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Abstract
In this paper, a class of fractional Sturm–Liouville advection–dispersion equations
with instantaneous and noninstantaneous impulses is considered, in particular, the
nonlinearities discussed here include Caputo fractional derivatives. Since the
nonlinear terms contain fractional derivatives, this problem does not directly have
variational structure, we need to combine critical point theory and an iterative
method to deal with such problems. Finally, the existence of at least one nontrivial
solution is proved by the mountain pass theorem and the iterative method. At the
same time, an example is given to illustrate the main result.
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1 Introduction
In this paper, we study the following class of fractional advection–dispersion equations
whose nonlinear terms contain Caputo fractional derivatives, and the equations have
inhomogeneous Sturm–Liouville boundary conditions, instantaneous and noninstanta-
neous impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–
d
dt

(
1
2 0D–β

t (u′(t)) +
1
2 tD

–β
T (u′(t))

)

= λfj(t, u(t), c
0Dα

t u(t)), t ∈ (sj, tj+1], j = 0, 1, . . . , m,

a
(

1
2 0D–β

t (u′(0)) +
1
2 tD

–β
T (u′(0))

)

– bu(0) = A,

c
(

1
2 0D–β

t (u′(T)) +
1
2 tD

–β
T (u′(T))

)

+ du(T) = B,

�

(
1
2 0D–β

t (u′(tj)) +
1
2 tD

–β
T (u′(tj))

)

= μIj(u(tj)), j = 1, . . . , m,

0D–β
t (u′(t)) + tD

–β
T (u′(t)) = 0D–β

t (u′(t+
j )) + tD

–β
T (u′(t+

j )), t ∈ (tj, sj], j = 1, . . . , m,

0D–β
t (u′(s–

j )) + tD
–β
T (u′(s–

j )) = 0D–β
t (u′(s+

j )) + tD
–β
T (u′(s+

j )), j = 1, . . . , m,

(1.1)
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where 0 ≤ β < 1, α = 1 – β

2 , and 1
2 < α ≤ 1. λ > 0 and μ > 0 are two parameters, a, b, c, d > 0,

A and B are real numbers. 0D–β
t and tD–β

T denote the left and right Riemann–Liouville frac-
tional integrals of order β , respectively. c

0Dα
t denotes the left Caputo fractional derivatives

of order α. 0 = s0 < t1 < s1 < t2 < s2 < · · · < tm < sm < tm+1 = T . fj ∈ C((sj, tj+1] ×R×R,R) and
Fj(t, u, y) =

∫ u
0 fj(t, s, y)ds. The instantaneous impulses Ij ∈ C(R,R) start to change suddenly

at the points tj, and the noninstantaneous impulses continue during the finite intervals
(tj, sj] for j = 1, . . . , m. Besides,

�

(
1
2 0D–β

t (u′(tj)) +
1
2 tD–β

T (u′(tj))

)

=
(

1
2 0D–β

t (u′(t+
j )) +

1
2 tD–β

T (u′(t+
j ))

)

–
(

1
2 0D–β

t (u′(t–
j )) +

1
2 tD–β

T (u′(t–
j ))

)

,

where

0D–β
t (u′(s±

j )) + tD–β

T (u′(s±
j )) = lim

t→s±j

(

0D–β
t (u′(t)) + tD–β

T (u′(t))
)

,

0D–β
t (u′(t±

j )) + tD–β

T (u′(t±
j )) = lim

t→t±j

(

0D–β
t (u′(t)) + tD–β

T (u′(t))
)

.

The emergence of the fractional advection–dispersion equation can effectively solve
the problem that classical second-order convection–diffusion equation cannot accurately
simulate the anomalous diffusion phenomenon, so the fractional advection–dispersion
equation is widely applied in the anomalous diffusion phenomena, such as groundwater
and soil pollution, porous media, fluid mechanics, polymer and nuclear magnetic res-
onance (see [5, 14, 27]). Not only that, the fractional advection–dispersion equation has
also been extensively used in the simulation of turbulent flow, chaotic dynamics of classical
conservative systems, and other physical phenomena (see [1, 3, 22]). There have been some
related studies (see [2, 4, 9, 24, 29]), for example, reference [11] considered the following
symmetric fractional advection–dispersion equation with Dirichlet boundary value con-
dition:

⎧
⎪⎨

⎪⎩

d
dt

(
1
2 0D–β

t (u′(t)) +
1
2 tD–β

T (u′(t))
)

+ λ∇F(t, u(t)) = 0, a.e. t ∈ [0, T],

u(0) = u(T) = 0,

where 0 ≤ β < 1, λ > 0. When the nonlinear term did not meet the Ambrosetti–Rabinowitz
condition, the authors gave the existence of solutions of the above equation through the
minimization principle. However, the authors did not consider the impact of impulses.

Regarding the instantaneous and noninstantaneous impulses, the most prominent fea-
ture of instantaneous impulse is that it can more deeply and accurately reflect the changing
laws of things and fully consider the impact of instantaneous sudden changes on the state.
What is more, we also need to point out that the noninstantaneous impulse proposed by
Hernández in 2013 can successfully solve the problem that instantaneous impulse cannot
be used to simulate the evolution process of phenomena such as dynamics (see [12]). For
related research work, please refer to literature [16, 31]; especially, in the literature [30], the
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authors studied the following fractional noninstantaneous impulse differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tDα
T (c

0Dα
t u(t)) = fi(t, u(t)), t ∈ (si, ti+1], i = 0, 1, . . . , n,

�(tDα–1
T (c

0Dα
t u(ti))) = Ii(u(ti)), i = 1, 2, . . . , n,

tDα–1
T (c

0Dα
t u(t)) = tDα–1

T (c
0Dα

t u(t+
i )), t ∈ (ti, si], i = 1, . . . , n,

tDα–1
T (c

0Dα
t u(s–

i )) = tDα–1
T (c

0Dα
t u(s+

i )), i = 1, 2, . . . , n,

u(0) = u(T) = 0,

where 1
2 < α ≤ 1, and they got the existence of at least one solution of this boundary value

problem by using the minimization principle. Note that the authors considered the Dirich-
let condition here.

