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1 Introduction
In this paper, we are concerned with the following-Laplacian fractional di erential equa-
tions with nonlocal boundary value problem (BVP)

.CDy p( Dy u(t) ... q(lo+g(t,u(t),I0+u(t),D0+u(t))))
=1 (t,u(t), Iy-u(t), Dg-u()), t (0,),
p(D0+u(0))(r) = p(Dgru(1))=0, r=1,2,---,m... 1, (1.1)
U(O) =u (O) =...= U(HZ(O) = O,

K |
Do b(D) = ailghu( )+ 2bju( ),
= =

wherel<n...1< <n,1<m...1< <m, .. >1, < ..1, >0,0<31< 5<---< <1,

0< <1,i>0,a,b>00=1,2k j=12:1), £ ().Yrga—y it
Z}:l bj ; ~*>0, p(s)=Is|”8,p>1, = ;5 Dy, Dy are the Caputo and Riemann-

Liouville fractional derivatives, respectively, ant). represents Riemann-Liouville frac-

tionalintegral oforder >0,f,g C((0,)x R¢3,R*)inwhichR*=[0,+ ),R5=(0,+ ).
Fractional calculus has received extensive attention because it can represent many

natural phenomena and help establish accurate models in control phenomena, gran-

ular heat "ow, signal processing, blood "ow phenomena, etc. For details, we refer to
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[8, 9, 21, 27]. In recent years, people have studied it more and more widely and deeply
[2..7,11,14..16, 19, 20, 22, 25, 28..32]. In order to solve fractional di erential equations,
people have created many methods, such as upper and lower solution method, mixed
monotone operators method, Leray-Schauder degree, and some “xed point theorems;
for more information, see [, 2, 5, 10, 13, 22..26, 28, 31] and references therein. The-
Laplacian operator can be used to describe turbulence problems in non-Newtonian "uids
and multispace medial8, 30], and it has also received substantial attentioi,[15, 20].

In[20], by means of upper and lower solution method, the authors investigated the exis-
tence analysis of solutions for the following fractional di erential equation with four-point
BVP

DO+( p(C D0+X(t))) =f (t,X(t),C DO*'X(t))v t (01 1)7
€Dy-x(0) =x (0) =0,
X(1) = rix( ), *DgeX(1) = rSDgeX( ),

wherel< |, 2,r,rz 0,h C([0,1]x R*x (... ,0, R*),and u(s)isthep-Laplacian
operator.

In[15], the authors studied the following multipoint BVP fomp-Laplacian fractional dif-
ferential equation

Do+( p(Dgex(1))) =f(t,x(1)), t (0,1),
m...2
X(0)=0,Dpx()= Y Dgex( 1)
m...2

Dgx(0) =0, p(Dg:Xx(1))= 3" i p(Dg+X( 1)),

i=1

whereDg., D+, andD. are the standard Riemann-Liouville derivatives with 1 < 2,
0< 1,0<, i, i<4i=1,2,--,m..2f:[0,x Ry R"is continuous,f(t,x) is
singular atx = 0, and (s) = [s|P%, p > 1. The existence results followed from the “xed
point of mixed monotone operators.

Motivated by the works mentioned above, in this paper, we focus on the existence of
positive solutions and the dependence of parameters for the BVR1j. Using the “xed
point theorem of mixed monotone operators, the uniqueness result and the dependence
of the solution on a parameter are established. Compared with the existing literature, this
paper presents the following new features. First, the signi“cant di erence with the existing
result [15, 20] lies in that the nonlinear term not only contains the derivative form but also
contains the integral form. We obtain the unique positive solution as the nonlinear terms
f and g may be singular on the time variable and the space variables. For any given ini-
tial value, our established numerical algorithm will generate a series of iterative sequences
converging to the unique positive solution. Second, the space variables of the nonlinearity
decompose into two quantities with diametrically opposite monotonicity, which is di er-
ent from the above paper. As far as we know, the results of the fraction order equation
by the “xed point of mixed monotone operators usually require a nonlinear term with re-
spect to the spatial variable monotonicity. Third, the BVPL(1) with multipoint boundary
conditions and integral boundary conditions are included in our study; that is to say, the
BVP (1.1) is more generalized. Finally, we introduce a parameterinto problem (1.1) to
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form problem (3.7) and establish the continuous dependence of the positive solutions on
a parameter .

