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1 Introduction and main result
Consider the following second-order differential equation

(ϕp(x′))′ + aϕp(x+) – bϕp(x–) + z(t)f (x) = e(t), (1.1)

where ϕp(s) = |s|p–2s with constant p > 2. Variable x ∈ R, t ∈ R, x+ = max(x, 0), x– =
max(–x, 0). a and b are positive constants (a �= b) satisfying a– 1

p + b– 1
p = 2ω–1, ω is an

irrational number, f (x) = o(|x|), z(t) and e(t) are 2πp periodic functions with πp = 2π (p–1)
1
p

psin π
p

.
When p = 2, Eq. (1.1) is turned into

x′′ + ax+ – bx– + z(t)f (x) = e(t), πp = π . (1.2)

Provided that z(t)f (x) = 0, e(t) = 1 + γ h(t) in which h(t) is a suitable function, investigat-
ing the boundedness of solutions to Eq. (1.2) is very complicated. Ortega [1] proves that
every solution to Eq. (1.2) is bounded if h ∈ C4(S1), where S1 = R/2πZ, and γ is sufficiently
small. Under certain conditions on the initial data, Alonso and Ortega [2] obtain that there
exists a function e(t) to ensure that all solutions to Eq. (1.2) are unbounded. Ambrosio
[3] establishes the boundedness to solutions to fractional relativistic Schrödinger equa-
tions. A differential inclusion system involving the p(t)-Laplacian is investigated in [4].
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Giacomoni et al. [5] utilize the bifurcation theory to discuss the multiplicity for a strongly
singular quasi-linear problem. The asymptotic properties of solutions for a second-order
nonlinear discrete equation of the Emden-Fowler type are acquired in [6]. Under appro-
priate restrictions, Jiao et al. [7] discuss the boundedness of all solutions to Eq. (1.2) (see
also [8–10]).

For p ≥ 2, when a– 1
p + b– 1

p = 2ω–1, where ω–1 is an irrational number, Yang [11] inves-
tigates Eq. (1.1) and obtains that all the solution to Eq. (1.1) are bounded under certain
assumptions. Liu [12] discusses the bounded condition for Eq. (1.1) provided that f is
smooth and lim

x→±∞ f (x) is finite. Ma [13] discusses the bounded condition for Eq. (1.1) pro-
vided that f is unbounded and z(t) = 1.

When p = 2, without the assumption that lim
x→±∞ f (x) is finite, Zhang [14] has acquired

the conditions to ensure that each solution of Eq. (1.1) is bounded. In this work, we will
extend the result in [14] to the case p > 2 under the following assumptions:

(A1) : z(t), e(t) ∈ C6(S1), where S
1 = R/2πpZ.

(A2): If f (x) ∈ C6(R \ {0}) ∩C
0(R), then there are two positive constants C and 1

p–1 < γ <
1, such that |xkf (k)(x)| ≤ C|x|γ , provided that x ∈ R \ {0} and 0 ≤ k ≤ 6.

(A3): There exist positive constants β1 and β2 such that pβ1 > qβ2 > 0, where positive
constants p and q satisfy 1

p + 1
q = 1 and

xf (x) ≥ β1|x|γ +1, x2f ′(x) ≤ β2|x|γ +1, x ∈R \ {0}.

Here, we mention that condition (A1) does not require z(t) = 1, namely, condition (A1) is
different from z(t) = 1 in Ma [13]. Now, we state our main conclusion.

Theorem 1.1 Assume that p > 2 and (A1) – (A3) hold and ẑ = 1
2πp

∫ 2πp
0 z(t)dt �= 0. Then

every solution of Eq. (1.1) is bounded, namely, sup
t∈R

(|x(t)| + |x′(t)|) < ∞.

We set F(x) =
∫ x

0 f (s)ds. In this work, we utilize c and C to denote any positive constants
(not concerning their quantity). k, l, m and n are nonnegative integers.

The structure of this work is the following: Sect. 2 presents action-angle variables, ex-
changing time and angle variables, and several lemmas. Section 3 provides the proof of
Theorem 1.1.

2 Preliminaries
In this part, we provide several lemmas that help prove Theorem 1.1. Throughout Sect. 2,
we assume that the hypotheses of Theorem 1.1 always hold.

