C is independent of t.

2 Preliminaries
In this paper, for the convenience of writing, we denote ‖ · ‖Lp = ‖ · ‖Lp(�). Since all the
estimates of v and w are almost the same except for the coefficients, we show the details
for v, and just list the results for w without any proof. Next, we will give some lemmas,
which will be used throughout this paper.

Lemma 2.1 ([37]) Let T > 0, τ ∈ (0, T), δ ≥ 0, a > 0, b ≥ 0, and suppose that f : [0, T) →
[0,∞) is absolutely continuous and satisfies

f ′(t) + af 1+δ(t) ≤ h(t), t ∈R,

where h ≥ 0, h(t) ∈ L1
loc([0, T)), and

∫ t

t–τ

h(s) ds ≤ b, for all t ∈ [τ , T).
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Then

sup
t∈(0,T)

f (t) + a sup
t∈(τ ,T)

∫ t

t–τ

f 1+δ(s) ds ≤ b + 2 max

{

f (0) + b + aτ ,
b

aτ
+ 1 + 2b + 2aτ

}

.

Lemma 2.2 ([38]) Assume u0 ∈ W 2,p(�), and f ∈ Lp
loc([0, +∞); Lp(�)) with

sup
t∈(τ ,+∞)

∫ t

t–τ

‖f ‖p
Lp ds ≤ A,

where τ > 0 is a fixed constant. Then the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut – α�u + βu = f (x, t),
∂u
∂n |∂� = 0,

u(x, 0) = u0(x)

admits a unique solution u ∈ Lp
loc([0, +∞); W 2,p(�)), ut ∈ Lp

loc([0, +∞); Lp(�)) with

sup
t∈(τ ,+∞)

∫ t

t–τ

(‖u‖p
W 2,p + ‖ut‖p

Lp
)

ds ≤ C(A,α,β)
epτ

e
p
2 τ – 1

+ C(α,β)e
p
2 τ‖u0‖p

W 2,p ,

where C(A,α,β) and C(α,β) are constants independent of τ .

Remark 2.1 In this paper, we fix τ = min{1, Tmax
2 } ≤ 1. Thus, all the constants in this paper

are independent of τ . In fact, if τ = 1, it is easy to see that the constants in Lemma 2.2
can be fixed. While if τ < 1, it implies that Tmax < 2, all the

∫ t
t–τ

‖ · ‖ds can be replaced by
∫ Tmax

0 ‖ · ‖ds.

Lemma 2.3 ([23]) Assume that � is bounded and let ω ∈ C2(�) satisfy ∂ω
∂n |∂� = 0, where n

is the outward unit normal vector to the boundary ∂�. Then we have

∂|∇ω|2
∂n

≤ 2κ|∇ω|2, on ∂�,

where κ > 0 is an upper bound for the curvatures of �.

3 Main results
Using a fixed point argument similar to that in [39], we obtain the following local existence
result of classical solution to (1.4).

Lemma 3.1 Let � ⊂ R
N , N ≥ 1 be a bounded domain with a smooth boundary. Assume

that u0, v0, w0 satisfy (H). Then there exists Tmax ∈ (0, +∞] such that the problem (1.4)
admits a unique nonnegative classical solution (u, v, w) ∈ C0(� × [0, Tmax)) ∩ C2,1(� ×
(0, Tmax)). Moreover, either Tmax = ∞, or

lim
t→Tmax

(∥
∥u(·, t)

∥
∥

L∞(�) +
∥
∥v(·, t)

∥
∥

L∞(�) +
∥
∥w(·, t)

∥
∥

L∞(�)

)
= ∞, if Tmax < ∞.
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By Lemma 3.1, we see that in order to prove the global existence of a classical solu-
tion, we assume that Tmax < ∞, and only need to show the boundedness of ‖u(·, t)‖L∞(�) +
‖v(·, t)‖L∞(�) + ‖w(·, t)‖L∞(�) for any t ∈ (0, Tmax).

It is not difficult to obtain the following lemma.