The structure of this paper is as follows. In Se, we show some necessary de“nitions
and lemmas from fractional calculus theory. In Se@, the existence of positive solutions
for the BVP (1.1) is proved. In Sect4, an example is used to verify the conclusions.

2 Basic de“nitions and preliminaries
In this section, we will introduce the related de“nitions of fractional integral, fractional
derivative, and some other related results that will be used to prove our main results.

Definition 2.1 [17] The Riemann-Liouville integral of order ( > 0) of a function f :
(a, ) Risde“nedby

1 X
Ia+f(x):—/ (x..1) ~¥(t)dt,
()Ja
provided that the right-hand side is pointwise de“ned orfa, + ).

Definition 2.2 [17] The Riemann-Liouville derivative of order (n... 1< <n) of a func-
tionf:(a, ) Risde“nedby

D,.f(x) = (;—X)n 1% £ (x),

wheren=[ ]+1 and[ ] denotes the integer part of number , provided that the right-
hand side is pointwise de“ned or{a, + ).

Definition 2.3 [17] The Caputo fractional derivative of order for an at leastn-times
di erential function f:(a, ) R,isde“nedas

where[ ] denotes the integer part of the real number.

Remark 2.1 Ifx,y:R§ Rwithorder >0,then

Do+ (X(t) + Y(1)) = Do+ X(t) + Do+ y(1)-

Lemma 2.1 [17]
@) I1fx L(,1, > >0,then

g lgrX() = g X(t),  DgelgeX(t) = I X(t),  Dos g X(t) = X(t).

2I1f >0, >0,then

D0+t l:
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Lemma 2.2 [32] Letx C(0,D)(\L(0,D,and1<m...1< <m,thenthe BVP

D V() =x(t), t (0,1),
V(O) =AY, (0) =... :V(ml(o) :V(l) =0

has a solution of the following form

v(t) = /OlH(t,s)x(s)ds,

where
1 B l B W1
H(t.s) = (1.5 {t.s) 50 s t 1, 2.1)
()]@.s) -2 0t s 1
Lemma 2.3 Ify C(0,1)(L(0,D,and 1<n...1< <n,then the BVP
.Dgru(t) =y(t), t (0,1),
= =...=y"-20) =
u(0)=u(0) - ‘u © | 0, 2.2)
Do;--h(1)=§ailo'+u( )+ iju( j)
i= =
has a solution of the following form
1
u(t):/ G(t,s)y(s)ds
0
in which
t L1k t L1l
G(t,s) = Go(t,s) + — > _aiGi( ,5)+ > " biGo( 1,9), (2.3)
i=1 j=1
where
1 ft-L(t.s)t0 s t 1,
Go(t,s) = —
oft:9) (){t---l, 0t s 1,
1 t*riel (t.s) *il0 s 1,.
Gi(t,s) = i=1,2,-,k.
Proof Taking the integrall,. of order to equation 2.2), we get
1 t
u(t) = ﬂ/ (t..s) “¥()ds+Cqt M+ Cot %+ .- +Cpt .
0
From u(0) = u (0) = --- = u™-%(0) = 0, we haveC, = C3 = --- = C, = 0. Furthermore, by

Lemma2.1, we obtain

t
DO;"h(t):.../; y(s)ds+Cy (),
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and

1 ' ‘i () ,+1
" i)/O(t..s) Y(s)ds+C; 7 i)t .

lhu(t) = .5 (

k |
From the boundary conditionsDy:-ti(1) = Y ajlhu( )+ Y bju( j), we can get
i=1 =1

1t 1& a b
cl-—fo y(s)dsm_;mfo( .9 (o)