2.1 Action-angle coordinates
Let x′ = –ωϕq(y), then y = –ω1–pϕp(x′), and the equivalent form of Eq. (1.1) is the following:

x′ = –ωϕq(y), y′ = ω[a1ϕp(x+) – b1ϕp(x–)] + ω1–p[z(t)f (x) – e(t)]

with the Hamiltonian function

H(x, y, t) =
ω

q
|y|q +

ω

p
(a1|x+|p + b1|x–|p) + ω1–p(z(t)F(x) – e(t)x), (2.1)

where a1 = ω–pa, b1 = ω–pb, a1 and b1 satisfy a
– 1

p
1 + b

– 1
p

1 = 2.
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Let sinp(t) satisfy the problem

(ϕp(C′(t)))′ + ϕp(C(t)) = 0, C(0) = 0, C′(0) = 1.

From the conclusions in [15–17], we confirm that sinp(t) is a 2πp-periodic C2 odd func-
tion with sinp(πp – t) = sinp(t) for t ∈ [0, πp

2 ] and sinp(2πp – t) = –sinp(t) for t ∈ [πp, 2πp].
Moreover, for t ∈ [0, πp

2 ] and sin′
p(t) > 0, sinp(t) ∈ (0, (p – 1)

1
p ) is implicitly given by

∫ sinp(t)

0

ds

(1 – sp
p–1 )

1
p

= t.

Suppose that v(t) satisfies the initial problem

(ϕp(x′(t)))′ + a1ϕp(x+) – b1ϕp(x–) = 0, x(0) = (p – 1)
1
p , x′(0) = 0.

Letting ϕp(v′) = u and q = p/(p – 1) > 1 yields

|u|q
q

+
a1|v+|p + b1|v–|p

p
=

a1

q
. (2.2)

Using (2.2), we obtain that the action-angle coordinate transformation ψ0: x =
(d1r)

1
p v(θ ), y = (d1r)

1
q u(θ ) with d1 = pa–1

1 . ψ0 is a symplectic transformation since its value
of the Jacobian determinant is 1. Under ψ0, Hamiltonian function (2.1) is transformed
into

h(r, θ , t) = ωr + ω1–pz(t)F((d1r)
1
p v(θ )) – ω1–pe(t)(d1r)

1
p v(θ ) ∈C

1,1,6(R+ × S
1 × S

1).

(2.3)

Let 	 = {θ ∈ S
1 : v(θ ) = 0}. When θ ∈ S

1\	 (t ∈ S
1 is a parameter), we have h(r, t, θ ) ∈ C

6

with respect to r.

2.2 Lemmas
Utilizing the ideas in [13, 14, 18], from conditions (A2) and (A3), we obtain the following
conclusions.

Lemma 2.1 For r 
 1, k ≤ 6, it holds that

|∂k
r F((d1r)

1
p v(θ ))| ≤ Cr–k+ γ +1

p ,

|∂k
r f ((d1r)

1
p v(θ ))| ≤ Cr–k+ γ

p ,

in which θ ∈ S
1 provided that k = 1; θ ∈ S

1 \ 	 if k ≥ 2.

Lemma 2.2 Let

F̄(r) =
∫ 2πp

0
F((d1ω

–1r)
1
p v(θ ))dθ . (2.4)
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For r 
 1, the following conclusions hold

|F̄ (k)(r)| ≤ Cr–k+ γ +1
p , k ≤ 6,

F̄ ′(r) ≥ cr–1+ γ +1
p

and

F̄ ′′(r) ≤ –Cr–2+ γ +1
p .

Proof For the sake of simplicity, we write x = (d1ω
–1r)

1
p v(θ ). Using (2.4) and noticing that

	
⋂

[0, 2πp] is a finite set, we have

F̄ ′(r) =
1
pr

∫

[0,2πp]\	
f (x)xdθ .

Using condition (A3) yields

F̄ ′(r) =
1
pr

∫

[0,2πp]\	
f (x)xdθ ≥ β1

pr

∫

[0,2πp]\	
|x|γ +1dθ = cr–1+ γ +1

p .