Last but not least, the Sturm–Liouville problem arose in the Fourier treatment of heat
conduction. Later, Sturm and Liouville generalized the Fourier method, which formed the
famous Sturm–Liouville theory. And the Sturm–Liouville problem plays an important
role in heat conduction of uniform thin tube of finite length, axial and torsional vibra-
tion of rod, and microwave transmission (see [13, 18]). Based on the above, the Sturm–
Liouville problem has also come into the attention of scholars in recent years (see [21, 23]).
Reference [8] focused on the existence and uniqueness of solutions to the Sturm–Liouville
problem with Hilfer fractional differentiation based on Banach’s fixed point theorem and
analyzed the behavior of the solutions. Later, the author used the Laplace–Adomian de-
composition method to study the series solutions of fractional Sturm–Liouville equa-
tions with singular and nonsingular kernels, respectively (see [7]). And [28] discussed the
following symmetric fractional advection–dispersion equation with only homogeneous
Sturm–Liouville boundary value condition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–
d
dt

(
1
2 0D–β

t (u′(t)) +
1
2 tD–β

T (u′(t))
)

= λf (u(t)), a.e. t ∈ [0, T],

au(0) – b
(

1
2 0D–β

t u′(0) +
1
2 tD–β

T u′(0)

)

= 0,

cu(T) + d
(

1
2 0D–β

t u′(T) +
1
2 tD–β

T u′(T)

)

= 0,

where 0 ≤ β < 1, a, c > 0, b, d ≥ 0, and λ > 0. The existence of infinitely many solutions
to this boundary value problem was obtained by using the Ricceri generalized variational
principle when f : R→R was an almost everywhere continuous function.

Compared with the above excellent work, the nonlinear terms in the boundary value
problem (BVP as an abbreviation) (1.1) contain fractional derivatives, which means that
BVP (1.1) has no direct variational structure, which makes the treatment of this kind of
problem not only rely on the critical point theory, but also be combined with the iterative
method. Because the research process is relatively complicated, there are a few studies on
the existence of solutions of fractional differential equations with fractional derivatives in
nonlinear terms (see [6, 10]). Recently, reference [19] considered the following p-Laplacian
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fractional differential boundary value problem with Dirichlet condition:

⎧
⎪⎨

⎪⎩

tDα
T

(
1

ω(t)p–2 φp(ω(t)0Dα
t u(t))

)

+ λu(t) = f (t, u(t), c
0Dα

t u(t)) + h(u(t)),

u(0) = u(T) = 0, a.e. t ∈ [0, T],

where 1
p < α ≤ 1, p ≥ 2 and λ ≥ 0. ω ∈ L∞[0, T], φp(s) = |s|p–2s, f ∈ C([0, T] × R × R,R),

and h : R→ R is Lipschitz continuous. The authors proved that there was at least one so-
lution to the above problem via the mountain pass theorem. On the basis of this article, the
authors used the same method to investigate the existence of solutions for fractional (p, q)-
Laplacian differential systems with nonlinear terms containing fractional derivatives, in-
stantaneous impulses, and Dirichlet conditions (see [20]).

Inspired by the above research background and the existing research work, this arti-
cle investigates BVP (1.1). The research on fractional advection–dispersion equations has
been ongoing, but to our knowledge, there is no work that studies the nonlinear terms
of fractional advection–dispersion equations that include fractional derivatives, let alone
systems with nonhomogeneous Sturm–Liouville conditions and noninstantaneous im-
pulse conditions. Note that when the coefficients and constant terms in the nonhomoge-
neous Sturm–Liouville condition are selected as 0 and 1, the Sturm–Liouville condition
will degenerate into the Dirichlet boundary value condition, which means that the Sturm–
Liouville condition is more general. In these respects, the problem studied in this paper is
new and necessary. What is more, as for the assumptions, the assumptions of the impulse
terms in this paper are weaker than the corresponding parts in reference [6], which is a
highlight of this paper.

2 Preliminaries
For convenience, in this section we remind the readers of the relevant definitions and
properties of fractional calculus.

Definition 2.1 [17, 25] Let u be a function defined on [0, T]. The left and right Riemann–
Liouville fractional integrals of order 0 < γ ≤ 1 for the function u denoted by 0D–γ

t u(t) and
tD–γ

T u(t), respectively, are defined by

0D–γ
t u(t) =

1
	(γ )

∫ t

0
(t – s)γ –1u(s)ds

and

tD–γ

T u(t) =
1

	(γ )

∫ T

t
(s – t)γ –1u(s)ds,

provided the right-hand sides are pointwise defined on [0, T], where 	 > 0 is the gamma
function.

Definition 2.2 [17, 25] Let u be a function defined on [0, T]. The left and right Riemann–
Liouville fractional derivatives of order 0 < γ ≤ 1 for the function u denoted by 0Dγ

t u(t)
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and tDγ

T u(t), respectively, are defined by

0Dγ
t u(t) =

d
dt 0Dγ –1

t u(t) =
1

	(1 – γ )

d
dt

(∫ t

0
(t – s)–γ u(s)ds

)

and

tDγ

T u(t) = –
d
dt tDγ –1

T u(t) =
–1

	(1 – γ )

d
dt

(∫ T

t
(s – t)–γ u(s)ds

)

,

where t ∈ [0, T].

