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Abstract
In this paper, the fractional-order Chelyshkov functions (FCHFs) and
Riemann-Liouville fractional integrals are utilized to find numerical solutions to
fractional delay differential equations, by transforming the problem into a system of
algebraic equations with unknown FCHFs coefficients. An error bound of FCHFs
approximation is estimated and its convergence is also demonstrated. The
effectiveness and accuracy of the presented method are established through several
examples. The resulting solution is accurate and agrees with the exact solution, even
if the exact solution is not a polynomial. Moreover, comparisons between the
obtained numerical results and those recently reported in the literature are shown.

Mathematics Subject Classification: 65L05; 65L60; 34K28

Keywords: Fractional delay differential equation; Numerical solution;
Fractional-order Chelyshkov functions; Operational matrix; Collocation method

1 Introduction
Mathematical models of natural phenomena can be formulated more accurately by utiliz-
ing fractional differential equations. Fractional differential equations have many applica-
tions in various fields of science, such as physics [7, 11, 17], chemistry [37], biology [49],
medicine [18], fluid mechanics [26], continuum mechanics [12], signal processing [40]
and propagation of spherical flames [28]. Consequently, much attention has been devoted
to find solutions to fractional differential equations. Numerous authors have studied the
existence and uniqueness of solutions for fractional differential equations [25, 39]. In re-
cent years, many numerical methods have been presented in the literature to solve these
kinds of equations, such as Galerkin method [6], homotopy analysis method [35], differ-
ential transformation method [2], collocation method [3, 5], cubic B-spline collocation
method [29], hybrid Taylor and block-pulse operational matrix method [45], Euler func-
tions method [30], Chebyshev polynomials method [23, 24], and Chelyshkov functions
method [4].

A delay differential equation is a type of differential equation where the derivative of
the unknown function at the current time depends not only on the solution at the current
time, but also on the solution at previous times. Fractional delay differential equations can
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be considered as a generalization of delay differential equations of integer orders. They
have been used for modeling in different fields of science, such as control [20], biology [9],
optics [41] and electrical networks [16]. Many researchers have examined the existence
and uniqueness of solutions to fractional delay differential equations [1, 27].

Generally, It is a challenge to find exact solutions for most fractional delay differen-
tial equations, hence numerical or approximate methods should be developed to solve
these equations. Various techniques have been presented to address this type of prob-
lem in recent decades. In [31], a numerical method based on finite differences has been
presented to approximate solutions of fractional delay differential equations. The devel-
opment of a predictor-corrector method with error analysis has been introduced in [14].
The Bernoulli wavelet operational matrix of fractional integration together with the collo-
cation method has been employed in [42] to provide an approximate solution of fractional
delay differential equations. In [21], the collocation method, optimization techniques and
generalized Laguerre polynomials are applied to approximate a solution of delay fractional
differential equations. A numerical technique based on hybrid functions of block-pulse
and fractional-order Fibonacci polynomials has been given in [43]. They used Riemann–
Liouville fractional integral operational matrix and delay operational matrix of the hybrid
functions together with the collocation method to reduce the problem to a system of al-
gebraic equations.

In [15], a computational technique based on the combination of fractional Bessel func-
tions with block-pulse functions to produce a sparse operational matrix to reduce the
problem to a system of algebraic equations. A spectral operational matrices-based algo-
rithm has been presented in [48]. These matrices have been generated by using shifted
Gegenbauer polynomials. Instead of using the operational matrix of fractional integration,
which requires some approximation, a numerical method based on the explicit formula
of Riemann–Liouville fractional integral of Legendre wavelets functions has been given in
[50]. A numerical method based on applying the exact formula for the Riemann–Liouville
fractional integral of Taylor wavelet functions together with the collocation method has
been proposed in [47]. Recently, Avci [10] has introduced a numerical spectral technique
depending on the operational matrix of fractional integration for fractional-order Taylor
basis.

Approximation by orthogonal functions has grown significantly as a useful tool for solv-
ing fractional differential equations. They convert the fractional problem into a set of al-
gebraic problems. Some popular orthogonal families are Chebyshev polynomials, Leg-
endre polynomials, Laguerre polynomials, Taylor polynomials, Chelyshkov polynomials
and block–pulse functions. Chelyshkov polynomials were presented in [13] and have been
used successfully for solving different kinds of fractional differential equations. Solving
fractional differential equations with basis functions of integer-order may lead to some is-
sues when the solutions contain terms with fractional powers [19]. The major weaknesses
are that the rate of convergence is weak and a large number of basis functions are required
to provide accurate results. These drawbacks can be avoided by approximating the solu-
tions using orthogonal functions of fractional order.

Based on the above considerations, the motivation of this paper is to extend the applica-
tion of FCHFs to present a new numerical method for solving fractional delay differential
equations. In order to accomplish this goal, the operational matrix of fractional integral
for FCHFs is derived and used together with the collection method to convert the frac-
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tional delay problem into a set of algebraic equations. To the best of our knowledge, this
is the first time that the operational matrix of fractional integration for FCHFs is applied
to solve fractional delay differential equations

The main advantages of the presented technique are:
• FCHFs are fractional-order orthogonal functions. This feature leads to a good rate of

convergence and reduces the number of basis functions required to get satisfactory
results.

• The solution procedure is simple since the fractional delay problem is reduced to a set
of algebraic equations.

• The computational errors are less than in the conventional methods where the
obtained numerical results in some cases are the exact solutions and in others are in
good agreement with the exact solutions.

The structure of the paper is as follows. Section 2 presents some fundamental concepts of
fractional calculus that will be used in our subsequent development. In Sect. 3, the FCHFs
are described, and the operational matrix of fractional integration is also constructed. The
convergence of FCHFs is demonstrated in Sect. 4. Section 5 describes our new numeri-
cal method for solving fractional delay differential equations. Section 6 considers some
numerical examples and reports our numerical results as well as some comparisons with
other methods. The paper is finally summarized in Sect. 7.