! i
———— b; ds.
()j:zl,/o(, 9 “Ye)ds

Hence, we conclude that the equation has solution

1
u®= [ ettsyEs
0
G(t,s) is de“ned by .3). This completes the proof. O

Lemma 2.4 Ify C(0,1)(\L(0,1) and G(t,s) defined by (2.3), then

Dg+ (/OIG(t,s)y(s)ds) = /OlG (t,s)y(s)ds,

where

...... 1k oaal
6 (19760 19+~ Y aG( 9+ — LY b (@4
e 3

i=1 ( ’
and
1 to l.(t . S) ...... ],. 0 s t 1
Go (t,8)= ——
o (t9) (...){t ------ ! 0t s 1
Proof By Lemma2.1, the proof of this lemma is easy, and we omit it. 0

Remark 2.2 Ifz C(0,1)(L(0, 1), then
Y
lg+2(s) = ( )/O(s... ) % )d

1 1 1
—_ L) R = d .
()/0(1 ) ~h( ) /OH(’)Z”

As in [34], the nonlinear term f (t,x) admits the form f(t,x) = f (t,x,x), for example
f(t,x)=x +x-,0< <1,0< <+ .f(txYy)isnondecreasing orx and nonincreasing
onyforeach“xedt [0, 1. We suppose that,g admitthe formf (t,u(t), - u(t), Do+ u(t)) =
f(t,u(t), Ig-u(t), Dg+u(t), u(t), I+ u(t), Do+ u(t)),
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g(t,u(t), lg+u(t), Do+ u(t)) = g(t,u(t), lo-u(t), D+ u(t), u(t), I5+ u(t), D+ u(t)). So, through-
out this paper, we always assume that the following assumption holds:
(Ho) Forallt (0,2),x Rg (i=1,2,3, there exist functions f,g C((0,1) x R3®,R*)
satisfying f (t, X1, X2,X3) = f (t, X1, X2, X3, X1,X2,X3), 9 (t, X1, X2,X3) = g(t,X1,X2, X3, X1, X2,
X3).

Lemma 2.5 Suppose that (Ho) holds, then the solution of (1.1) isequivalent to the following
integral form

1 1 .
u(t):/0 G(t,s) q(f(u,u)(s))ds+/O G(t,s) 0|(G(u,u)(s))ds, (2.5)
and we have
1 1 .
D0+u(t)=/(; G (t,9) q(f(u,u)(s))ds+/0 G (t,9) q(G(u,u)(s))ds, (2.6)

where G(t,s) and G (t,s) are given by (2.3 and (2.4), respectively, and F(u, v)(t), F(u,v)(t)
will be given in Sect. 3.

Proof From Lemma2.2and Lemma2.3 lety(t) = q(fol H(t,s)x(s)ds) + q(f.%\(u,u)(t)) and
X(t) =1 (t,u(t), l5-u(t), D= u(t), u(t), Iy u(t), Dy+u(t)), we have

1
u(t):/0 G(t,s)y(s)ds
1 1
:/0 G(t,s)|: q(/o HG, )x( )d )+ q(G(u,u)(s))}ds
1 1
= /0 G(t,5) q(F(u,u)(s))ds+ /O G(t,s) 4(G(u,u)(s))ds.

Using Lemmaz2.4, we have

1
Dg+u(t) = /o G (t,s)y(s)ds
1 1
:fo G (t,s)[ q(/o H(, )x( )d )+ q(G(u,u)(s))}ds
:/lG (t,s) q(f(u,u)(s))ds+/le (t,5) q(G(u,u)(s))ds. O
0 0

Lemma 2.6 The functions H(t,s), G(t,s) given by (2.1) and (2.3), respectively, satisfy the
following properties:

()0 H(t,s) H(s,s),forallt,s [0,7];

2) [y Ht,s)ds L, fort [0, 1;

(3)G(t,s) O,forallt,s [0,1];

@t 1) G(ts) Mt -~Lforallt,s [0,1];
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(5) (5)Dget 1 G (t,s) MDgt ~iforallt,s [O,1], where

. + il Ib 1
Z( +Z—)’

i= =1

L
()

(S) = 1 ZaiGi( ,S)"' - ijGo( j,S).