Differentiating (2.4) with respect to variable r, from the above analysis and condition (A3),
we have

F̄ ′′(r) =
1

p2r2

∫

[0,2πp]\	
f (x)x2dθ –

1
qr

F̄ ′(r)

≤ β2

p2r2

∫

[0,2πp]\	
|x|γ +1dθ –

1
qr

F̄ ′(r)

≤ β2

prβ1
F̄ ′(r) –

1
qr

F̄ ′(r)

=
( β2

pβ1
–

1
q

) F̄ ′(r)

r

≤
( β2

pβ1
–

1
q

)
cr–2+ γ +1

p ,

which finishes the proof. �

From Lemmas 2.1 and 2.2. combined with condition (A1), we obtain that the following
conclusion holds.

Lemma 2.3 Let h1(r, θ , t) = ω1–pz(t)F((d1r)
1
p v(θ )) – ω1–pe(t)(d1r)

1
p v(θ ). For r 
 1, t ∈ S

1

then

|∂k
r ∂ l

t h1(r, θ , t)| ≤ cr–k+ γ +1
p , (2.5)

in which θ ∈ S
1 provided that k = 1; θ ∈ S

1 \ 	 if k ≥ 2.
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Let

g(r, θ , t) = r– 1
p h1(r, θ , t). (2.6)

From Lemma 2.3, for r 
 1, we have

|∂k
r ∂ l

t g(r, θ , t)| ≤ cr–k+ γ
p , k + l ≤ 6. (2.7)

Lemma 2.4 For r 
 1, k + l ≤ 6, then

⎧
⎪⎨

⎪⎩

0 < cr ≤ h(r, t, θ ) < Cr,
∂rh(r, t, θ ) > ω

2 ,
|∂k

r ∂ l
t h(r, t, θ )| ≤ Cr–k+1,

(2.8)

in which θ ∈ S
1 provided that k = 1; θ ∈ S

1 \ 	 if k ≥ 2.

Proof From (2.3) and Lemma 2.1, we obtain

lim
r→+∞

h
r

= ω > 0,

and for r 
 1,

∂h
∂r

= ω + ω1–pz(t)∂rF((d1r)
1
p v(θ )) –

d1

p
ω1–pe(t)(d1r)

1
p –1v(θ ) >

ω

2
,

which together with (2.5)–(2.7) completes the proof of (2.8). �

Lemma 2.5 [15] Provided that function f (x, t) satisfies

|∂k
x ∂ l

t f (x, t)| ≤ Cx–k|f (x, t)|

for all sufficiently large x > 0 and all k, l : k + l ≤ N , where N ∈N. Suppose that

∂xf (x, t) ≥ cx–1f (x, t) > 0

for all sufficiently large x > 0. Then, the inverse function g(y, t) of f in x satisfies

|∂k
y ∂ l

t g(y, t)| ≤ Cy–kg(y, t)

for all K + l ≤ N and all sufficiently large y.

Using Lemmas 2.3 and 2.4, for h 
 1, t ∈ S
1, we have

|∂k
h∂ l

t r(h, t, θ )| ≤ Ch–k+1, k + l ≤ 6, θ ∈ S
1 \ 	. (2.9)

Thus, we write (2.3) as

h(r, θ , t) = ωr + r
1
p g(r, θ , t), r = r(h, t, θ ). (2.10)
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In fact,1 v(t) ∈ C2(S1) does not belong to C4(S1). We exchange the time and angle vari-
ables to prove Theorem 1.1.

2.3 Exchange of time and angle variables
Based on the conclusions in [15], the identity rdθ – hdt = –(hdt – rdθ ) guarantees that if
we can solve r = r(h, t, θ ) from (2.3) as a function of h, t, θ , then

dh
dθ

= –
∂r
∂t

r(h, t, θ ),
dt
dθ

=
∂r
∂h

r(h, t, θ ), (2.11)

i.e., Eq. (2.11) is a Hamiltonian system with a Hamiltonian function r = r(h, t, θ ) in which
action, angle, and time variables are h, t, and θ , respectively. The following lemma gives a
more detailed description of r in (2.10) according to the magnitude of h.