2 Preliminaries on fractional calculus
Here, we review some definitions and properties of fractional integration and differentia-
tion that will be used in the next sections [36, 39].

Definition 2.1 The Riemann–Liouville fractional integration of order ν ≥ 0 of a function
g(t) is defined as

Iνg(t) =
1

�(ν)

∫ t

0
(t – τ )ν–1g(τ )dτ =

1
�(ν)

tν–1 ∗ g(t), ν > 0, t > 0, (2.1)

I0g(t) = g(t),

where tν–1 ∗ g(t) is the convolution of tν–1 and g(t).

Definition 2.2 The Caputo fractional derivative of order ν > 0 of a function g(t) is defined
as

Dνg(t) =
1

�(�ν� – ν)

∫ t

0
(t – τ )�ν�–ν–1g(�ν�)(τ )dτ , �ν� – 1 < ν ≤ �ν�, t > 0, (2.2)

where �ν� denotes the smallest integer greater than or equal to ν .

The following properties are satisfied for Riemann–Liouville fractional integral and Ca-
puto fractional derivative:

• Iνtβ =
�(β + 1)

�(β + ν + 1)
tβ+ν , β > –1. (2.3)

• Iν1 Iν2 g(t) = Iν1+ν2 g(t) = Iν2 Iν1 g(t), ν1, ν2 ≥ 0. (2.4)
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• DνK = 0, K is constant. (2.5)

• Dνtβ =

⎧⎪⎨
⎪⎩

0, β ∈ N0 and β < �ν�,
�(β + 1)

�(β – ν + 1)
tβ–ν , β ∈ N0 and β ≥ �ν� or β /∈ N and β > �ν	.

(2.6)

• DνIνg(t) = g(t). (2.7)

• IνDνg(t) = g(t) –
�ν�–1∑

r=0

g(r)(0+)

r!
tr , t > 0. (2.8)

• Dν
(
α1g1(t) + α2g2(t)

)
= α1Dνg1(t) + α2Dνg2(t),

Iν
(
α1g1(t) + α2g2(t)

)
= α1Iνg1(t) + α2Iνg2(t),

(2.9)

where �ν	 denotes the largest integer less than or equal to ν , N0 = {0, 1, 2, . . .}, N =
{1, 2, 3, . . .} and α1, α2 are constants.

Definition 2.3 (Generalized Taylor’s formula). Suppose that Dlβg(t) ∈ C(0, 1] for l =
0, 1, . . . , m + 1 and 0 < β ≤ 1, then [36]

g(t) =
m∑

r=0

trβ

�(rβ + 1)
Drβg(0+) +

t(m+1)β

� ((m + 1)β + 1)
D(m+1)βg(ξ ), 0 < ξ ≤ t, ∀t ∈ (0, 1],

(2.10)

where Drβ = DβDβ . . . Dβ︸ ︷︷ ︸
r times

.

If β = 1, then the generalized Taylor’s formula converts to the classical Taylor’s formula.

3 Fractional-order Chelyshkov functions properties
3.1 Fractional-order Chelyshkov functions
The fractional-order Chelyshkov functions (FCHFs) can be defined by using Chelyshkov
polynomials in the following form [5]:

ϕβ
mr(t) =

m∑
j=r

(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
tjβ , r = 0, 1, . . . m, β > 0. (3.1)

The set {ϕβ
mr}m

r=0 of FCHFs is a family of orthogonal functions over the interval ρ = [0, 1]

with respect to the weight function wβ (t) = tβ–1. The orthogonality property for these
functions is

∫ 1

0
ϕβ

ms(t)ϕ
β

mi(t)wβ(t)dt =
δsi

(s + i + 1)β
, δsi =

⎧⎨
⎩

1, s = i,

0, s �= i,
, s, i = 0, 1, . . . , m. (3.2)

It is clear from Equation (3.1) that every member of the set {ϕβ
mr}m

r=0 is of degree βm. This is
the key distinction between the Chelyshkov polynomials and the other sets of orthogonal
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Figure 1 The graph of ϕβ
mr (t) atm = 5, r = 0, 1, . . . , 5 and β = 1/3

Figure 2 The graph of ϕβ
mr (t) for various values of β atm = 5 and r = 0

polynomials. Figures 1 and 2 provide graphs of FCHFs for different values of r and β , re-
spectively. Let the weighted space L2

wβ
(ρ) be the set of all real-valued measurable functions

u(t) on ρ that satisfy

∫ 1

0
|u(t)|2wβ (t)dt < ∞, (3.3)

with inner product and norm given by

〈u(t),μ(t)〉wβ
=
∫ 1

0
u(t)μ(t)wβ(t)dt, (3.4)

‖u(t)‖wβ
= 〈u(t), u(t)〉 1

2
wβ

.
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Suppose that
{
ϕ

β
m0(t),ϕβ

m1(t), . . . ,ϕβ
mm(t)

}
is a set of FCHFs and Am = span{ϕβ

m0(t),ϕβ
m1(t),

. . . ,ϕβ
mm(t)}. Also, assume that g(t) is an arbitrary function in L2

wβ
(ρ). Since Am is a closed

finite-dimensional subspace of L2
wβ

(ρ), then for any function g(t) there exists a unique best
approximation gm(t) ∈ Am that minimizing the distance to g(t), that is

‖g(t) – gm(t)‖wβ
≤ ‖g(t) – θ (t)‖wβ

, ∀θ (t) ∈Am. (3.5)

Since gm(t) ∈Am, then there are unique coefficients �0,�1, . . . ,�m such that

g(t) � gm(t) =
m∑

k=0

�kϕ
β

mk(t) = LTβ(t), (3.6)

where L and β(t) are given by

L =
(
�0,�1, . . . ,�m

)T
, �k = β(2k + 1)

∫ 1

0
g(t)ϕβ

mk(t)wβ(t)dt, k = 0, 1, . . . , m, (3.7)

and

β(t) =
(
ϕ

β
m0(t),ϕβ

m1(t), . . . ,ϕβ
mm(t)

)T
. (3.8)

3.2 The operational matrix of fractional integration
This subsection is devoted to construct the fractional integration operational matrix of
the FCHFs, which will be used to reduce the fractional delay differential equations into a
set of algebraic equations.