Lemma 3.2 Let (u, v, w) be the solution of (1.4), and assume (H) holds. Then we have

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥

L1 + μ sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

uq+1 dx ds ≤ C, (3.1)

sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥v(·, s)

∥
∥q+1

W 2,q+1 ds ≤ C, (3.2)

sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥w(·, s)

∥
∥q+1

W 2,q+1 ds ≤ C, (3.3)

sup
t∈(0,Tmax)

∥
∥v(·, t)

∥
∥2

H1 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥v(·, t)

∥
∥2

H2 ds ≤ C, (3.4)

sup
t∈(0,Tmax)

∥
∥w(·, t)

∥
∥2

H1 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥w(·, t)

∥
∥2

H2 ds ≤ C, (3.5)

where the constants C at most depend on χ , μ, ξ , α1, α2, β1, β2, u0, v0, w0, but are inde-
pendent of Tmax and τ .

Proof By a direct integration to the first equation of (1.4), we have

d
dt

∫

�

u dx + μ

∫

�

uq+1 dx = μ

∫

�

uq dx ≤ μ

2

∫

�

uq+1 dx + C1,

which means

d
dt

∫

�

u dx +
μ

2

∫

�

uq+1 dx ≤ C1.

Since � is a bounded domain, it is easy to see that (
∫

�
u dx)q+1 ≤ ∫

�
uq+1 dx for any q ≥ 1,

and then, by Lemma 2.1, we obtain (3.1).
Using (3.1) and Lemma 2.2, we obtain (3.2). Similarly, we obtain (3.3).
Multiplying the second equation of (1.4) by v and –�v, respectively, integrating them

over �, and using Young’s inequality, we obtain

1
2

d
dt

∫

�

v2 dx +
∫

�

|∇v|2 dx + α1

∫

�

v2 dx = β1

∫

�

uv dx

≤ 1
2
α1

∫

�

v2 dx + C2

∫

�

u2 dx,

1
2

d
dt

∫

�

|∇v|2 dx +
∫

�

|�v|2 dx + α1

∫

�

|∇v|2 dx = –β1

∫

�

u�v

≤ 1
2

∫

�

|�v|2 dx + C3

∫

�

u2 dx.
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Combining the above two inequalities yields

d
dt

∫

�

(
v2 + |∇v|2)dx +

∫

�

(
v2 + |∇v|2 + |�v|2)dx ≤ C4

∫

�

u2 dx

and then, by (3.1) and Lemma 2.1, we obtain (3.4). Similarly, we have (3.5). �

Through the above lemma, we have the following results.

Lemma 3.3 Let (u, v, w) be the solution of (1.4), and assume (H) holds. Then for any r ≥ 2,
R > 1, p > 1, we have

d
dt

∫

�

up dx +
p(p – 1)

2

∫

�

up–2|∇u|2 dx +
μp
2

∫

�

up+q dx

≤ C
∫

�

(|∇v| 2(p+q)
q + |∇w| 2(p+q)

q
)

dx + C, (3.6)

1
r

d
dt

∫

�

|∇v|r dx +
3
4

∫

�

|∇v|r–2∣∣D2v
∣
∣2 dx +

r – 2
2

∫

�

|∇v|r–2(∇|∇v|)2 dx

+
3
4
α1

∫

�

|∇v|r dx

≤ 1
4
α1‖∇v‖R(r–2)

LR(r–2) + C‖u‖
2R

R–1

L
2R

R–1
+ C, (3.7)

1
r

d
dt

∫

�

|∇w|r dx +
3
4

∫

�

|∇w|r–2∣∣D2w
∣
∣2 dx +

r – 2
2

∫

�

|∇w|r–2(∇|∇w|)2 dx

+
3
4
α2

∫

�

|∇w|r dx

≤ 1
4
α2‖∇w‖R(r–2)

LR(r–2) + C‖u‖
2R

R–1

L
2R

R–1
+ C, (3.8)

where C at most depend on χ , μ, ξ , α1, α2, β1, β2, u0, v0, w0, but are independent of Tmax

and τ .