Definition 2.3 [17, 25] Let u ∈ AC([0, T],RN ). Then the left and right Caputo fractional
derivatives of order 0 < γ ≤ 1 for the function u denoted by c

0Dγ
t u(t) and c

t Dγ

T u(t), respec-
tively, are defined by

c
0Dγ

t u(t) = 0Dγ –1
t u′(t) =

1
	(1 – γ )

∫ t

0
(t – s)–γ u′(s)ds

and

c
t Dγ

T u(t) = – tDγ –1
T u′(t) =

–1
	(1 – γ )

∫ T

t
(s – t)–γ u′(s)ds,

where t ∈ [0, T].

Property 2.1 [17] Let u be continuous for a.e. t ∈ [0, T], the left and right Riemann–
Liouville fractional integral operators have the following properties:

0D–γ1
t (0D–γ2

t u(t)) = 0D–γ1–γ2
t u(t) and tD–γ1

T (tD–γ2
T u(t)) = tD–γ1–γ2

T u(t), γ1,γ2 > 0.

Property 2.2 [17] If u ∈ Lp([0, T],RN ), v ∈ Lq([0, T],RN ) and p ≥ 1, q ≥ 1, 1
p + 1

q ≤ 1 + γ

or p 	= 1, q 	= 1, 1
p + 1

q = 1 + γ . Then

∫ T

0
[0D–γ

t u(t)]v(t)dt =
∫ T

0
[tD–γ

T v(t)]u(t)dt, γ > 0.

Property 2.3 [17] If 0 < γ ≤ 1 and u ∈ AC([0, T],RN ), then

0D–γ
t (c

0Dγ
t u(t)) = u(t) – u(0) and tD–γ

T (c
t Dγ

T u(t)) = u(t) – u(T).

According to Definition 2.3 and Property 2.1, we know that

1
2 0D–β

t (u′(t)) +
1
2 tD–β

T (u′(t)) =
1
2 0Dα–1

t (c
0Dα

t u(t)) –
1
2 tDα–1

T (c
t Dα

T u(t)), (2.1)

where α = 1 – β

2 and 1
2 < α ≤ 1.

Let Lp([0, T],R)(1 ≤ p < ∞) and C([0, T],R) be the p-Lebesgue space and a continuous
function space, respectively, with the norms

‖u‖Lp =
(∫ T

0
|u(t)|pdt

) 1
p

, u ∈ Lp([0, T],R)
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and

‖u‖∞ = max
t∈[0,T]

|u(t)|, u ∈ C([0, T],R).

Definition 2.4 Let 1
2 < α ≤ 1 and 1 ≤ p < ∞. The fractional derivative space Eα,p is defined

as the closure of C∞([0, T],R), that is, Eα,p = C∞([0, T],R) with the norm

‖u‖α,p =
(∫ T

0
|c0Dα

t u(t)|pdt +
∫ T

0
|u(t)|pdt

) 1
p

.

It is obvious that Eα,p is the space of functions u(t) ∈ Lp([0, T],R) with an α order Caputo
fractional derivative c

0Dα
t u(t) ∈ Lp([0, T],R). According to [15], the space Eα,p with p ∈

(1,∞) is a reflexive and separable Banach space. What is more, for the convenience of
writing, when p = 2, we mark Eα,2 as X.

For the convenience of readers, we will review Hölder’s inequality and Young’s inequality
here.

Hölder’s inequality: If u ∈ Lp([0, T],RN ), v ∈ Lq([0, T],RN ), p ≥ 1, and 1
p + 1

q = 1. Then

∫ T

0
|u(t)v(t)|dt ≤

(∫ T

0
|u(t)|pdt

) 1
p
(∫ T

0
|v(t)|qdt

) 1
q

.

Young’s inequality: If x and y are nonnegative real numbers, p > 1 and 1
p + 1

q = 1. Then

xy ≤ ϒxp + C(ϒ)yq,

where C(ϒ) = (pϒ)
– q

p

q .

Lemma 2.1 [28] If 1
2 < α ≤ 1, then for any u ∈ X we have

– cosπα

∫ T

0
|c0Dα

t u(t)|2dt ≤ –
∫ T

0
(c

0Dα
t u(t))(c

t Dα
T u(t))dt ≤ 1

– cosπα

∫ T

0
|c0Dα

t u(t)|2dt.

Lemma 2.2 The norm ‖u‖α,2 in X is equivalent to

‖u‖ =
(

–
∫ T

0
(c

0Dα
t u(t))(c

t D
α
T u(t))dt +

b
a

(u(0))2 +
d
c

(u(T))2
) 1

2
. (2.2)

Combining Property 2.3, Lemma 2.1, and Hölder’s inequality, the following lemma can
be derived.

Lemma 2.3 There is a continuous and compact embedding X ↪→ C([0, T],R). And there
exists a constant  > 0 such that

‖u‖∞ ≤ ‖u‖

for u ∈ X, where ‖u‖ is defined by (2.2).
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Lemma 2.4 [15] Assume that 1
2 < α ≤ 1 and the sequence {un} weakly converges to u in X ,

that is, un ⇀ u in X. Then un → u in C([0, T],R), that is,

‖un – u‖∞ → 0

as n → ∞.

It follows from the boundary conditions of BVP (1.1), integration by parts, and (2.1) that
we can define the weak solution u of BVP (1.1) as follows.