Theorem 3.1 Let β(t) be a (m+1)×1 vector of FCHFs. The Riemann–Liouville fractional
integral of order ν > 0 of the vector β(t) can be given by

Iνβ(t) � �(ν)β (t), (3.9)

where �(ν) = (λrk)
m
r,k=0 is the (m + 1) × (m + 1) operational matrix of fractional integral of

order ν for FCHFs and its elements can be obtained by

λrk =
m∑
j=r

m∑
l=k

(–1)j+l–r–k β(2k + 1)

β(j + l + 1) + ν

�(jβ + 1)

�(jβ + ν + 1)

(
m – r
j – r

)

×
(

m + j + 1
m – r

)(
m – k
l – k

)(
m + l + 1

m – k

)
. (3.10)

Proof Using Equation (2.1) to integrate Equation (3.1), yields

Iνϕβ
mr(t) =

1
�(ν)

tν–1 ∗ ϕβ
mr(t), r = 0, 1, . . . , m. (3.11)

By taking the Laplace transform of Equation (3.11), we get

L
{

Iνϕβ
mr(t)

}
= L

{
1

�(ν)
tν–1

}
L
{
ϕβ

mr(t)
}

, r = 0, 1, . . . , m. (3.12)
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Since

L
{

1
�(ν)

tν–1

}
=

1
sν

, (3.13)

and

L
{
ϕβ

mr(t)
}

=
m∑
j=r

(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
L
{

tjβ}

=
m∑
j=r

(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

sjβ+1 , r = 0, 1, . . . , m. (3.14)

Then Equation (3.12) becomes

L
{

Iνϕβ
mr(t)

}
=

m∑
j=r

(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

sjβ+ν+1 , r = 0, 1, . . . , m. (3.15)

Now, by utilizing the inverse Laplace transform of Equation (3.15), we obtain

Iνϕβ
mr(t) =

m∑
j=r

(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

�(jβ + ν + 1)
tjβ+ν , r = 0, 1, . . . , m. (3.16)

Approximating tjβ+ν in terms of FCHFs, we get

tjβ+ν �
m∑

k=0

�jkϕ
β

mk (t) , j = 0, 1, . . . , m, (3.17)

where �jk can be determined from Equations (3.1) and (3.7) as follows

�jk = β(2k + 1)
∫ 1

0
tjβ+νϕ

β

mk(t)wβ(t)dt

= β(2k + 1)
m∑

l=k

(–1)l–k

β(j + l + 1) + ν

(
m – k
l – k

)(
m + l + 1

m – k

)
. (3.18)

From Equations (3.16), (3.17) and (3.18), we can write

Iνϕβ
mr(t) �

m∑
k=0

⎛
⎝ m∑

j=r

m∑
l=k

(–1)j+l–r–k β(2k + 1)

β(j + l + 1) + ν

�(jβ + 1)

�(jβ + ν + 1)

(
m – r
j – r

)

×
(

m + j + 1
m – r

)(
m – k
l – k

)(
m + l + 1

m – k

))
ϕ

β

mk(t)

=
m∑

k=0

λrkϕ
β

mk(t), r = 0, 1, . . . , m, (3.19)

which leads to the desired result. �
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4 Convergence analysis
In this section, we discuss the convergence of the best approximation and show that by
increasing the number of the FCHFs, the error in calculating the operational matrix of
fractional integration tends to zero.

Theorem 4.1 Let g(t) ∈ L2
wβ

(ρ) such that Dlβg(t) ∈ C(0, 1] for l = 0, 1, . . . , m + 1. Suppose
that LTβ(t) is the best estimation of g(t) in Am, then

lim
m−→∞

∥∥g(t) – LTβ(t)
∥∥

wβ
= 0. (4.1)

Proof Assume the generalized Taylor’s formula of g(t) is denoted by ψ(t), then from Def-
inition 2.3 the error bound is

∣∣g(t) – ψ(t)
∣∣ =
∣∣∣∣ t(m+1)β

� ((m + 1)β + 1)
D(m+1)βg(ξ )

∣∣∣∣

≤ Hβ t(m+1)β

� ((m + 1)β + 1)
, 0 < ξ ≤ t, t ∈ (0, 1], (4.2)

where

Hβ = sup
t∈(0,1]

{|D(m+1)βg(t)|} .

Since LTβ(t) is the best estimation of g(t) in Am and ψ(t) ∈ Am then by using Equation
(4.2), we get

∥∥g(t) – LTβ(t)
∥∥2

wβ
≤ ∥∥g(t) – ψ(t)

∥∥2
wβ

=
∫ 1

0

(
g(t) – ψ(t)

)2 wβ(t)dt

≤
(

Hβ

� ((m + 1)β + 1)

)2 ∫ 1

0
t(2m+3)β–1dt

=
(

Hβ

� ((m + 1)β + 1)

)2 1
(2m + 3)β

, (4.3)

The right-hand side of inequality (4.3) depends on both m and β , so for a fixed β , we have

lim
m−→∞

Hβ

� ((m + 1)β + 1)

1√
(2m + 3)β

= 0, (4.4)

therefore

lim
m−→∞

∥∥g(t) – LTβ(t)
∥∥

wβ
= 0. (4.5)

Theorem 4.2 Let the error vector Eν of the operational matrix of fractional integration
�(ν) be given by

Eν(t) = Iνβ(t) – �(ν)β(t). (4.6)
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Then

lim
m−→∞‖Eν(t)‖wβ

= 0. (4.7)

Proof Suppose that Eν =
(
ε0, ε1, . . . , εm

)T
, then by using Equations (3.10), (3.16) and (3.18),

we get

‖εr‖wβ
=

∥∥∥∥∥Iνϕβ
mr(t) –

m∑
k=0

λrkϕ
β

mk(t)