Lemma 2.6 Provided that h 
 1, θ ∈ S
1 \ 	, t ∈ S

1, it holds that

r(h, t, θ ) = ω–1h – ω–pz(t)F((d1ω
–1h)

1
p v(θ )) + R(h, t, θ ), (2.12)

where

|∂k
h∂ l

t R(h, t, θ )| ≤ Ch–k+max{γ , 1
p }, k + l ≤ 6. (2.13)

Proof Using the identity (2.10) yields

r = ω–1h – ω–1r
1
p g(r, t, θ ). (2.14)

Utilizing the identity (2.6) and the Taylor formula, we obtain that function g = g(r, θ , t)
satisfies

g(r, θ , t) = g(ω–1h – ω–1r
1
p g, θ , t)

= g(ω–1h, θ , t) + R0(h, t, θ )

= (ω–1h)– 1
p ω1–pz(t)F((d1ω

–1h)
1
p v(θ )) – d

1
p
1 ω1–pe(t)v(θ ) + R0(h, t, θ ), (2.15)

in which R0(h, t, θ ) = –
∫ 1

0 g ′
r(ω

–1h – sω–1r
1
p g, θ , t))ω–1r

1
p gds.

Substituting (2.14) into (2.15), we have

r = ω–1h – ω–1g(r, t, θ )(ω–1h)
1
p (1 – h–1r

1
p g)

1
p

= ω–1h – ω–1g(r, t, θ )(ω–1h)
1
p

+
1
p
ω–1g(r, t, θ )(ω–1h)

1
p

∫ 1

0
(1 – sh–1r

1
p g)

1
p –1h–1r

1
p gds

= ω–1h – ω–pz(t)F((d1ω
–1h)

1
p v(θ )) + R1(h, t, θ ) + R2(h, t, θ ) + R3(h, t, θ ),

1C4 is four times continuously differentiable functions in R or S1 , and C6 is six times continuously differentiable functions
in R or S1 .
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where

R1(h, t, θ ) = ω
–(2+ 1

p )h
1
p

∫ 1

0
gr(ω

–1h – sω–1r
1
p g, θ , t)r

1
p gds,

R2(h, t, θ ) =
1
p
ω

–(1+ 1
p )h

1
p –1

∫ 1

0
(1 – sh–1r

1
p g)

1
p –1r

1
p g2ds,

R3(h, t, θ ) = d
1
p
1 ω

–(p+ 1
p )v(θ )e(t)h

1
p .

Direct computation gives

∂k
h∂ l

t r
1
p (h, t, θ ) =

∑
r

1
p –m

∂
k1
h ∂

l1
t r(h, t, θ )∂k2

h ∂
l2
t r(h, t, θ ) · · · ∂km

h ∂
lm
t r(h, t, θ )

with 1 ≤ m ≤ k + l, k1 + k2 · · · +km = k and l1 + l2 + · · · + lm = l. Using (2.9) yields

|∂k
h∂ l

t r
1
p (h, t, θ )| ≤ Ch–k+ 1

p .

Similarly, we acquire

|∂k
h∂ l

t g(h, t, θ )| ≤ Ch–k+ γ
p ,

|∂k
h∂ l

t gr(ω
–1h – sω–1r

1
p g, t, θ )| ≤ C–k–1+ γ

p .

Using p > 2 and the expression of R1 yields

|∂k
h∂ l

t R1(h, t, θ )| ≤ Ch–k–1+ 2+2γ
p ≤ Ch–k+γ .

Analogously, we obtain

|∂k
h∂ l

t R2(h, t, θ )| ≤ Ch–k+γ ,

|∂k
h∂ l

t R3(h, t, θ )| ≤ Ch–k+ 1
p .

Letting R(h, t, θ ) = R1(h, t, θ ) + R2(h, t, θ ) + R3(h, t, θ ), we obtain that inequality (2.13) holds.
�

2.4 Canonical transformation
In this part, two lemmas are established to make sure that the Poincare map of the new
system is close to a twist map.