Definition 2.5 A function u ∈ X is called the weak solution of BVP (1.1) if u satisfies the
following equation:

–
1
2

∫ T

0

[

(c
0Dα

t u(t))(c
t Dα

T v(t)) + (c
t Dα

T u(t))(c
0Dα

t v(t))
]

dt +
b
a

u(0)v(0) +
d
c

u(T)v(T)

+
A
a

v(0) –
B
c

v(T) + μ

m∑

j=1

Ij(u(tj))v(tj)

– λ

m∑

j=0

∫ tj+1

sj

fj(t, u(t), c
0Dα

t u(t))v(t)dt = 0, ∀v ∈ X.

Since there is no way to define the energy functional for BVP (1.1) directly, for each
u ∈ X, we first fix any ω ∈ X and define Jω : X →R as shown below

Jω(u) = –
1
2

∫ T

0
(c

0Dα
t u(t))(c

t D
α
T u(t))dt +

b
2a

(u(0))2 +
d
2c

(u(T))2 +
A
a

u(0) –
B
c

u(T)

+ μ

m∑

j=1

∫ u(tj)

0
Ij(s)ds – λ

m∑

j=0

∫ tj+1

sj

Fj(t, u(t), c
0Dα

t ω(t))dt

=
1
2
‖u‖2 +

A
a

u(0)

–
B
c

u(T) + μ

m∑

j=1

∫ u(tj)

0
Ij(s)ds – λ

m∑

j=0

∫ tj+1

sj

Fj(t, u(t), c
0Dα

t ω(t))dt. (2.3)

Then, according to the existing conditions, the Fréchet derivative of Jω at point u ∈ X
can be obtained as

J ′
ω(u)v = –

1
2

∫ T

0

[

(c
0Dα

t u(t))(c
t D

α
T v(t)) + (c

t Dα
T u(t))(c

0Dα
t v(t))

]

dt

+
b
a

u(0)v(0) +
d
c

u(T)v(T)

+
A
a

v(0) –
B
c

v(T) + μ

m∑

j=1

Ij(u(tj))v(tj)

– λ

m∑

j=0

∫ tj+1

sj

fj(t, u(t), c
0Dα

t ω(t))v(t)dt, ∀v ∈ X. (2.4)
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It follows from Definition 2.5 that if u ∈ X is a solution of J ′
u(u)v = 0, then u is a weak

solution of BVP (1.1). And, by [31], the weak solution of BVP (1.1) is its classical solution.

Lemma 2.5 [26] Let E be a real Banach space and J ∈ C(E,R) satisfy the Palais–Smale
condition ((PS)-condition for short). Suppose that

(1) J(0) = 0;
(2) There exist ρ > 0 and ϑ > 0 such that J(u0) ≥ ϑ for all u0 ∈ E with ‖x0‖ = ρ ;
(3) There exists u1 ∈ E with ‖u1‖ ≥ ρ such that J(u1) < ϑ .
Then z = infh∈�̄ maxt∈[0,1] J(h(t)) ≥ ϑ is a critical value of J , where

�̄ = {h ∈ C([0, 1], E)|h(0) = u0, h(1) = u1}.

3 Main results
Now, we make the following hypotheses.

(H1) For j = 1, . . . , m, there exist some constants Lj, L̄j, Mj, M̄j > 0 and 0 ≤ τj, τ̄j < 1 such
that

–Lj|y|τj – Mj ≤ |Ij(y)| ≤ L̄j|y|τ̄j + M̄j for y ∈R.

(H2) For j = 1, . . . , m, there exist some constants Rj > 0 such that

|Ij(x) – Ij(y)| ≤ Rj|x – y|, for x, y ∈ [–C∗, C∗],

where C∗ = C1,  is defined by Lemma 2.3, C1 will be given later.
(H3) For j = 0, 1, . . . , m and t ∈ (sj, tj+1], there exist some constants K1, K2, N2, N3 ≥ 0,

N1 > 0, η, σ , � > 1, 0 < ι < 2, δ > 0, 0 < ζ < 1 such that

fj(t, x, y) ≤ K1|x|η + K2|x|σ |y|ι for |x| ≤ δ, y ∈R,

fj(t, x, y) ≥ N1x� – N2|y|ζ – N3 for x ≥ 0, y ∈R.

(H4) For j = 0, 1, . . . , m and t ∈ (sj, tj+1], there exist some constants P1, P2, P3 ≥ 0, θ > 2,
0 < ξ , � < 2 such that

fj(t, x, y)x – θFj(t, x, y) ≥ –P1|x|ξ – P2|y|� – P3 for x, y ∈ R.

(H5) For j = 0, 1, . . . , m and t ∈ (sj, tj+1], there exist some constants Q1, Q2 > 0 such that

|fj(t, x1, y1) – fj(t, x2, y2)| ≤ Q1|x1 – x2| + Q2|y1 – y2|, for x1, x2 ∈ [–C∗, C∗], y1, y2 ∈R.

For the convenience of writing, we first define a few notations, as shown below.

O1 =
δ2

22 –
|A|δ

a
–

|B|δ
c

, O2 =
m∑

j=1

(
Ljδ

τj+1

τj + 1
+ Mjδ

)

,

O3 =
K1Tδη+1

η + 1
+

λK2δ
σ+1

σ + 1
T 2–ι

2 Cι
1

(– cosπα)
ι
2

.
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Theorem 3.1 If O1 > 0 and μO2 + λO3 < O1, suppose that (H1) – (H5) hold, then BVP (1.1)
admits at least one nontrivial solution.