∥∥∥∥∥
wβ

≤
m∑
j=r

∣∣∣∣∣(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣

×
∥∥∥∥∥tjβ+ν –

m∑
k=0

m∑
l=k

(–1)l–k β(2k + 1)

β(j + l + 1) + ν

(
m – k
l – k

)(
m + l + 1

m – k

)
ϕ

β

mk(t)

∥∥∥∥∥
wβ

=
m∑
j=r

∣∣∣∣∣(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣

×
∥∥∥∥∥tjβ+ν –

m∑
k=0

�jkϕ
β

mk(t)

∥∥∥∥∥
wβ

, r = 0, 1, . . . , m. (4.8)

But
m∑

k=0
�jkϕ

β

mk(t) is the approximation of tjβ+ν , so from Equation (4.3) we can write

∥∥∥∥∥tjβ+ν –
m∑

k=0

�jkϕ
β

mk(t)

∥∥∥∥∥
wβ

≤ Ĥβ

� ((m + 1)β + 1)

1√
(2m + 3)β

,

Ĥβ = sup
t∈(0,1]

{|D(m+1)β tjβ+ν |} . (4.9)

Hence, Equation (4.8) becomes

‖εr‖wβ
≤ H̄β

� ((m + 1)β + 1)

1√
(2m + 3)β

×
m∑
j=r

∣∣∣∣∣(–1)j–r

(
m – r
j – r

)(
m + j + 1

m – r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣ , r = 0, 1, . . . , m. (4.10)

Therefore

lim
m−→∞‖Eν(t)‖wβ

= 0. (4.11)

5 Numerical method
The aim of this section is to present a new numerical method for solving fractional delay
differential equations by using FCHFs and their operational matrix of fractional integra-
tion.
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Consider the following two problems:

⎧⎪⎪⎨
⎪⎪⎩

Dνy(t) = f
(
t, y(t), y(t – τ )

)
, t ∈ [0, 1], τ ∈ (0, 1], ν > 0,

y(i)(0) = ηi, i = 0, 1, . . . , �ν� – 1,

y(t) = ρ(t), t < 0.

(5.1)

⎧⎨
⎩

Dνy(t) = f
(
t, y(t), y(τ t)

)
, t ∈ [0, 1], τ ∈ (0, 1], ν > 0,

y(i)(0) = ηi, i = 0, 1, . . . , �ν� – 1,
(5.2)

where f and ρ are known analytical functions, τ is delay, ηi, i = 0, 1, . . . , �ν� – 1 are real
constants, y is the unknown function and Dν is the Caputo fractional derivative of order
ν . To find approximate solutions of Problems (5.1) and (5.2), we approximate Dνy(t) by
FCHFs as

Dνy(t) �
m∑

k=0

�kϕ
β

mk(t) = LTβ(t). (5.3)

By applying the Riemann–Liouville integration to Equation (5.3) and using Equations (2.8)
and (3.9), we get

y(t) � Iν
(
LTβ(t)

)
+

�ν�–1∑
i=0

ηi

i!
ti

� LT�(ν)β(t) + PTβ(t), (5.4)

where P is the fractional-order Chelyshkov coefficient vector of the polynomial
�ν�–1∑

i=0

ηi

i!
ti

and is given by

P =
(

p0, p1, . . . , pm

)T
,

pz = β(2z + 1)
�ν�–1∑

i=0

m∑
j=z

(–1)j–zηi(
β(j + 1) + i

)
�(i + 1)

(
m – z
j – z

)(
m + j + 1

m – z

)
,

z = 0, 1, . . . , m.

(5.5)

Then for Problems (5.1) and (5.2), y(t) take the form

y(t) �
⎧⎨
⎩

LT�(ν)β(t) + PTβ(t), t ∈ [0, 1]

ρ(t), t < 0,
(5.6)

y(t) � LT�(ν)β(t) + PTβ(t), t ∈ [0, 1]. (5.7)

Making use of Equations (5.6) and (5.7), we get

y(t – τ ) �
⎧⎨
⎩

LT�(ν)β(t – τ ) + PTβ(t – τ ), t ∈ [τ , 1],

ρ(t – τ ), t < τ ,
(5.8)



Ahmed and Al-Sharif Boundary Value Problems        (2024) 2024:107 Page 11 of 27

y(τ t) � LT�(ν)β(τ t) + PTβ (τ t), t ∈ [0, 1]. (5.9)

By substituting Equations (5.3), (5.6)–(5.9) in Problems (5.1) and (5.2), we obtain the fol-
lowing algebraic equations

⎧⎪⎪⎨
⎪⎪⎩

LTβ(t) � f
(
t, LT�(ν)β(t) + PTβ(t), ρ(t – τ )

)
, t ∈ [0, τ ),

LTβ(t) � f
(
t, LT�(ν)β(t) + PTβ(t),

LT�(ν)β(t – τ ) + PTβ(t – τ )
)
, t ∈ [τ , 1],

(5.10)

LTβ(t) � f
(
t, LT�(ν)β(t) + PTβ(t), LT�(ν)β(τ t) + PTβ(τ t)

)
,

t ∈ [0, 1]. (5.11)

Now, by collocate Equations (5.10) and (5.11) at the points ts =
s
m

, s = 0, 1, . . . , m, we obtain
the following two systems of m + 1 algebraic equations,

⎧⎪⎪⎨
⎪⎪⎩

LTβ(ts) – f
(
ts, LT�(ν)β(ts) + PTβ(ts), ρ(ts – τ )

)� 0, ts ∈ [0, τ ),

LTβ(ts) – f
(
ts, LT�(ν)β(ts) + PTβ(ts),

LT�(ν)β(ts – τ ) + PTβ(ts – τ )
)� 0, ts ∈ [τ , 1],

(5.12)

LTβ(ts) – f
(
ts, LT�(ν)β(ts) + PTβ(ts), LT�(ν)β(τ ts) + PTβ (τ ts)

)� 0,

ts ∈ [0, 1]. (5.13)

These systems can be solved to find m + 1 unknown constants �0,�1, . . .�m and hence, an
approximate solutions of Problems (5.1) and (5.2) can be determined from Equations (5.6)
and (5.7) respectively.