i=1 =1

Proof For the proof of (1) and (2) see3d2]. Since (3) can be derived from (4), it remains to
verify (4) and (5).
On the one hand, we have

t - +i..1 j .1
Go(t.s) ﬂ G Gl
o)
t-1l I g t 1~ b
G oL i + .., S - Mt L
(t,s) ( )+ ; ) + J:Zl y t
On the other hand,

k |
G(t,s) t --{i Y aGi( )+ — ) biGo( 1,5)} =t -1 ().

i=1 =1

From Lemmas2.4and 2.1, we can obtain

...... k
Gty ———t E)t )1ZaiG.( )
” i=1
Ot =g
M > bGo( },9)
B EPA
r . 1 ()t ...... 1k a ‘i
QD M g P iy ey
Ot =i~ b
T 2O
() ...... 1 1 : o i I b
R RE IS IS T
=MDt %
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k |
1
Dot [ =D aiGi( ,5)+ — > _bGo( j,5)
i=1 =1
(5)Dget 2
This completes the proof. O

Let(E, - ) be areal Banach space,be the zero element o, andP E be aconeP is
called normal if there exists a constaritl > 0 such that, for anyx,y E, X yimplies
x Ny ,and the smallesN is called the normality constant oP. If P is the normal
cone of a Banach spade, ande P,e> ,de“neP.={u P : there exist constants,C >
Osuchthatce u Ce}, thenP, is a component ofP.

Definition 2.4 [12]LetP E,T:Px P P issaidto be a mixed monotone operator, if
Ui Uz Vi Vp, imply T(ug,vi) T(uz,v2), MHi,Vvi P(@i=1,2.
u Piscalled a*“xed point of T if T(u,u) =u.

Lemma 2.7 [33] Let P be anormal cone in a real Banach space, and then P is a component
of P, T1, To: Pex P, P are mixed monotone operators. In addition, suppose that T,
T, such that

(1) forany (0,1, thereexistsaconstant () ( ,1],suchthat

Ti(u, %) (O)Tauv), uyv P
(2)forany (0,1,
To(u, =¥  Touv), uv P
(3) there exists d > 0, such that
Ti(u,v) dTz(u,v), u,v Pe.
Then, there has a unique positive solutionu P, for any ug,vo  Pe, we have

Un+1 = T1(Un,Vn) + T2(Un,Vn),

Vn+1 = T1(Vn,Un) + To(Vn,Un), N=1,2,...,
andu, u,vy, u,asn

Lemma 2.8 [33] If T1, T, are as defined in Lemma 2.7,and > Qis a parameter, then the
equation Ti(u,u)+ T,(u,u)=u hasan unique solutionu  Pg, which satisfies
(2) if there exists a constant r (0, 1) such that

r

() -+ 1 0.1,

d

thenforany ¢>0, u U 0,as 0,
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) if

1
2

()> ~ o+ %, 0,1,

d

then0< 1< 5, U L <u;
(3)ifthereexists r  (0,3) such that

r

O —5*" 0.1,

then Iirr(;+ u =0,and Im u =+

3 Mainresults
Let E={u C[0,1,Dyu C[0,1}, endowed with the norm u = ma>{trr?§§u(t)|,

trrE(<)';1§|D0+u(t)|}, observe that(E, - ) is a Banach space. De“ne a normal corfe E by

P={u E:u(t) O0,Dyu(t) O}). Thespace hasapartialordetu; ux ug(t) ux(t),
Dg+Ui(t)  DgUo(t), then we de‘nePe={u P: p (0,1, pe u u-%}, where
et)=t -3t [0,1].
In this article, the following assumptions will be used
(H1) Foranyfixedt (0,2), f(t,X1,X2,X3,Y1,Y2,Y3), 9(t,X1,X2,X3,¥1,Y2,Y3) are increasing
in (X1,X2,X3) and decreasing in (y1,Y2,¥3), Xi,¥i Rg(i=1,2,3.
(Hz) Forany  (0,1), thereexists () ( ,1],suchthatforallt (0,2),x.,yi R§(i=
1,2,3

f(t, xi, X2, X3, Y1, Y2, vYa) Pt X, X2, Xa,Y1,Y2,Y3),s
g(ty X1, X2, Xz, “.:S/ll "'JYZy :5/3) pmb(tlXliXZiXSiylyyZ!yS)'