Proof The whole proof process is divided into three steps.
Step 1: Prove that Jω satisfies the (PS)-condition.
Suppose that {un} ⊂ X is a sequence with {Jω(un)} bounded and limn→∞ J ′

ω(un) = 0. Then,
for any fixed ω ∈ X with ‖ω‖ ≤ C1, according to Lemma 2.3, (H1), and (H4), it follows from
(2.3) and (2.4) that

θ Jω(un) – J ′
ω(un)un

=(
θ

2
– 1)‖un‖2 +

A(θ – 1)

a
un(0) –

B(θ – 1)

c
un(T)

+ θμ

m∑

j=1

∫ un(tj)

0
Ij(s)ds – μ

m∑

j=1

Ij(un(tj))un(tj)

– λ

m∑

j=0

∫ tj+1

sj

(

θFj(t, un(t), c
0Dα

t ω(t)) – fj(t, un(t), c
0Dα

t ω(t))un(t)
)

dt

≥(
θ

2
– 1)‖un‖2 –

|A|(θ – 1)

a
‖un‖ –

|B|(θ – 1)

c
‖un‖

– θμ

m∑

j=1

(
Lj

τj+1

τj + 1
‖un‖τj+1 + Mj‖un‖

)

– μ

m∑

j=1

(

L̄j
τ̄j+1‖un‖τ̄j+1 + M̄j‖un‖

)

– λ

m∑

j=0

∫ tj+1

sj

(

P1|un(t)|ξ + P2|c0Dα
t ω(t)|� + P3

)

dt

≥(
θ

2
– 1)‖un‖2 –

( |A|(θ – 1)

a
+

|B|(θ – 1)

c
– θμ

m∑

j=1

Mj – μ

m∑

j=1

M̄j

)

‖un‖

– θμ

m∑

j=1

Lj
τj+1

τj + 1
‖un‖τj+1 – μ

m∑

j=1

L̄j
τ̄j+1‖un‖τ̄j+1 – λP1Tξ‖un‖ξ

– λP2

∫ T

0
|c0Dα

t ω(t)|�dt – λP3T .

Note the assumptions of 1 ≤ τj + 1, τ̄j + 1 < 2, θ > 2, and 0 < ξ < 2 and the fact that Jω(un)

is bounded and limn→∞ J ′
ω(un)un = 0, so we get that {un} is bounded in X.

On one hand, since {un} is bounded in X and X is a reflexive space, there exists a subse-
quence of {un}, still record this subsequence as {un}, such that un ⇀ u in X. Then, based
on Lemma 2.4, we get un → u in C([0, T],R). Thereby,

< J ′
ω(un) – J ′

ω(u), un – u >→ 0,
(

Ij(un(tj)) – Ij(u(tj))

)

(un(tj) – u(tj)) → 0,

(

fj(t, un(t), c
0Dα

t ω(t)) – fj(t, u(t), c
0Dα

t ω(t))
)

(un(t) – u(t)) → 0
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as n → ∞. On the other hand, in view of (2.4), we have

‖un – u‖2 = < J ′
ω(un) – J ′

ω(u), un – u > –μ

m∑

j=1

(

Ij(un(tj)) – Ij(u(tj))

)

(un(tj) – u(tj))

+ λ

m∑

j=0

∫ tj+1

sj

(

fj(t, un(t), c
0Dα

t ω(t)) – fj(t, u(t), c
0Dα

t ω(t))
)

(un(t) – u(t))dt

→ 0

as n → ∞. Combining the above two aspects, we can get un → u in X. In summary, Jω
satisfies the (PS)-condition.

Step 2: Prove that Jω admits a critical point by the mountain pass theorem.
Let 0 < ρ = δ


and ‖u‖ = ρ , then from Lemma 2.3 one has ‖u‖∞ ≤ ‖u‖ = ρ = δ for

u ∈ X, where δ is given as (H3). Further, notice that (2.3), (H1), and (H3), using Hölder’s
inequality and Lemma 2.1, we can get

Jω(u(t)) ≥1
2
‖u‖2 –

|A|
a

‖u‖ –
|B|

c
‖u‖ – μ

m∑

j=1

(
Lj

τj+1

τj + 1
‖u‖τj+1 + Mj‖u‖

)

– λ

m∑

j=0

∫ tj+1

sj

(
K1

η + 1
|u(t)|η+1 +

K2

σ + 1
|u(t)|σ+1|c0Dα

t ω(t)|ι
)

dt

≥1
2
‖u‖2 –

|A|
a

‖u‖ –
|B|

c
‖u‖ – μ

m∑

j=1

(
Lj

τj+1

τj + 1
‖u‖τj+1 + Mj‖u‖

)

–
λK1Tη+1

η + 1
‖u‖η+1 –

λK2
σ+1‖u‖σ+1

σ + 1

∫ T

0
|c0Dα

t ω(t)|ιdt

≥ δ2

22 –
|A|δ

a
–

|B|δ
c

– μ

m∑

j=1

(
Ljδ

τj+1

τj + 1
+ Mjδ

)

– λ

(
K1Tδη+1

η + 1
+

K2δ
σ+1T 2–ι

2 Cι
1

(σ + 1)(– cosπα)
ι
2

)

.

Recall that we assume O1 > 0 and μO2 + λO3 < O1, so we chose ρ small enough so that
Jω(u) ≥ ϑ > 0 for ‖u‖ = ρ .