Based on the above, we present an algorithm for solving Problems (5.1) and (5.2) as
follows

Algorithm 5.1
Input: The numbers ν , ηi, i = 0, 1, . . . , �ν� – 1 and the functions f , ρ
Step 1: Choose m ∈ N , β > 0 and construct the fractional-order Chelyshkov vector β (t)

using Equations (3.1) and (3.8).
Step 2: Compute the operational matrix �(ν) and the vector P using Equations (3.10) and

(5.5).
Step 3: Define the unknown vector L =

(
�0,�1, . . . ,�m

)T
.

Step 4: Compute the algebraic equation (5.10) or (5.11).
Step 5: Construct the nonlinear system of algebraic equations (5.12) or (5.13) by using

the points ts =
s
m

, s = 0, 1, . . . , m.
Step 6: Find the unknowns of the algebraic system obtained in Step 5.
Output: An approximate solution given by equation (5.6) or (5.7).

6 Numerical results
To demonstrate the applicability and effectiveness of the introduced method, we use it
to solve some examples, and we compare the numerical results it generates with those
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reported in the literature. All numerical results have been obtained using Mathematica 11
software and a laptop with Intel(R) Core(TM) i7-4600M 2.90 GHz CPU and 8.0 GB RAM.

Example 1 Consider the following fractional delay differential equation [10, 47, 50]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dνy(t) = y(t – τ ) – y(t) + 2t2–ν

�(3–ν)

– t1–ν

�(2–ν) + 2τ t – τ 2 – τ , t ∈ [0, 1], ν ∈ (0, 1], τ ∈ (0, 1],

y(0) = 0,

y(t) = t2 – t, t < 0.

(6.1)

The exact solution to this problem is y(t) = t2 – t. By using the technique described in
Sect. 5, we get

Dνy(t) = LTβ(t),

y(t) �
⎧⎨
⎩

LT�(ν)β(t) + PTβ(t), t ∈ [0, 1],

t2 – t, t < 0,

y(t – τ ) �
⎧⎨
⎩

LT�(ν)β(t – τ ) + PTβ(t – τ ), t ∈ [τ , 1],

(t – τ )2 – (t – τ ), t < τ ,
(6.2)

where L =
(
�0,�1, . . . ,�m

)T
is the vector of unknown constants that we must identify and

P can be calculated from Equation (5.5). By substituting Equations (6.2) into the fractional
delay differential equation (6.1), we get the following matrix equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LTβ(t) –
(
(t – τ )2 – (t – τ )

)
+ LT�(ν)β (t) + PTβ (t)

– 2t2–ν

�(3–ν) + t1–ν

�(2–ν) – 2τ t + τ 2 + τ � 0, t ∈ [0, τ ),

LTβ(t) –
(
LT�(ν)β(t – τ ) + PTβ(t – τ )

)
+ LT�(ν)β(t)

+ PTβ(t) – 2t2–ν

�(3–ν) + t1–ν

�(2–ν) – 2τ t + τ 2 + τ � 0, t ∈ [τ , 1].

(6.3)

By considering ν = 1, we take m = 2, β = 1 and hence

�(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
18

5
12

19
36

–
1

36
1
6

11
18

1
180

–
1

30
5

18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =
(

0, 0, 0
)T

. (6.4)

In case τ ∈ (0, 0.5], making use of Equation (6.4) and collocate Equations (6.3) at the points
0, 1

2 , 1, we obtain the following system

190�0 – 5�1 + �2 + 60 = 0,
(
20τ 2 – 10

)
�0 +

(
10τ 2 + 10τ + 15

)
�1 +

(
–10τ 2 + 6τ + 5

)
�2 + 20τ 2 = 0,
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(
τ 2 – τ + 1

)
�0 +

(
1
2
τ 2 – 1

)
�1 +

(
–

1
2
τ 2 +

4
5
τ + 1

)
�2 + τ 2 – τ – 1 = 0. (6.5)

Solving system (6.5) for the unknowns �0, �1, �2 gives the solution

�0 = –
1
3

, �1 = –
1
2

, �2 =
5
6

, (6.6)

thus

y(t) = LT�(1)1(t) =
(

–
1
3

, –
1
2

,
5
6

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
18

5
12

19
36

–
1

36
1
6

11
18

1
180

–
1

30
5

18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

10t2 – 12t + 3
–5t2 + 4t

t2

⎞
⎟⎠ = t2 – t,

t ∈ [0, 1], (6.7)

which is the exact solution. For τ ∈ (0.5, 1], we use Equation (6.4) and collocate Equations
(6.3) at the points 0, 1

2 , 1, then we get the following system

190�0 – 5�1 + �2 + 60 = 0,

2�0 – 25�1 – 7�2 – 6 = 0,

(
τ 2 – τ + 1

)
�0 +

(
1
2
τ 2 – 1

)
�1 +

(
–

1
2
τ 2 +

4
5
τ + 1

)
�2 + τ 2 – τ – 1 = 0. (6.8)

Solving system (6.8) for the unknowns �0, �1, �2 gives the same solution

�0 = –
1
3

, �1 = –
1
2

, �2 =
5
6

, (6.9)

which leads to the exact solution. Further, the total CPU time required to find the solution
using the proposed method for the two cases of τ in this example is 0.0156 seconds. Thus,
the proposed method is accurate and time-efficient.