(Hz) There exists d >0, such that forallt (0,1, x;,yi Rg(i=1,2,3

f(t,X1,X2,X3,Y1,YZ,Y3) dpmh(t!X]ﬂXZ!X3!ylvy2!y3)'

(H) 0<f5 (9 q<|0+9(513 s tods “'1,1,1,1)>ds<+ ,and
1
0
1
0
We introduce the operatorsTy, To: Px P E by

1
Tl(u,v)(t)=/O G(t,s) q(Tf(u,v)(s))ds, (3.2)

1
Tz(u,v)(t):/o G(t,s) q(@(u,v)(s))ds, (3.2)

Page 9 of 19
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where
N 1
F(u,v)(s):/0 HGs )f(  u( ) dgeu( ), Dgsu( ), V( ), lgev( ),Dg,v( ))d , (3.3)
G(u,v)(s) =150 (s, u(s), Ig+u(s), Dg+u(s), v(s), I5+Vv(s), D0+v(s)), (3.4)

andu is the solution to equation {.1) if and only if u = T1(u,u) + T2(u,u). By Lemmag2.4,
2.5and Remark2.1, we know that

1

D0+T1(u,v)(t):/0 G (t,9) q(f(u,v)(s))ds, (3.5)
1

D0+T2(u,v)(t):/(; G (t,s) q(G\(u,v)(s))ds. (3.6)

Lemma 3.1 Suppose that (Ho), (H1), (H2), and (Ha) hold, then the operators Ty, T : Pe %
Pe P are well-defined.

Proof Fromthe de“ned ofPe, forany(u,v) Pex Pe,t [0, 1], thereisaconstanpt (0, 1)
such that

pet) u(t) poB(), uDge(t) Dgeu(t) pDgee(t),
ne(t) v(t) poB(t), uDge(t) Dgev(t)  pDoee(t).

Setm = min{ Qe )} <1, consequently,

c+) (O)
mt * -1 1e(t) ( (+) ) el omed
mt -1 Dye(t)= : () )t ...... 1 el

From assumptiongH,) and (H,), by Lemma2.6, for anyt (0, 1), we obtain

1
Ta(u,v)(t) = /O G(t,s) o(F(u,v)(s))ds

1 1
0

/lME(t) q</lH( , )f( ,u’ml,ulml,ulml,um + ...l,um + 1’
0 0
Me(t) ! + .1 + .1 + ... )
, )fF(,1,1,1, X X d
([HC i 2 ja )<s

(um) ¢
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and

1
Dy T1(u,V)(t) = /O G (t,5) q(F(u,v)(s))ds

1 1
/ MDo: (e(t)) q(/ H( . )f( Hluhlujmlu ”'%Hm vl
0 0

1 1
/ MDy- (e(t)) q</ HC, OF( e tpeetp-netpm -
0 0

MDE;(;(;)) q(/olH( U (1,11, tel tel +dy ><+

Moreover, noticing Remark2.2, similarly, we can get

1
L)) Me(t) q(/o HC, )g( L L1, * b el + g ><+ ,

pm
MDD« (e(t 1
Dys Ta(U,v)(t) o+ (B(1)) q</ HC L Je( 11,1, ° R I)d )
pm 0
<+
Hence, T,, T2 :Pex P, P are well-de“ned. This completes the proof. O

Theorem 3.1 Assume that the hypotheses (Ho), (H1), (H2), (Hs), and (H4) hold, then BVP
(1.2 has a unique positive solutionu P, and there existsaconstantp (0, 1) such that

B0t poy (u()"'l())t ...... 1

Furthermore, for any up,vo  Pe, We have sequences

Un+1(t) = T1(un,vp) () + To(un,va)(t), n=0,1,2,...