Next, let us define ū0(t) = u0(t)
‖u0‖ ∈ X and ‖ū0‖ = 1. Hence, for any χ > 0, by (2.3), (H3), and

Lemma 2.3, we get

Jω(χ ū0) ≤χ2

2
‖ū0‖2 +

|A|χ

a
‖ū0‖ +

|B|χ

c
‖ū0‖

+ μ

m∑

j=1

(
L̄j

τ̄j+1χτ̄j+1

τ̄j + 1
‖ū0‖τ̄j+1 + M̄jχ‖ū0‖

)

– λ

m∑

j=0

∫ tj+1

sj

(
N1χ

�+1

� + 1
|ū0(t)|�+1 – N2χ |u0(t)||c0Dα

t ω(t)|ζ – N3χ |u0(t)|
)

dt

≤χ2

2
‖ū0‖2 +

|A|χ

a
‖ū0‖ +

|B|χ

c
‖ū0‖
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+ μ

m∑

j=1

(
L̄j

τ̄j+1χτ̄j+1

τ̄j + 1
‖ū0‖τ̄j+1 + M̄jχ‖ū0‖

)

–
λN1χ

�+1

� + 1

m∑

j=0

∫ tj+1

sj

|ū0(t)|�+1dt + λN2χ‖ū0‖
∫ T

0
|c0Dα

t ω(t)|ζ dt

+ λN3Tχ‖ū0‖

=
χ2

2
+

( |A|
a

+
|B|

c
+ μ

m∑

j=1

M̄j + λN2

∫ T

0
|c0Dα

t ω(t)|ζ dt + λN3T

)

χ

+ μ

m∑

j=1

L̄j
τ̄j+1

τ̄j + 1
χτ̄j+1 –

λN1

� + 1

m∑

j=0

∫ tj+1

sj

|ū0(t)|�+1dtχ�+1. (3.1)

It follows from � + 1 > 2 and 1 ≤ τ̄j + 1 < 2 that Jω(χ ū0(t)) → –∞ as χ → ∞, which
means that there exists χ0 > 0 large enough such that Jω(χ0ū0) < 0 with ‖χ0ū0‖ >
ρ .

Finally, combined with Jω(0) = 0, according to the mountain pass theorem, it can be
inferred that there is a point ū ∈ X such that J ′

ω(ū) = 0 and Jω(ū) ≥ ϑ > 0.
Step 3: Construct the sequence {un} ⊂ X such that un → u∗ in X, and u∗ is the solution

to BVP (1.1).
Suppose a sequence {un} ⊂ X satisfying J ′

un–1 (un) = 0 and Jun–1 (un) ≥ ϑ > 0 with ‖un‖ ≤
C1 for all n ∈ N. For certain u1 ∈ X with ‖u1‖ ≤ C1. From Step 2, it can be seen that there
is u2 ∈ X such that J ′

u1 (u2) = 0 and Ju1 (u2) ≥ ϑ > 0.
And then we are going to prove that ‖u2‖ ≤ C1. As a matter of fact, by (3.1) and

Lemma 2.1, we have

Ju1 (u2) ≤ max
0≤χ<∞ Ju1 (χ ū0)

≤ max
0≤χ<∞

[
χ2

2
+

|A|χ

a
+

|B|χ

c
+ μ

m∑

j=1

(
L̄j

τ̄j+1χτ̄j+1

τ̄j + 1
+ M̄jχ

)

–
λN1χ

�+1

� + 1

m∑

j=0

∫ tj+1

sj

|ū0(t)|�+1dt + λN2χ

∫ T

0
|c0Dα

t u1(t)|ζ dt + λN3Tχ

]

≤ max
0≤χ<∞

[
χ2

2
+

|A|χ

a
+

|B|χ

c
+ μ

m∑

j=1

(
L̄j

τ̄j+1χτ̄j+1

τ̄j + 1
+ M̄jχ

)

–
λN1χ

�+1

� + 1

m∑

j=0

∫ tj+1

sj

|ū0(t)|�+1dt +
λN2χT

2–ζ
2 Cζ

1

(– cosπα)
ζ
2

+ λN3Tχ

]

≤ max
0≤χ<∞

[
1
2
χ2 + C2χ + C3χ

τ̄j+1 – C4χ
�+1

]

,

where

C2 =
|A|

a
+

|B|
c

+ μ

m∑

j=1

M̄j +
λN2T

2–ζ
2 Cζ

1

(– cosπα)
ζ
2

+ λN3T,
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C3 = μ

m∑

j=1

L̄j
τ̄j+1

τ̄j + 1
, C4 =

λN1

� + 1

m∑

j=0

∫ tj+1

sj

|ū0(t)|�+1dt.

Define G(χ) = 1
2χ2 + C2χ + C3χ

τ̄j+1 – C4χ
�+1, then we discuss G(χ) in two cases.

Case 1: When 0 ≤ χ ≤ 1, we have G(χ) ≤ 1
2 + C2 + C3 = C5.

Case 2: When 1 ≤ χ < ∞, one has G(χ) ≤ ( 1
2 + C2 + C3)χ2 – C4χ

�+1 for 1 ≤ τ̄j + 1 < 2
and � + 1 > 2. In this case, let H(χ) = ( 1

2 + C2 + C3)χ2 – C4χ
�+1, then if H ′(χ) =

2( 1
2 + C2 + C3)χ – C4(� + 1)χ� = 0, it can be calculated that H(χ̄) = max1≤χ<∞ H(χ) = C6,

when χ = χ̄ =
(

2( 1
2 +C2+C3)
C4(�+1)

) 1
�–1

. In conclusion, Ju1 (u2) ≤ max{C5, C6} = D.