For ν =
1
2

, we take m = 4, β =
1
2

, and again we can obtain the exact solution, where

�( 1
2 ) =

1√
π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
75

1
50

131
30

–
10π

7
2366

75
– 10π

11274
25

–
1005π

7

–
16

225
8

25
10π

21
–

56
45

10π

3
–

4739
450

531π

7
–

11907
50

16
525

–
24

175
8

15
77

150
3303

50
– 21π

–
4

525
6

175
–

2
15

56
75

3π –
216
25

4
4725

–
2

525
2

135
–

56
675

24
25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =
(

0, 0, 0, 0, 0
)T

.

(6.10)
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Similarly, by using Equation (6.10), subdivide the interval (0, 1] into four subintervals and
consider the following cases of τ

τ ∈
(

0,
1
4

]
, τ ∈

(
1
4

,
1
2

]
, τ ∈

(
1
2

,
3
4

]
, τ ∈

(
3
4

, 1
]

, (6.11)

then collocate Equations (6.3) at the points ts =
s
4

, s = 0, 1, . . . , 4, for each case of τ and
solving the resulting systems for the unknowns �0, �1, �2, �3, �4, we get the same solution

�0 = 0, �1 = –
1

10
√

π
, �2 = –

1
2
√

π
, �3 = –

16
15

√
π

, �4 = 0, (6.12)

for all cases of τ , thus

y(t) = LT�( 1
2 ) 1

2
(t) = t2 – t, t ∈ [0, 1], (6.13)

which is the exact solution. Additionally, the total CPU time needed to find this solution
using the proposed method for the four cases of τ in Equation (6.11) is 24.0608 seconds.
Problem (6.1) has been solved in [10, 47, 50]. By comparing the obtained solution with
those in [10, 47, 50], it can be observed that the introduced method is more accurate be-
cause we get the exact solution for ν = 1 and for any value of τ with three terms of FCHFs,
whereas they used four terms of Legendre wavelets, six terms of Taylor wavelets and eight
terms of fractional-order Taylor functions in [47, 50] and [10] respectively to obtain only
approximate solutions.

Example 2 Consider the following fractional delay differential equation [8, 10]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D 1
2 y(t) = y(t – 1) – y(t) +

�(3)

�(2.5)
t 3

2 + 2t – 1, t ∈ [0, 1],

y(0) = 0,

y(t) = t2, t < 0.

(6.14)

The exact solution is given by y(t) = t2. By applying the method proposed in Sect. 5, we
obtain

D
1
2 y(t) = LTβ(t),

y(t) =

⎧⎨
⎩

LT�( 1
2 )β(t) + PTβ(t), t ∈ [0, 1],

t2, t < 0,

y(t – 1) =

⎧⎨
⎩

LT�( 1
2 )β(t – 1) + PTβ(t – 1), t = 1,

(t – 1)2, t < 1.
(6.15)
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Equations (6.15) transform Equation (6.14) to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LTβ(t) – (t – 1)2 +
(

LT�( 1
2 )β(t) + PTβ(t)

)

–
�(3)

�(2.5)
t 3

2 – 2t + 1 � 0, t ∈ [0, 1),

LTβ(t) –
(

LT�( 1
2 )β (t – 1) + PTβ(t – 1)

)

+
(

LT�( 1
2 )β(t) + PTβ(t)

)
–

�(3)

�(2.5)
t 3

2 – 2t + 1 � 0, t = 1.

(6.16)

By considering m = 4 and β =
1
2

and collocating Equation (6.16) at the nodes ts =
s
4

, s =
0, 1, . . . , 4, and solving the resulting system, we obtain the solution

�0 = 0, �1 = 0, �2 = 0, �3 =
1

3
√

π
, �4 =

3√
π

, (6.17)

which leads to the exact solution. Also, the total CPU time required to find the solution us-
ing the presented method in this example is 0.2969 seconds. This problem has been solved
by using the fractional-order Taylor method [10], the Haar wavelet collocation technique
[8] and the fractional backward difference method [32]. Their solutions were approximate
solutions. By comparing with these methods, it is clear that the proposed method is more
effective, more accurate and less time-consuming than these methods.

Example 3 Consider the following fractional delay differential equation [50]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D0.2y(t) = –y(t – 1) +
�(3)

�(2.8)
t1.8 –

�(2)

�(1.8)
t0.8 + t2 – 3t + 1, t ≥ 0,

y(0) = –1,

y(t) = t2 – t – 1, t < 0.

(6.18)

The exact solution to this problem is y(t) = t2 – t – 1. Figure 3 displays the approximate so-
lution obtained for various values of β at m = 10 with the exact solution, while Fig. 4 plots
the absolute error function at β = 0.2 and m = 10. It can be observed that our numerical
solutions agree with the exact solution for all choices of β and high-accuracy numerical
solutions can be obtained with some terms of FCHFs. Table 1 shows a comparison be-
tween the results obtained by the present method and those reported in [50] in terms of
absolute errors, where M denotes the number of basis functions used in [50] for solving
the problem. From Table 1, it can be seen that the absolute errors achieved by the intro-
duced method are less than those in [50] for all corresponding cases which shows the ad-
vantage of using basis functions of fractional-order. In addition, we have used only eleven
basis functions, while they used more than a hundred basis functions in [50]. This demon-
strates that the introduced method is in more agreement with the exact solution than [50]
for this problem and can identify high-precision solutions at reasonable computational
costs.
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Figure 3 The graph of the approximate solution for various choices of β atm = 10 and the exact solution for
Example 3

Figure 4 The graph of the absolute error function atm = 10 and β = 0.2 for Example 3

Table 1 Comparison of the absolute errors for Example 3

t Present method Yuttanan’s [50]

m = 10, β = 0.40 m = 10, β = 0.30 m = 10, β = 0.20 M = 12 M = 48 M = 192

0.2 5.84 ×10–6 6.38 ×10–7 5.21 ×10–10 4.40 ×10–4 8.23 ×10–6 7.66 ×10–7

0.4 3.21 ×10–6 4.06 ×10–7 2.42 ×10–10 7.81 ×10–5 4.67 ×10–6 4.37 ×10–7

0.6 2.31 ×10–6 2.46 ×10–7 1.09 ×10–10 2.26 ×10–5 3.92 ×10–6 3.12 ×10–7

0.8 1.82 ×10–6 2.66 ×10–7 9.69 ×10–12 3.37 ×10–5 3.15 ×10–6 2.50 ×10–7

1.0 1.37 ×10–6 3.83 ×10–7 7.31 ×10–11 2.15 ×10–5 2.00 ×10–6 2.03 ×10–7

CPU time 0.1094 s 0.0625 s 0.1094 s – – –

Example 4 Consider the following fractional delay differential equation [15, 50]:

⎧⎪⎪⎨
⎪⎪⎩

Dνy(t) = –y(t) – y(t – 0.3) + e–t+0.3, t ∈ [0, 1], ν ∈ (2, 3],

y(0) = 1, y′(0) = –1, y′′(0) = 1,

y(t) = e–t , t < 0.