V1 (t) = T1(Vn, Un)(t) + To(vn,un)(t), n=0,1,2,...
whenn +

un(t) u (t), Dg+un(t)  Dgeu (1),

Va(t) U (t), Dg:vn(t)  Dgeu (1).
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Proof First, we show thatforany, v Pe,t (0,1, Ty, To:Pex P Pe. Take 0<Q<1
such that

Q<min{ (um)/(;l (s) q</OlH(s, )f( , + 1' + 1, + "'1,1,1,])d )dS,

1
um/ (s) q<I0+g(s,s todgtdg t "'1,1,1,1))d5,
0

1

(% q</olH( (L LLL, el el g ))

From assumption, we know that

fC u( ) lgu( ),Dgeu( ), v( ) 1g+v( ), Dgev( )

f( U ]’.um + %um ...... ZE”]’.“ ...... ]’.ujh.lﬁ

f( um + ],.Hm + ],_“m + %uji,n];u ...... %p‘:h.]§
pJ(um)f( , + ZE + % + ...],.1,1,3,

which imply
l o~
Tl(u,v)(t):/0 G(t,s) ¢(F(u,v)(s))ds
t W1 (um)/l (S) q(/lH(S, )f( , + ],_ + ZI,. + ],'1,1,])d )dS
0 0

l o~
Dy T2(u,V)(t) = /0 G o(F(uv)(s))ds

1 1
Dget 1 (um)f0 (s) q(/o He, f(, *-% -1 *-111,9d >ds

QD t 1

Similarly,

g( ,U( ),|0+U( )’DO*'U( ),V( ),|0+V( ),D0+V( ))
(um)pjg( ’ + :E + l’ + ,,,1’1’1,3’

we can get

1
To(u,v)(t) = /O G(t,s) ¢(G(u,v)(s))ds

! 1 ) + .1 + .1 + .1
t hm/o (s)q<ﬁ/0(s...) y(, , ; ;1,1,9)d )ds
Qt 1
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andDgy: T2(u,v)(t) QD,:t % Onthe other hand, in consideration of Lemma.1, we have

TiUV)(t)  Q(1), D Ta(uV)()  Q Dgee(t),
ToUV)(D) Q- R(t), Do To(u,v)(t)  Q-Dyee(t).
Consequently,Ty, To:Pex Py Pe.

Second, we will show thafl;, T, are mixed monotone operators. By assumptiqfi,),
forany (us,vi), (Uz,v2) PeX Pe, Uup Uy, Vo Vi, Wwe have

T1(ug,v1)(t) = /O lG(t,s) q(F(uz,v1)(s))ds
/ 613 oFUav2)E)ds
= Ta Uz V2)(0),

and similarly, we can easily prove

Do TaUsv)(® Dy Ta(Uzv)(0),
and

To(ug,vi)(t)  Ta(ua,v2)(t), DgrTo(ug,va)(t)  Dge To(uz,v2)(t),
which imply that T1(uz,va) Ta(UzV2) andTo(Us,v1)  Ta(Uz Vo) for Uy Us Vs Vi

Third, we will show that (1) and (2) of Lemm&.7 hold. From assumption(H.), for any
(0,1, there exists () ( ,1],forany(u,v) Pex Pesuch that

1
T u, “"v)(t):/o G(t,s) o(F(u, ~¥)(s))ds

1 o~
( )/ G(t,s) ¢(F(u,v)(s))ds
0
= ()Ta(u,v)(),
l o~
Do+ Ta( U, "'Jﬁl)(t):/O G (t,5) q(F(u, ~¥)(s))ds
l o~
()/ G (t,5) q(F(u,v)(s))ds
0
= ()Dg Ta(u,v)(1).
Similarly, we have
To(u, W) Tauv)(), Dy T2( U, ¥)(t)  Dgs To(u,v)(t).

Hence,T1( u, ~¥) O)T2(u,v), To( u, ~%)  To(u,v).