Proof For any p > 1, multiplying the first equation of (1.4) by pup–1, and integrating it over
�, for any q > 1, we have

d
dt

∫

�

up dx + p(p – 1)
∫

�

up–2|∇u|2 dx + μp
∫

�

up+q dx

= χp(p – 1)
∫

�

up–1∇u∇v dx – ξp(p – 1)
∫

�

up–1∇u∇w dx + μp
∫

�

up+q–1 dx

≤ p(p – 1)

2

∫

�

up–2|∇u|2 dx + C5

∫

�

up(|∇v|2 + |∇w|2)dx +
μp
4

∫

�

up+q dx + C6

≤ p(p – 1)

2

∫

�

up–2|∇u|2 dx + C7

∫

�

(|∇v| 2(p+q)
q + |∇w| 2(p+q)

q
)

dx

+
μp
2

∫

�

up+q dx + C8,

and then rearranging it we obtain (3.6).
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Applying ∇ to the second equation of (1.4), and multiplying the resulting equation by
|∇v|r–2∇v (for any r ≥ 2), by a direct calculation, it is easy to see that |∇v|r–2∇v · ∇�v =
1
2 |∇v|r–2�|∇v|2 – |∇v|r–2|D2v|2. Now integrating the result over � and combining with
Lemma 2.3, we have

1
r

d
dt

∫

�

|∇v|r dx +
∫

�

|∇v|r–2∣∣D2v
∣
∣2 dx

+ (r – 2)
∫

�

|∇v|r–2(∇|∇v|)2 dx + α1

∫

�

|∇v|r dx

= β1

∫

�

|∇v|r–2∇v∇u dx +
1
2

∫

∂�

∂(|∇v|2)

∂n
|∇v|r–2 dx

= –β1

∫

�

u|∇v|r–2�v dx – β1(r – 2)
∫

�

u|∇v|r–3∇v∇|∇v|dx

+
1
2

∫

∂�

∂(|∇v|2)

∂n
|∇v|r–2 dx

≤ 1
4

∫

�

|∇v|r–2∣∣D2v
∣
∣2 dx +

r – 2
4

∫

�

|∇v|r–2(∇|∇v|)2 dx

+ C9

∫

�

|∇v|r–2u2 dx + κ

∫

∂�

|∇v|r ds.

Rearranging the above inequality, for any R > 1, we have

1
r

d
dt

∫

�

|∇v|r dx +
3
4

∫

�

|∇v|r–2∣∣D2v
∣
∣2 dx

+
3(r – 2)

4

∫

�

|∇v|r–2(∇|∇v|)2 dx + α1

∫

�

|∇v|r dx

≤ C9

∫

�

|∇v|r–2u2 dx + κ

∫

∂�

|∇v|r ds

≤ 1
4
α1‖∇v‖R(r–2)

LR(r–2) + C10‖u‖
2R

R–1

L
2R

R–1
+ κ

∫

∂�

|∇v|r ds. (3.9)

It is easy to see that for any δ > 0 and f ∈ Lq1 ∩ Lq2 , we have

‖f ‖Lr′ ≤ ‖f ‖α
Lq1 ‖f ‖1–α

Lq2 ≤ δ‖f ‖Lq1 + Cδ‖f ‖Lq2 , (3.10)

where 1 ≤ q1 < q2, r′ ∈ [q1, q2], α = q1(q2–r′)
r′(q2–q1) . Using the boundary trace embedding inequal-

ities [40], (3.4) and (3.10), we obtain

κ

∫

∂�

|∇v|r ds ≤ ε
∥
∥∇(|∇v| r

2
)∥
∥2

L2 + Cε

∥
∥|∇v| r

2
∥
∥2

L1

≤ ε
∥
∥∇(|∇v| r

2
)∥
∥2

L2 +
1
4
α1‖∇v‖r

Lr + C(ε,α1)‖∇v‖r
L1

≤ ε
∥
∥∇(|∇v| r

2
)∥
∥2

L2 +
1
4
α1‖∇v‖r

Lr + C(ε,α1,�)‖∇v‖r
L2

≤ ε
∥
∥∇(|∇v| r

2
)∥
∥2

L2 +
1
4
α1‖∇v‖r

Lr + C11.

Now taking ε = r–2
r2 and combining this inequality with (3.9), we obtain (3.7). �
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(I) Estimates for q ≥ 2.