(6.19)

This problem has the exact solution y(t) = e–t when ν = 3. Figures 5 and 6 present graphi-
cally the obtained results for the approximate solution for various values of ν with the exact
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Figure 5 The graph of the approximate solution for various values of ν atm = 10, β = 1 and the exact
solution for Example 4

Figure 6 The graph of the absolute error function atm = 10, β = 1 and ν = 3 for Example 4

solution for ν = 3 and the absolute error at ν = 3, respectively. From Fig. 5, it can be seen
that as ν approaches 3, the approximate solution converges to the exact solution for ν = 3
and from Fig. 6, we can see that the absolute error is at most of order 10–14, which means
that the present method has good accuracy using a reasonable number of basis functions.
Table 2 compares the results obtained by the present method with the collected results in
[15] in terms of absolute errors. It can be observed that the results obtained by the present
method are less than those in [15, 22, 38, 46] for most of the listed values in that table by us-
ing a fewer number of basis functions for each case. Also, Problem (6.19) has been solved
using the Legendre wavelet method [50] by selecting M = 14. The maximum absolute er-
ror achieved by this method is approximately 8.78 × 10–12 while our maximum absolute
error is approximately 1.74 × 10–15 at m = 10. This means that the introduced method
outperforms the method in [50] with respect to accuracy. These comparisons show that
the presented method is more accurate, efficient, and coincidental with the exact solution
than [15, 22, 38, 46, 50].
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Table 2 Comparison of the absolute errors at β = 1 and ν = 3 for Example 4

t Present method Dehestani’s [15] Iqbal’s [22] Sezer’s
[46]

Ozturk’s
[38]m = 7 m = 10 M = 9 M = 13 M = 20

0.0 1.21 ×10–9 2.20 ×10–14 0 0 0 0 0
0.2 2.47 ×10–10 5.11 ×10–15 3.05 ×10–7 1.86 ×10–15 1.00 ×10–10 8.54 ×10–8 3.70 ×10–7

0.4 4.12 ×10–11 3.77 ×10–15 9.81 ×10–7 3.79 ×10–13 0 5.36 ×10–6 2.38 ×10–6

0.6 6.32 ×10–11 2.66 ×10–15 1.85 ×10–6 8.11 ×10–12 1.00 ×10–10 5.95 ×10–5 5.97 ×10–6

0.8 2.35 ×10–10 3.11 ×10–15 2.64 ×10–6 7.00 ×10–11 1.00 ×10–10 3.26 ×10–4 3.48 ×10–5

1.0 1.12 ×10–9 6.52 ×10–14 3.03 ×10–6 3.71 ×10–10 2.00 ×10–10 1.21 ×10–3 2.03 ×10–4

CPU time 0.0625 s 0.1562 s – – – – –

Example 5 Consider the following fractional delay differential equation [21]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dνy(t) =
3
4

y(t) + y
(

1
2

t
)

+
�(q + 1)

�(q + 1 – ν)
tq–ν –

(
1
2q +

3
4

)
tq,

t ∈ [0, 1], ν ∈ (1, 2], q > 1,

y(0) = y′(0) = 0.

(6.20)

We have y(t) = tq as the exact solution for this problem. By using the technique described
in Sect. 5, we get

Dνy(t) = LTβ(t),

y(t) � LT�(ν)β(t) + PTβ(t),

y
(

1
2

t
)

� LT�(ν)β

(
1
2

t
)

+ PTβ

(
1
2

t
)

. (6.21)

The fractional delay differential equation (6.20) can be written after using Equations (6.21)
in the form

LTβ(t) –
3
4
(
LT�(ν)β(t) + PTβ(t)

)
–
(

LT�(ν)β

(
1
2

t
)

+ PTβ

(
1
2

t
))

–
�(q + 1)

�(q + 1 – ν)
tq–ν +

(
1
2q +

3
4

)
tq � 0. (6.22)

Consider ν = 2 and q = 2 with the exact solution y(x) = t2. In order to solve this case, we
take m = 2, and β = 1, hence

�(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

–
1

105
17

210
3
7

–
1

1260
–

1
140

65
252

1
420

–
1

84
5

84

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =
(

0, 0, 0
)T

. (6.23)

By using Equation (6.23) and collocate Equation (6.22) at the points 0, 1
2 , 1, we get the

following system

732�0 + �1 – 3�2 – 480 = 0,
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1186�0 – 1167�1 – 419�2 + 2940 = 0,

964�0 – 2113�1 + 1579�2 – 1680 = 0. (6.24)

Solving Equations (6.24) gives the solution

�0 =
2
3

, �1 = 2, �2 =
10
3

, (6.25)

hence

y(t) = LT�(2)1(t) =
(

2
3

, 2,
10
3

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

–
1

105
17

210
3
7

–
1

1260
–

1
140

65
252

1
420

–
1

84
5

84

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

10t2 – 12t + 3
–5t2 + 4t

t2

⎞
⎟⎠ = t2, (6.26)

which is the exact solution. Moreover, the total CPU time required to find this solution
using the introduced method in this example is 0.0156 seconds. Therefore, the presented

method is accurate and time-efficient. Additionally, in case ν =
3
2

and q =
3
2

, we can again

obtain the exact solution y(x) = t 3
2 . By employing m = 2 and β =

3
4

, computing �( 3
2 ), collo-

cate Equation (6.22) at the nodes 0, 1
2 , 1, and solving the generated system, we obtain the

solution

�0 =
√

π

4
, �1 =

3
√

π

4
, �2 =

5
√

π

4
, (6.27)

which leads to the exact solution for this case. Also, the total CPU time needed to find
the solution using the proposed method for this case is 0.0937 seconds. The collocation
Laguerre operational matrix technique [21] has been used to solve Problem (6.20). By
comparing with our solution, it is clear that our method is more efficient than [21], because
we utilized three terms of FCHFs to get the exact solution for ν = 2, while they used six
terms of the generalized Laguerre polynomials to obtain only approximate solution.