Jiang and SurBoundary Value Problems  (2024) 2024:97 Page 14 of 19

In addition, from assumption(Hs), we have
1 o~
Tl(u,v)(t):/ G(t,5) q(F(u,v)(s))ds
0
1 —~
d/ G(t,5) 4(G(u,v)(s))ds=dT(u,v)(t),
0
1
Do+ T1(u,v)(t) = /O G (1,5 q(F(u,v)(s))ds

d/lG (t,5) o(G(u,v)(s))ds = dDy: T2(u,v)(t),
0

which imply that Ty(u,v) dT2(u,v).
Therefore, using Lemma.7, we conclude thatTy, T, has a unique “xed pointu P,
with sequencess, u,v, Uu,asn + .Thiscompletes the proof. O

Next, we consider BVP1.1) with a parameter

D p(-DrU(t) -+ (1o (t,(E), lo-u(®), Do u(D) )
= f(t,u(t), ly-u(t),Dy.u(t)), t (0,1,
p(Dg+u(0))V = ,(Dgru(1) =0, r=1,2,--,m... 1, (3.7)
U(O) =u (O) =...= U(HZ(O) = 07

K [
Dy (W = Saiku( )+ Y bu( )
iz =

Theorem 3.2 Assume that (Ho), (H1), (H2), (H3), and (H,) hold, then for any > 0,BVP
(3.7) has a unique positive solution u and there exists a constant i (0, 1) such that

ptetu @ ()t

L O gy ®21O,

()

Furthermore, we have the conclusions:
(2) If there exists a constant r (0, 1) such that

r

- + r! 0!11
O — 0.9
thenforany >0, u ..u 0,as 0-
@) If
1
2. 1
O>——* 2 0,1,

then0< 1< 5, U L <u,.
(3) If there exists r (0, 3) such that

r

) —+ ' 0.1,

d ’

then Iing+ u =0,and lm u =+
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Proof De“ne two new operatorsT, = 9+, T, = 9-¥,. From Theorem3.1, we ob-
tain that BVP (3.7) has a unique solutioru  P.. Obviously,u is the unique solution to
equation %-Ty(u,u)+ 9-T(u,u)=T, (u,u)+ T, (u,u)=u. AsLemma2.8 u satis“es
conditions (1)...(3) given in the Theoref®.2, this completes the proof. O

4 Applications
In this section, we construct an example to demonstrate the application of our main re-
sults.

Example 4.1 Consider the equation

.°DE. o .D2.u(t) ... 2(|§+g(t,u(t),|0%+u(t),D§+u(t))))
=ft,u(), 12 u(t), DA u(®), t (0,1,

( 2DEU)) = ( 2DEUO)) = ( ADEUO)® (4.1)
= 5(DEUL)=0, u©O=u(0)=0,

Dhu(t) = HEu(d) + 33u(d) + JuG)

where =2, =1 =1 =1p=q=2k=11=2, ;=3 =% a=31 =3b=%
) _ ) .11 1 1171 .11 1
b,=3, 1=3, 2=3,andf(t,u,v, )=4usva -4 +6 su-4v-8,g(t,u,v, )=tusva -1+

1
! 3
y-av-E, By calculating, we can obtain =0.102911 > 0.

1 1 1 1 1 1
— A8 3y 3 B\ 4,8
f(t,ug,Uz,U3,V1,V2,V3) =4ufusvy? +6udvy?vy®,

1 1 1 1 1 1
— 18y 412y dyE
g(t,uz,Uz,U3,V1,V2,V3) = U U V5™ + U3”Vy “V;,°.

It is easy to check
(1) For allt (01 1), Ui, Vi RS(I = 112131 f(t,ul,uz,U3,V1,V2,V3), g(tvulvu21u31vlav21\/3)
are increasing in(ug, Uz, Uz) and decreasing irfvy, v, Vvs).
(2 Let ()= 3,forany (0,D,t (0,1, u,v R§(i=1,23
> 11 1 ! 3 1 1
f(t, uy, Uz, uz, Yy, Vo, 3= Sufufvi® +(6 BuZ +1) Bvytv,?
125’f(t,Ul,U2,L13,V;|_,V2,V3),

1 1

2 1 1 L 11
g(t, ug, Uy, uz, g, Y, We)= Sufuivit+ ZuPvity,

8

2g(t,ug, V1, Ug, U3, V1, V2,V3)

5
2g(t,us, Uz, U3,V1,V2,V3).
(3)Letd=4,forallt (0,1),ui,vi R{(i=1,2,3,
f(t,ul,UZ,Ug,Vl,Vz,V3) 4g(t,U1,U2,U3,V1,V2,V3).