Lemma 2.7 There exists a canonical transformation ψ1 of the form: ψ1 : (λ,ϕ) → (h, t)

h = λ + U(λ, t, θ ), ϕ = t + V (λ, t, θ ),

where U and V are 2πp periodic about θ . Under ψ1, the Hamiltonian function (2.12) is
transformed into

r1(λ,ϕ, θ ) = ω–1λ – ω–pẑF((d1λω–1)
1
p v(θ )) + R̄1(λ,ϕ, θ ). (2.16)
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Moreover, for λ 
 1, θ ∈ S
1 \ 	, t ∈ S

1, it holds that

|∂k
λ∂ l

ϕR̄1(λ,ϕ, θ )| ≤ Cλ
–k+max{γ , γ +1

p }, k + l ≤ 5. (2.17)

Proof We make a transformation ψ1 : (λ,ϕ) → (h, t) implicitly given by

h = λ + ∂tS1(λ, t, θ ), ϕ = t + ∂λS1(λ, t, θ ) (2.18)

with

S1(λ, t, θ ) =
∫ t

0
ω1–pz1(t)F

(
(d1λω–1)

1
p v(θ )

)
dt.

Under ψ1, Hamiltonian (2.12) becomes

r1(λ,ϕ, θ ) = ω–1(λ + ∂tS1) – ω–pẑF
(

(d1ω
–1(λ + ∂tS1))

1
p v(θ )

)
+ ∂θ S1

– ω–pz1(t)F
(

(d1ω
–1(λ + ∂tS1))

1
p v(θ )

)
+ R(λ + ∂tS1, t, θ )

= ω–1λ – ω–pẑF
(

(d1λω–1)
1
p v(θ )

)
+ R4(λ,ϕ, θ )

+ R5(λ,ϕ, θ ) + R6(λ,ϕ, θ ) + R7(λ,ϕ, θ ),

where z1(t) = z(t) – ẑ and

R4 = –ωpẑ
∫ 1

0
∂λF

(
(d1ω

–1(λ + μ∂tS1))
1
p v(θ )

)
∂tS1dμ

= –
ẑωp

p

∫ 1

0
f
(

(d1ω
–1(λ + μ∂tS1))

1
p v(θ )

)
v(θ )d1ω

–1(λ + μ∂tS1)– 1
q ∂tS1dμ, (2.19)

R5 = –
∫ 1

0
ω–pz1(t)∂d1ω–1λF

(
(d1ω

–1(λ + μ∂tS1))
1
p v(θ )

)
d1ω

–1∂tS1dμ,

R6 = ∂θ S1(λ, t, θ ),

R7 = R(λ + ∂tS1, t, θ ).

From Lemma 2.1, for λ 
 1 and k + l ≤ 6, we have

|∂k
λ∂ l

t S1(λ, t, θ )| ≤ Cλ
–k+ γ +1

p , (2.20)

which together with (2.18) yields

{
1
2 < ∂ϕt(λ,ϕ, θ ) < 3

2 , |∂λt(λ,ϕ, θ )| < λ
–2+ γ +1

p ,
|∂λh(λ,ϕ, θ )| ≤ C, |∂ϕh(λ,ϕ, θ )| ≤ Cλ

γ +1
p .

(2.21)

For 2 ≤ k + l ≤ 5, utilizing direct calculations gives rise to

|∂k
λ∂ l

ϕh(λ,ϕ, θ )| ≤ Cλ
–k+ γ +1

p , |∂k
λ∂ l

ϕt(λ,ϕ, θ )| ≤ Cλ
–k–1+ γ +1

p . (2.22)
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First, we prove |∂k
λ∂ l

ϕR4| ≤ Cλ
–k+ γ +1

p . Direct computation gives

∂k
λ∂ l

ϕ∂tS1(λ, t, θ ) =
∑

∂m
λ ∂n+1

t S1(λ, t, θ )∂k1
λ ∂ l1

ϕ t∂k2
λ ∂ l2

ϕ t · · · ∂kn
λ ∂ ln

ϕ t

with 1 ≤ m + n ≤ k + l, m + k1 + k2 · · · +km = k and l1 + l2 + · · · + ln = l. Using (2.20), (2.21),
and (2.22) yields

|∂k
λ∂ l

ϕ∂tS1| ≤ Cλ
–k+ γ +1

p .

In the same way, we obtain

|∂k
λ∂ l

ϕ(λ + μ∂tS1)– 1
q | ≤ Cλ

–k– 1
q

and
∣
∣
∣
∣
∣
∂k
λ∂ l

ϕ f
(

(d1ω
–1(λ + μ∂tS1))

1
p v(θ )

)
∣
∣
∣
∣
∣
≤ Cλ

–k+ γ
p .