Lemma 3.4 Let (u, v, w) be the solution of (1.4), and assume (H) holds. If N = 3, q ≥ 2,
then for any p > 1, we have

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥p

Lp + sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥∇(

u
p
2
)∥
∥2

L2 ds ≤ Cp, (3.11)

sup
t∈(0,Tmax)

∥
∥v(·, t)

∥
∥

W 1,∞ ≤ C, (3.12)

sup
t∈(0,Tmax)

∥
∥w(·, t)

∥
∥

W 1,∞ ≤ C, (3.13)

where Cp depends only on p, �, u0, and C depend on �, u0. All of them are independent of
τ and Tmax.

Proof Recalling (3.1), and taking 2R
R–1 = q + 1, r = q + 1 in (3.7) and (3.8), then using

Lemma 2.1, we obtain

sup
t∈(0,Tmax)

∥
∥∇v(·, t)

∥
∥q+1

Lq+1 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

(∇(|∇v| q+1
2

))2
dx ds ≤ C12, (3.14)

sup
t∈(0,Tmax)

∥
∥∇w(·, t)

∥
∥q+1

Lq+1 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

(∇(|∇w| q+1
2

))2
dx ds ≤ C12. (3.15)

For any p > 1, multiplying by up–1 the first equation of (1.4), and integrating the result
over �, we have

1
p

d
dt

∫

�

up dx + μ

∫

�

uq+p dx + (p – 1)
∫

�

up–2|∇u|2 dx

= χ(p – 1)
∫

�

up–1∇u∇v dx – ξ (p – 1)
∫

�

up–1∇u∇w dx + μ

∫

�

up+q–1 dx

≤ p – 1
2

∫

�

up–2|∇u|2 dx + C13

∫

�

up(|∇v|2 + |∇w|2)dx +
μ

2

∫

�

uq+p dx + C14.

Now rearranging it, we have

d
dt

∫

�

up dx +
1
2

p(p – 1)
∫

�

up–2|∇u|2 dx +
1
2
μp

∫

�

up+q dx

≤ C13

∫

�

up(|∇v|2 + |∇w|2)dx + C14. (3.16)

Using (3.1), (3.14), and Gagliardo–Nirenberg interpolation inequality [34], for any q > 2,
we have

C13

∫

�

up|∇v|2 dx = C13
∥
∥u

p
2 |∇v|∥∥2

L2

≤ C13
∥
∥u

p
2
∥
∥2

L
2(q+1)

q–1
‖∇v‖2

Lq+1

≤ C14
∥
∥u

p
2
∥
∥

2(q–2)
q+1

L2

∥
∥∇(

u
p
2
)∥
∥

6
q+1
L2 + C15‖u‖p

L1
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≤ ε
∥
∥∇(

u
p
2
)∥
∥2

L2 + Cε

∥
∥u

p
2
∥
∥2

L2 + C16

≤ ε
∥
∥∇(

u
p
2
)∥
∥2

L2 +
1
4
μp

∫

�

up+q dx + Cε .

Similarly, we have

C13

∫

�

up|∇w|2 dx ≤ ε
∥
∥∇(

u
p
2
)∥
∥2

L2 +
1
4
μp

∫

�

up+q dx + Cε .

Taking ε, ε = p–1
2p , and using the above two inequalities in (3.16), we obtain

d
dt

∫

�

up dx +
1
4

p(p – 1)
∫

�

up–2|∇u|2 dx +
1
4
μp

∫

�

up+q dx ≤ C17.

And then by Lemma 2.1, we obtain (3.11).
Now we consider the case for q = 2. Taking p = 3 in (3.16), we obtain

d
dt

∫

�

u3 dx + 2
∫

�

u|∇u|2 dx +
3
2
μ

∫

�

u5 dx

≤ C18

∫

�

u3(|∇v|2 + |∇w|2)dx + C19

≤ 3
4
μ

∫

�

u5 dx + C20

∫

�

(|∇v|5 + |∇w|5)dx + C19.

By Gagliardo–Nirenberg interpolation inequality and (3.14), we have

‖∇v‖5
L5 =

∥
∥|∇v| 3

2
∥
∥

10
3

L
10
3

≤ Cε

∥
∥|∇v| 3

2
∥
∥

4
3
L2

∥
∥∇(|∇v| 3

2
)∥
∥2

L2 + Cε‖∇v‖5
L3 ≤ Cε

(
1 +

∥
∥∇(|∇v| 3

2
)∥
∥2

L2
)
.