On the other hand, by (H4), (2.3), and (2.4), combining Lemma 2.1 and Lemma 2.3, we
get

(
θ

2
– 1)‖u2‖2

=θ Ju1 (u2) – J ′
u1 (u2)u2 –

A(θ – 1)

a
u2(0) +

B(θ – 1)

c
u2(T) – θμ

m∑

j=1

∫ u2(tj)

0
Ij(s)ds

+ μ

m∑

j=1

Ij(u2(tj))u2(tj)

+ λ

m∑

j=0

∫ tj+1

sj

(

θFj(t, u2(t), c
0Dα

t u1(t)) – fj(t, u2(t), c
0Dα

t u1(t))u2(t)
)

dt

≤θD +
|A|(θ – 1)

a
‖u2‖ +

|B|(θ – 1)

c
‖u2‖ + θμ

m∑

j=1

(
Lj

τj+1

τj + 1
‖u2‖τj+1 + Mj‖u2‖

)

+ μ

m∑

j=1

(

L̄j
τ̄j+1‖u2‖τj+1 + M̄j‖u2‖

)

+ λ

m∑

j=0

∫ tj+1

sj

(

P1|u2(t)|ξ + P2|c0Dα
t u1(t)|� + P3

)

dt

≤θD +
( |A|(θ – 1)

a
+

|B|(θ – 1)

c
+ θμ

m∑

j=1

Mj + μ

m∑

j=1

M̄j

)

‖u2‖

+ θμ

m∑

j=1

Lj
τj+1

τj + 1
‖u2‖τj+1

+ μ

m∑

j=1

L̄j
τ̄j+1‖u2‖τ̄j+1 + λP1Tξ‖u2‖ξ + λP2

∫ T

0
|c0Dα

t u1(t)|�dt + λP3T

≤θD + D1‖u2‖ +
m∑

j=1

D2‖u2‖τj+1 +
m∑

j=1

D3‖u2‖τ̄j+1 + D4‖u2‖ξ +
λP2T

2–�
2 C�

1

(– cosπα)
�
2

+ λP3T

≤θD + D∗
1 + D∗

2 + D∗
3 + D∗

4 +
λP2T

2–�
2 C�

1

(– cosπα)
�
2

+ λP3T +
2θ – 4

5
‖u2‖2, (3.2)
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where

D1 =
|A|(θ – 1)

a
+

|B|(θ – 1)

c
+ θμ

m∑

j=1

Mj + μ

m∑

j=1

M̄j,

D2 =
θμLj

τj+1

τj + 1
, D3 = μL̄j

τ̄j+1, D4 = λP1Tξ ,

and

D1‖u2‖ ≤ 5
2(θ – 2)

D2
1 +

θ – 2
10

‖u2‖2,

D2‖u2‖τj+1 ≤ 1 – τj

2

(
5m(1 + τj)

θ – 2

) 1+τj
1–τj

D
2

1–τj
2 +

θ – 2
10m

‖u2‖2,

D3‖u2‖τ̄j+1 ≤ 1 – τ̄j

2

(
5m(1 + τ̄j)

θ – 2

) 1+τ̄j
1–τ̄j

D
2

1–τ̄j
3 +

θ – 2
10m

‖u2‖2,

D4‖u2‖ξ ≤ 2 – ξ

2

(
5ξ

θ – 2

) ξ
2–ξ

D
2

2–ξ

4 +
θ – 2

10
‖u2‖2

are obtained by Young’s inequality. Besides,

D∗
1 =

5
2(θ – 2)

D2
1,

D∗
2 =

m∑

j=1

1 – τj

2

(
5m(1 + τj)

θ – 2

) 1+τj
1–τj

D
2

1–τj
2 ,

D∗
3 =

m∑

j=1

1 – τ̄j

2

(
5m(1 + τ̄j)

θ – 2

) 1+τ̄j
1–τ̄j

D
2

1–τ̄j
3 ,

D∗
4 =

2 – ξ

2

(
5ξ

θ – 2

) ξ
2–ξ

D
2

2–ξ

4 .

Arrange both sides of (3.2) to get

‖u2‖2 ≤ 10
θ – 2

(

θD + D∗
1 + D∗

2 + D∗
3 + D∗

4 +
λP2T

2–�
2 C�

1

(– cosπα)
�
2

+ λP3T
)

.

Take C1 =
(

10
θ–2 (θD + D∗

1 + D∗
2 + D∗

3 + D∗
4 + λP2T

2–�
2 C�

1

(– cosπα)
�
2

+ λP3T)

) 1
2

to get ‖u2‖ ≤ C1. Thus,

according to this processing method, it is natural to prove that ‖un‖ ≤ C1 for every n ∈N.
Since ‖un‖ ≤ C1, ‖un‖∞ ≤ C1 = C∗ can be obtained by Lemma 2.3.

According to the above, we know that there exists a subsequence of {un}, still record this
subsequence as {un}, such that un ⇀ u∗ in X. Then, based on Lemma 2.4, we get un → u∗

in C([0, T],R). And then we have to prove that un → u∗ in X.
Proof by contradiction. Suppose that {un} diverges in X, i.e., there exists ε0 > 0 for any

N > 0 such that for all n > N we have ‖un+1 – un‖ ≥ ε0.
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In view of J ′
un (un+1)(un+1 – un) = 0 and J ′

un–1 (un)(un+1 – un) = 0, based on (H2), (H5), and
Lemma 2.1, one can get

‖un+1 – un‖2

=(J ′
un (un+1) – J ′

un–1 (un))(un+1 – un) – μ

m∑

j=1

(

Ij(un+1(tj)) – Ij(un(tj))

)

(un+1(tj) – un(tj))

+ λ

m∑

j=0

∫ tj+1

sj

(

fj(t, un+1(t), c
0Dα

t un(t)) – fj(t, un(t), c
0Dα

t un–1(t))
)

(un+1(t) – un(t))dt

≤μ

m∑

j=1

Rj|un+1(tj) – un(tj)|2 + λ

m∑

j=0

∫ tj+1

sj

Q1|un+1(t) – un(t)|2dt

+ λ

m∑

j=0

∫ tj+1

sj

Q2|c0Dα
t un(t) – c

0Dα
t un–1(t)||un+1(t) – un(t)|dt

≤2C∗μ
m∑

j=1

Rj‖un+1 – un‖∞ + 2λQ1TC∗‖un+1 – un‖∞

+ 2λQ2C1

(
T

– cosπα

) 1
2 ‖un+1 – un‖∞.