Noticing 0 < 1
p–1 < γ < 1, from (2.19), we have |∂k

λ∂ l
ϕR4| ≤ Cλ

–k+ γ
p . Similarly, we obtain

|∂k
λ∂ l

ϕRi| ≤ Cλ
–k+ γ +1

p , i = 5, 6.

Applying (2.13), (2.21), and (2.22) gives rise to

|∂k
λ∂ l

ϕR7| ≤ Cλ
–k+max{γ , 1

p }.

Set R̄1(λ,ϕ, θ ) = R4(λ,ϕ, θ ) + R5(λ,ϕ, θ ) + R6(λ,ϕ, θ ) + R7(λ,ϕ, θ ). Hence, inequality (2.17)
holds. �

Next, we eliminate the new time variable θ at the first time by constructing the trans-
formation.

Lemma 2.8 There exists a canonical transformation ψ2 : (λ,ϕ) → (λ, τ ):

ψ2 : λ = λ, ϕ = τ + ∂λS2(λ, θ )).

Under ψ2, the Hamiltonian (2.16) is transformed into

r2(λ, τ , θ ) = ω–1λ – ω–pẑF̄(λ) + R̄2(λ, τ , θ ). (2.23)

The new disturbance term R̄2 satisfies

|∂k
λ∂ l

τ R̄2(λ, τ , θ )| ≤ Cλ
–k+max{γ , γ +1

p } (2.24)

for k + l ≤ 5,λ 
 1, θ ∈ S
1 \ 	 and t ∈ S

1.
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Proof We choose generating function

S2(λ, θ ) =
∫ θ

0
ω–pẑ[F((d1ω

–1λ)
1
p v(θ )) – F̄(λ)]dθ .

Under ψ2, then the Hamiltonian (2.16) is transformed into

r2(λ, τ , θ ) = r1(λ,ϕ, θ ) + ∂θ S2 = ω–1λ – ω–pẑF̄(λ) + R̄2(λ, τ , θ ),

where

R̄2(λ, τ , θ ) = R̄1(λ, τ + ∂λS2, θ ). (2.25)

Thus, inequality (2.24) is obtained from (2.17), (2.23), (2.25) and Lemma 2.2. The proof of
Lemma 2.8 is finished. �

3 Proof of main result
Without loss of generality, we only need to prove Theorem 1.1 for the case ê > 0. For ê < 0,
the proof is similar. For given 0 < δ < 1, define transformation ψ3 : (λ, τ ) → (v, τ ) by

F̄ ′(λ) = δvωp(ẑ)–1, τ = τ , 1 ≤ v ≤ 4. (3.1)

Due to λ → +∞, F̄ ′(λ) → 0, thus λ → +∞ ⇔ δ → 0. For λ = λ(δv), the following estimates
hold.

Lemma 3.1 cδ
p

γ +1–p ≤ λ(δv) ≤ Cδ
p

γ +1–p , |∂k
v λ(δv)| ≤ Cλ(δv) k ≤ 4.

Proof From Lemma 2.2 and (3.1), we have cδ
p

γ +1–p ≤ λ(δv) ≤ Cδ
p

γ +1–p .
Differentiating (3.1) with respect to v, we have F̄ ′′(λ) = ωpδẑ–1. Using Lemma 2.2 yields

|∂vλ| = |ω
pδẑ–1

F̄ ′′(λ)
| = |ω

pδẑ–1λ

F̄ ′′(λ)λ
| ≤ | δλ

λ
–1+ γ +1

p
| = | cδλ

F̄ ′(λ)
| =

cδλ
δv

≤ Cλ.

Taking k(k > 1) order derivative about v on both sides of (3.1), we obtain

F̄ ′′(λ)∂k
v λ +

s=k∑

s=2

F̄ (s+1)∂k1
v λ∂k2

v · · · ∂ks
v λ = 0

with k1 + k2 + · · · + ks = k. Thus,

∂k
v λ =

s=k∑

s=2

F̄ (s+1)∂
k1
v λ∂

k2
v · · · ∂ks

v λ

F̄ ′′(λ)
.