Similarly, we get

‖∇w‖5
L5 ≤ Cε

(
1 +

∥
∥∇(|∇w| 3

2
)∥
∥2

L2
)
.

Now combining these above three inequalities, we have

d
dt

∫

�

u3 dx + 2
∫

�

u|∇u|2 dx +
3
4
μ

∫

�

u5 dx

≤ Cε

(
1 +

∥
∥∇(|∇v| 3

2
)∥
∥2

L2
)

+ Cε

(
1 +

∥
∥∇(|∇w| 3

2
)∥
∥2

L2
)

+ C19.

Using (3.14), (3.15), and Lemma 2.1, we obtain

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥3

L3 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥∇(

u
3
2
)∥
∥2

L2 ds ≤ C. (3.17)

By Duhamel’s principle, the second equation of (1.4) can be expressed as follows:

v(t) = e–α1tet�v0 + β1

∫ t

0
e–α1(t–s)eα1(t–s)�u(s) ds,



Zhang Boundary Value Problems         (2024) 2024:94 Page 11 of 16

where {et�}t≥0 represents the Neumann heat semigroup in �; for more details about the
theory of Neumann heat semigroups, please refer to [10, 41, 42]. Then for any r ∈ (1, +∞),
t ∈ (0, Tmax), we have

∥
∥∇v(·, t)

∥
∥

Lr

≤ e–α1t‖∇v0‖Lr + C21

∫ t

0
e–α1(t–s)[α1(t – s)

]– 3
2 ( 1

3 – 1
r )– 1

2
∥
∥u(s)

∥
∥

L3 ds

≤ e–α1t‖∇v0‖Lr + sup
s∈(0,Tmax)

∥
∥u(s)

∥
∥

L3

∫ ∞

0
e–ss–1+ 3

2r ds ≤ C22,

thus, we obtain

C18

∫

�

uP|∇v|2 dx ≤ C23‖u‖p
Lp+q‖∇v‖2

L
2(p+q)

q
≤ C24‖u‖p

Lp+q ≤ 1
4
μp

∫

�

up+q dx + C25.

Similarity, we have

C18

∫

�

uP|∇w|2 dx ≤ 1
4
μp

∫

�

up+q dx + C25,

and then, using the above two inequalities in (3.16) and taking advantage of Lemma 2.1,
we have (3.11).

Similar to the proof above, and by (3.11), for any t ∈ (0, Tmax), we also have

∥
∥v(·, t)

∥
∥

L∞ ≤ e–α1t‖v0‖L∞ + C26

∫ t

0
e–α1(t–s)[α1(t – s)

]– 3
2 · 1

3
∥
∥u(s)

∥
∥

L3 ds

≤ e–α1t‖v0‖L∞ + sup
s∈(0,Tmax)

∥
∥u(s)

∥
∥

L3

∫ ∞

0
e–ss– 1

2 ds ≤ C27

and

∥
∥∇v(·, t)

∥
∥

L∞ ≤ e–α1t‖∇v0‖L∞ + C28

∫ t

0
e–α1(t–s)[α1(t – s)

]– 1
4 · 3

2 – 1
2
∥
∥u(s)

∥
∥

L4 ds

≤ e–α1t‖∇v0‖L∞ + C29 sup
s∈(0,Tmax)

∥
∥u(s)

∥
∥

L4

∫ ∞

0
e–ss– 7

8 ds ≤ C30.

The estimate of w is similar that of v, so we have (3.13). The proof is complete. �

(II) Estimates for q < 2.

Lemma 3.5 Let (u, v, w) be the solution of (1.4). Assume (H) holds, and an + q < 5 with
q < 2. If

∫ t

t–τ

∫

�

uan+q dx ds ≤ Cn,

then for any r < 3(an+q)
5–(an+q) , we have

sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

|∇v| 5
3 r dx ds ≤ Cn(r), (3.18)
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sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

|∇w| 5
3 r dx ds ≤ Cn(r), (3.19)

and for any p + q < 5q
2 · an+q

5–(an+q) , we have

sup
t∈(0,Tmax)

∫

�

up dx + sup
t∈(0,Tmax)

∫ t

t–τ

(∥
∥∇(

u
p
2
)∥
∥2

L2 + ‖u‖p+q
Lp+q

)
ds ≤ Cn+1(p), (3.20)

where Cn(r), Cn+1(p) are independent of τ and Tmax, which only depend on p, r, n, u0, v0,
and �.