Simplify the above formula and arrange it to get

‖un+1 – un‖∞ ≥ Z‖un+1 – un‖2 ≥ Zε2
0 ,

where Z = 2C∗μ
∑m

j=1 Rj + 2λQ1TC∗ + 2λQ2C1

(
T

– cosπα

) 1
2

. Thus, there is ε′
0 > 0 for any

N > 0 such that for all n > N ě we get ‖un+1 – un‖∞ ≥ ε′
0, which is in contradiction with

un → u∗ in C([0, T],R) as n → ∞. In other words, we can get un → u∗ in X as n → ∞,
and then

(c
0Dα

t un(t))(c
t D

α
T v(t)) → (c

0Dα
t u∗(t))(c

t D
α
T v(t)), (c

t Dα
T un(t))(c

0Dα
t v(t))

→ (c
t Dα

T u∗(t))(c
0Dα

t v(t)),

b
a

un(0)v(0) → b
a

u∗(0)v(0),
d
c

un(T)v(T) → d
c

u∗(T)v(T),

m∑

j=1

Ij(un(tj))v(tj) →
m∑

j=1

Ij(u∗(tj))v(tj), fj(t, un(t), c
0Dα

t un–1(t))v(t)

→ fj(t, u∗(t), c
0Dα

t u∗(t))v(t)

as n → ∞. Combining the fact that J ′
un–1 (un)v = 0 for all v ∈ X gives J ′

u∗ (u∗)v = 0
for all v ∈ X, which implies that u∗ is a weak solution of BVP (1.1). Similarly, it can
be proved that limn→∞ Jun–1 (un) = Ju∗ (u∗), and it follows from Jun–1 (un) ≥ ϑ > 0 that
Ju∗ (u∗) ≥ ϑ > 0, which indicates that u∗ is a nontrivial classical solution of BVP (1.1).

�
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4 Examples
Example 4.1 Let β = 1

3 , α = 1 – β

2 = 5
6 , T = m = 1, λ = μ = 2, a = b = 1, c = d = 3, and

A = B = 2. Consider the following fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–
d
dt

(
1
2 0D– 1

3
t (u′(t)) +

1
2 tD

– 1
3

1 (u′(t))
)

= 2fj(t, u(t), c
0D

5
6
t u(t)), t ∈ (sj, tj+1], j = 0, 1,

(
1
2 0D– 1

3
t (u′(0)) +

1
2 tD

– 1
3

1 (u′(0))

)

– u(0) = 2,

3
(

1
2 0D– 1

3
t (u′(1)) +

1
2 tD

– 1
3

1 (u′(1))

)

+ 3u(1) = 2,

�

(
1
2 0D– 1

3
t (u′(t1)) +

1
2 tD

– 1
3

1 (u′(t1))

)

= 2I1(u(t1)),

0D– 1
3

t (u′(t)) + tD
– 1

3
1 (u′(t)) = 0D– 1

3
t (u′(t+

1 )) + tD
– 1

3
1 (u′(t+

1 )), t ∈ (t1, s1],

0D– 1
3

t (u′(s–
1 )) + tD

– 1
3

1 (u′(s–
1 )) = 0D– 1

3
t (u′(s+

1 )) + tD
– 1

3
1 (u′(s+

1 )),

(4.1)

where 0 = s0 < t1 = 1
3 < s1 = 2

3 < t2 = 1. Let I1(u) = |u| 1
2 , there exist L1 = L̄1 = 2, M1 = M̄1 = 1,

and τ1 = τ̄1 = 1
2 such that (H1) holds. And we easily know that (H2) holds with R1 = 1.

Choose Fj(t, x, y) = (1 + t)x6 + t2x3 sin2 y + 2| cos t|, so fj(t, x, y) = 6(1 + t)x5 + 3t2x2 sin2 y.
When K1 = 12, K2 = 3, N1 = 6, N2 = N3 = 0, δ = 2, η = 5, σ = 2, ι = 1, � = 5 and ζ = 1

2 ,
(H3) holds. Moreover, (H4) and (H5) hold for θ = 6, P1 = P2 = 0, P3 = 12, ξ = � = 1, Q1 =
60(C∗)4 + 6C∗, and Q2 = 12(C∗)2. Thus, based on Theorem 3.1, BVP (4.1) has at least one
nontrivial solution.

5 Conclusion
This article considers a class of fractional advection–dispersion equations with Sturm–
Liouville conditions and instantaneous, noninstantaneous impulses, where the nonlinear
term includes fractional Caputo derivatives, i.e., BVP (1.1). Since BVP (1.1) does not have
a direct variational structure, after defining the function space, we construct a convergent
sequence through iterative methods and combine the mountain pass theorem to ensure
that the limit of the sequence is the solution of BVP (1.1). It should be pointed out that
Sturm–Liouville conditions in BVP (1.1) are more general than the Dirichlet condition,
and the assumptions set in this article are looser. Therefore, the work done in this article
fills a gap in the research field of fractional advection–dispersion equations.
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