From Lemma 2.2, using the induction methods yields

|∂k
v λ| ≤ Cλ, k = 2, 3, 4,

which completes the proof of Lemma 3.1. �
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From the definition ψ3, we have

dv
dθ

= δ–1ω–pẑF̄ ′′(λ)
dλ

dθ
= δ–1ω–pẑF̄ ′′(λ)∂τ R̄2(λ, τ , θ ).

Introducing a new time variable ϑ by θ = –ϑ yields

dv
dϑ

= l1(v, τ ,ϑ , δ),
dτ

dϑ
= –ω–1 + δv + l2(v, τ ,ϑ , δ), (3.2)

where

l1(v, τ ,ϑ , δ) = δ–1ω–pẑF̄ ′′(λ)∂τ R̄2(λ, τ , –ϑ),

l2(v, τ ,ϑ , δ) = –∂λR̄2(λ, τ , –ϑ).

Lemma 3.2 Provided that p > 2, 1
p–1 < γ < 1, 0 < δ � 1, k + l ≤ 4 and τ ∈ S

1 \ 	(i = 1, 2),
it holds that

|∂k
v ∂ l

τ li(v, τ ,ϑ , δ)| ≤ Cδσ , (3.3)

where σ = p
γ +1–p (–1 + γ ) > 0.

Proof For k = 0, we have

|∂ l
τ l2| = |∂λ∂

l
τ R̄2(λ, τ , –ϑ)| ≤ Cλ

–1+max{ γ +1
p ,γ } ≤ Cδ

p
γ +1–p (–1+max{ γ +1

p ,γ }) ≤ Cδσ .

Using the assumption γ > 1
p–1 derives 1+γ

p < γ . We have |∂ l
τ l2| ≤ Cδσ .

For k > 0, we obtain

|∂k
v ∂ l

τ l2| = |∂k
v ∂ l

τ ∂λR̄2(λ, τ , –ϑ)|

≤ Cλ
–1+max{ γ +1

p ,γ }

≤ Cδ
p

γ +1–p (–1+max{ γ +1
p ,γ })

≤ Cδσ .

For l1, we have the same estimate. The proof of Lemma 3.2 is completed. �

From Lemmas 3.1–3.2 and (3.3), we see that the solutions of (3.2) with initial value v(0) =
v0 ∈ [1, 2], τ (0) = τ0 do exist for 0 ≤ ϑ ≤ 4πp if δ � 1. Integrating (3.2) from 0 to 2πp, we
derive that Poincaré map P in (3.2) takes the following form

P :

{
τ2πp = τ0 – ω–12πp + δ(v0 + P2(v0, τ0, δ)),
v2πp = v0 + δP1(v0, τ0, δ),

where |∂k
v0∂

l
τ0 Pi| ≤ Cδσ–1 for k + l ≤ 4, i = 1, 2.

Since P is a Poincarè map in (3.2), it is an area-preserving, and thus it possesses the
intersection property in the annulus [1, 2] × S

1. Namely, if � is an embedded circle in



Xing et al. Boundary Value Problems        (2024) 2024:103 Page 12 of 13

[1, 2] × S
1 homotopic to a circle v = constant, then P(�) ∩ � �= ∅ (see [18]). Now, we have

verified that the mapping P satisfies all the conditions of Moser’s twist theorem. Hence,
there exists an invariant curve �δ of P surrounding v0 = 1 if δ � 1. The �δ is located in
ring domain {(v, τ )|δ < v < 2δ}. Note that δ → 0 ⇔ λ → ∞. The points (λ,ϕ, θ ) satisfy-
ing r1(λ,ϕ, θ ) = r1(λ,ϕ, θ )|(λ,ϕ)∈�δ

form an invariant torus T2
δ in the extended phase space

(λ,ϕ, θ ). Thus, ψ–1(�δ) is an invariant torus for Eq. (2.1) in (x, y, t) ∈ R
2 × S

1, which is
far away from (0, 0), where ψ = ψ1ψ0. The solution of Eq. (2.1) starting from inside of
ψ–1(�δ) is contained inside of ψ–1(�δ). Thus, the solution of Eq. (2.1) is bounded. The
proof of Theorem 1.1 is finished.
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