Proof Taking r = an + q, R = an+q
an+q–2 in (3.7), where {an} is positive with a1 = 1, we have

1
an + q

d
dt

∫

�

|∇v|an+q dx +
an + q – 2

2

∫

�

|∇v|an+q–2(∇|∇v|)2 dx +
1
2
α1

∫

�

|∇v|an+q dx

≤ C31‖u‖an+q
Lan+q + C32.

Then by Lemma 2.1, we obtain

sup
t∈(0,Tmax)

∥
∥∇v(·, t)

∥
∥an+q

Lan+q + sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

(∇(|∇v| an+q
2

))2
dx ds ≤ C33. (3.21)

Moreover, we select a nonnegative sequence {rk} with rk+1 = 2 + 5(an+q–2)
3(an+q) rk . Obviously, rk

is monotonically increasing. Next, we prove that if

sup
t∈(0,Tmax)

∥
∥∇v(·, t)

∥
∥rk

Lrk + sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

(∇(|∇v| rk
2
))2

dx ds ≤ C (3.22)

then

sup
t∈(0,Tmax)

∥
∥∇v(·, t)

∥
∥rk+1

Lrk+1 + sup
t∈(τ ,Tmax)

∫ t

t–τ

∫

�

(∇(|∇v| rk+1
2

))2
dx ds ≤ C. (3.23)

By Gagliardo–Nirenberg interpolation inequality, we have

∥
∥|∇v| rk

2
∥
∥

10
3

L
10
3

≤ C34
∥
∥|∇v| rk

2
∥
∥

4
3
L2

∥
∥∇(|∇v| rk

2
)∥
∥2

L2 + C35
∥
∥|∇v| rk

2
∥
∥

10
3

L2

≤ C36
(
1 +

∥
∥∇(|∇v| rk

2
)∥
∥2

L2
)
,

which means

sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥∇v(·, s)

∥
∥

5
3 rk
5
3 rk

ds = sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥
∣
∣∇v(·, s)

∣
∣

rk
2
∥
∥

10
3

10
3

ds ≤ C37. (3.24)

Recalling (3.7) and taking 2R
R–1 = an + q, (r – 2)R = 5

3 rk , that is, R = an+q
an+q–2 , r = 2 + 5(an+q–2)

3(an+q) rk ,
we then have

1
r

d
dt

∫

�

|∇v|r dx +
r – 2

2

∫

�

|∇v|r–2(∇|∇v|)2 dx +
3
4
α1

∫

�

|∇v|r dx
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≤ 1
4
∥
∥∇v(·, s)

∥
∥

5
3 rk
5
3 rk

+ C38‖u‖an+q
Lan+q + C39.

Now (3.23) is obtained by Lemma 2.1. Note that rk+1 – 3(an+q)
5–(an+q) = 5

3 · an+q–2
an+q (rk – 3(an+q)

5–(an+q) ),
where 0 < 5

3 · an+q–2
an+q < 1, which means {rk – 3(an+q)

5–(an+q) } is monotonically decreasing, so rk goes
to 3(an+q)

5–(an+q) , thus (3.18) holds. Recalling (3.8) and taking 2(p+q)
q = 5

3 r, similarly we can obtain
(3.19) through (3.8), and thus (3.20) holds for any p + q < 5q

2 · an+q
5–(an+q) . �

Lemma 3.6 Let (u, v, w) be the solution of (1.4), assume (H) holds, and 8
7 < q < 2. Then for

any p ∈ (1, +∞), we have

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥p

Lp + sup
t∈(τ ,Tmax)

∫ t

t–τ

∥
∥∇(

u
p
2
)∥
∥2

L2 ds ≤ Cp, (3.25)

sup
t∈(0,Tmax)

∥
∥v(·, t)

∥
∥

W 1,∞ ≤ C, (3.26)

sup
t∈(0,Tmax)

∥
∥w(·, t)

∥
∥

W 1,∞ ≤ C, (3.27)

where C are independent of τ and Tmax.

Proof Letting An+1 + q = 5q
2 · An+q

5–(An+q) with A1 = 1, we see that

A2 + q
A1 + q

=
5q
2

· 1
5 – (A1 + q)

> 1,

...