(4)

1
O</ (s) q(lo+g(s,s toelgtolg '"1,1,1,])>ds
0
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0, 1, 2) and approximate of solutions.

t

00.1 0.2

0.3

0.4 0.5 0.6 0.7 0.8

0.9 1.0

uo(f) O 0.031623 0.089443
ui(f) 0 0.501978 1.411366

0.164317 0.252982 0.353553 0.464758 0.585662
2.577390 3.944533 5.480084 7.161843 8.973771

0.715542 0.853815 1.000000
10.904039 12.944066 15.088034

uo(f) 0 0.382427 1.070279
vof) O 0.015811 0.044721
v1(f) 0 0.377024 1.060040
1a(f) 0 0.331623 0.928093
u () 0 0.190371 0.533134

1.945346 2.963040 4.096557 5.327353 6.641740
0.082158 0.126491 0.176777 0.232379 0.292831
1.935797 2.962600 4.115877 5.378958 6.739797
1.686900 2.569376 3.552280 4.619530 5.759257
0.969680 1.477972 2.044792 2.661005 3.319873

8.029363 9.482446 10.995402
0.357771 0.426907 0.500000
8.189516 9.721673 11.331899
6.962483 8.222466 9.534361
4.016290 4.746409 5.507441

16 T T

14

101 / 1

i

01 02 03 04 05 06 07 08 09 1
Figure 1 Iterative process,(t) and approximate solution (t).
1 53 ( !) S (g)
:/ (s)[T+ — T ]ds—0008958<+ ,
0 (3) (3)
1
0</ H( , )f( '1,1,1, + ZE + ]’. + Z)d
0
1 4 (1) 6 (&
:/ H(, )4 --%+ --%)d = (2)+ Eg)i4.916618<+ ,
0 7! (%)
1
0</ H(, )o( ,1,1,1, * =t *=1 *.3q
0
1 3 1
=/ H(, )( 2+ iy - B, @ =0.856135<+ .
0 4! ()

From Theorem3.1, we know that equation 4. 1) has a unique solution. If we letiy = tz

Vo = tz , we know thatug, Vo Pe, Wheree(t) = t3. We can obtain the following numerical

results and approxmate results as shown in TapleFig.1. and Fig.2.
Further, takingr = 9, we know () T + 5. The numerical results shown in Fig3

and Table2 indicate that

max{lXO god®) - X, (D)1, |D +X0.90dt) - D +X1(D)[} <0.01,

from which we can interpret thatu is continuous at =1.
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— A up(t)
—o—w(t)[ |

us(t)
—7—u(t)

Figure 2 Iterative procesg,(t) and approximate solution (f).

o0e

—6—ujus(t)

B u(t) [ B
Ui g00(t)

——ui(t)

0

0.1

0.2

0.3

0.4

0.5

Figure 3 Approximate solution (t).

0.6

0.7

0.8

0.9 1

Table 2 u () for di erent values of positive parameter( =0.95,0.96,0.97,0.98,0.99,0.999, 1.0)

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ugod) 0 0.171810 0.481153 0.875136 1.333870 1.845425 2.401557 2.996185 3.624701 4.283634
Upodt) 0 0.175446 0.491336 0.893657 1.362099 1.884480 2.452382 3.059594 3.701412 4.374290
UggAt) 0 0.179120 0.501626 0.912372 1.390624 1.923945 2.503740 3.123668 3.778927 4.465896
Upodt) 0 0.182832 0.512022 0.931281 1.419445 1.963818 2.555629 3.188406 3.857245 4.558451
Ugodl) 0 0.186583 0.522525 0.950384 1.448561 2.004100 2.608051 3.253807 3.936366 4.651955
Up.godt) 0 0.189990 0.532068 0.967742 1.475018 2.040704 2.655686 3.313236 4.008261 4.737920
ug(0) 0 0.190371 0.533134 0.969680 1.477972 2.044792 2.661005 3.319873 4.016290 4.746409
Abbreviations

BVP, Boundary value problems.
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