An+1 + q
An + q

=
5q
2

· 1
5 – (An + q)

> · · · >
5q
2

· 1
5 – (A1 + q)

> 1.

Since q > 8
7 , it indicates that {An+1 + q} is monotonically increasing. Thus there exists M =

M(q) such that AM + q > 5. Then by Lemma 3.5, there exists pM + q ≥ 5 such that (3.20)
holds. Since q < 2, we have

‖u‖L3 ≤ C.

Then similar to the proof in Lemma 3.4 for the case q = 2, we have (3.25), (3.26), and
(3.27). �

Proof of Theorem 1.1 Combining Lemmas 3.4 and 3.6, we see that for any q > 8
7 ,

sup
t∈(0,Tmax)

∥
∥v(·, t)

∥
∥

W 1,∞ ≤ C, (3.28)

sup
t∈(0,Tmax)

∥
∥w(·, t)

∥
∥

W 1,∞ ≤ C. (3.29)

Next, we use the standard Moser’s iterative technique to prove the boundedness of
‖u(·, t)‖L∞ .
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Multiplying the first equation of (1.4) by pup–1 (for any p ≥ 2), and by (3.28), (3.29), we
obtain

d
dt

∫

�

up dx + p(p – 1)
∫

�

up–2|∇u|2 dx + μp
∫

�

up+q dx

= χp(p – 1)
∫

�

up–1∇u∇v dx – ξp(p – 1)
∫

�

up–1∇u∇w dx + μp
∫

�

up+q–1 dx

≤ 1
2

p(p – 1)
∫

�

up–2|∇u|2 dx

+
1
2

max
{
χ2, ξ 2}p(p – 1)

∫

�

up(|∇v|2 + |∇w|2)dx + μp
∫

�

up+q–1 dx

≤ 1
2

p(p – 1)
∫

�

up–2|∇u|2 dx + Cp2
∫

�

up dx +
1
2
μp

∫

�

up+q dx,

which means

d
dt

∫

�

up dx +
1
2

p(p – 1)
∫

�

up–2|∇u|2 dx +
∫

�

up dx ≤ Cp2
∫

�

up dx, (3.30)

where C is independent of p. By Gagliardo–Nirenberg interpolation inequality and
Young’s inequality, we have

Cp2
∫

�

up dx = Cp2∥∥u
p
2
∥
∥2

L2

≤ C40p2∥∥u
p
2
∥
∥

4
5
L1

∥
∥∇(

u
p
2
)∥
∥

6
5
L2 + C41p2∥∥u

p
2
∥
∥2

L1

≤ ∥
∥∇(

u
p
2
)∥
∥2

L2 + C42p5∥∥u
p
2
∥
∥2

L1 ,

where C40, C41, C42 are independent of p, and 1
2 p(p – 1) > 1

4 p2 since p ≥ 2. Thus, we have

d
dt

‖u‖p
Lp + ‖u‖p

Lp ≤ CpN+2‖u‖2· p
2

L
p
2

, (3.31)

where C is independent of p. Taking pj = 2pj–1 with p1 = 2, Qj = max{supt∈(0,Tmax) ‖u(·,
t)‖Lpj ,‖u0‖L∞}, replacing p, p

2 by pj, pj–1 in (3.31), and by a direct calculation, for any j ≥ 2,
we obtain

Qj ≤ C
1
pj p

5
pj
j Qj–1 = C

1
2j 2

5j
2j Qj–1.

Then for any n > 2, we have

Qn ≤ C
∑n

j=2
1
2j 2

∑n
j=2

5j
2j Q1.

Letting n → ∞, we obtain

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥

L∞ ≤ C
∑∞

j=2
1
2j 2

∑∞
j=2

5j
2j sup

t∈(0,Tmax)

∥
∥u(·, t)

∥
∥

L2 .
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It is easy to see that
∑∞

j=2
1
2j and

∑∞
j=2

5j
2j are convergent. Recalling Lemmas 3.4 and 3.6, we

have

sup
t∈(0,Tmax)

∥
∥u(·, t)

∥
∥

L∞ ≤ C.

Combining this with (3.28), (3.29), we complete the proof of Theorem 1.1. �
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