Example 6 Consider the following fractional delay differential equation [33, 42]:

⎧⎨
⎩

Dνy(t) = –y(t) +
τ

2
y (τ t) –

τ

2
e–τ t , t ∈ [0, 1], ν ∈ (0, 1], τ ∈ (0, 1],

y(0) = 1.
(6.28)

The exact solution to this problem at ν = 1 is y(t) = e–t . Figures 7 and 8 display the approx-
imate solution obtained for several values of ν and τ together with the exact solution for
ν = 1, respectively. Figure 7 shows that as ν approaches 1, the approximate solution con-
verges to that of the integer-order delay differential equation. From Fig. 8, it can be seen
that the approximate solution obtained by our method coincides with the exact solution
for all the used values of the delay τ . The absolute error of the presented method is plot-
ted in Fig. 9. This figure shows that the proposed method is accurate because the error is
at most of order 10–13. Table 3 presents the absolute errors for different values of m. It is



Ahmed and Al-Sharif Boundary Value Problems        (2024) 2024:107 Page 20 of 27

Figure 7 The graph of the approximate solution for different values of ν atm = 10, β = ν , τ = 0.2 and the
exact solution for Example 6

Figure 8 The graph of the approximate solution for various values of τ atm = 10, β = ν = 1 and the exact
solution for Example 6

Figure 9 The graph of the absolute error function atm = 10, β = ν = 1 and τ = 0.2 for Example 6
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Table 3 The absolute errors for different values ofm at β = ν = 1 and τ = 0.2 for Example 6

t m = 6 m = 8 m = 10

0.0 3.54 ×10–8 3.46 ×10–11 2.16 ×10–14

0.2 1.16 ×10–8 2.02 ×10–12 4.66 ×10–15

0.4 1.04 ×10–8 8.49 ×10–12 6.22 ×10–15

0.6 1.01 ×10–8 8.35 ×10–12 8.09 ×10–14

0.8 1.15 ×10–8 1.36 ×10–12 3.84 ×10–13

1.0 3.53 ×10–8 3.44 ×10–11 1.49 ×10–12

CPU time 0.0469 s 0.1094 s 0.2656 s

Table 4 Comparison of the absolute errors at β = ν = 1 and τ = 0.2 for Example 6

t Present method Rahimkhani’s [42] Muroya’s [33]

m = 8 m = 10 M = 12

2–2 9.44 ×10–12 2.66 ×10–15 1.05 ×10–8 1.08 ×10–5

2–3 1.09 ×10–11 1.89 ×10–15 5.79 ×10–9 3.81 ×10–5

2–4 8.09 ×10–12 2.22 ×10–15 2.00 ×10–8 1.26 ×10–5

2–5 1.26 ×10–11 8.33 ×10–15 3.70 ×10–9 4.09 ×10–5

2–6 2.18 ×10–13 4.77 ×10–15 2.03 ×10–8 1.20 ×10–5

CPU time 0.1094 s 0.2656 s – –

obvious that the absolute errors decrease when the value of m increases, which demon-
strates the convergence of the introduced method to the exact solution. Table 4 compares
the absolute errors obtained by the introduced method with the collected results in [42].
From Table 4, we can note that the presented technique is more accurate and efficient in
comparison to the methods [33, 42].

Example 7 Consider the following fractional delay differential equation [34, 42, 50]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dνy(t) = –y(t) +
1
2

y
(

1
2

t
)

+ cos(t) + sin(t) –
1
2

sin

(
1
2

t
)

,

t ∈ [0, 1], ν ∈ (0, 1],

y(0) = 0.

(6.29)

The exact solution for this problem is y(t) = sin(t) when ν = 1. The approximate solution
obtained for different values of ν together with the known exact solution at ν = 1 is plot-
ted in Fig. 10. It can be noted that as ν tends to 1, the approximate solution converges to
the exact solution for ν = 1. The absolute error function for ν = 1 is presented in Fig. 11.
This figure shows that even if the exact solution is not a polynomial, an accurate approx-
imation can be achieved using a sufficient number of FCHFs. In Table 5, we compare the
absolute errors of the present method with those collected in [50] for the Bernoulli wavelet
method [42], the spectral method based on a modification of hat functions [34] and the
Legendre wavelet method [50]. These results show that the proposed method is superior
to the methods in [34, 42, 50] for most of the listed values of absolute errors by using a
smaller number of basis functions than they have been used in [34, 42, 50]. This example
shows that the present method provides high efficiency regardless of the type of the exact
solution for the problem.
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Figure 10 The graph of the approximate solution for several choices of ν atm = 10, β = ν and the exact
solution for Example 7

Figure 11 The graph of the absolute error function atm = 10 and β = ν = 1 for Example 7

Table 5 Comparison of the absolute errors at β = ν = 1 for Example 7

t Present method Rahimkhani’s [42] Nemati’s [34] Yuttanan’s [50]

m = 9 m = 10 M = 12 M = 41 M = 16

0.0 7.11 ×10–13 3.08 ×10–14 5.93 ×10–9 0 0
0.2 3.97 ×10–13 8.05 ×10–15 2.27 ×10–10 1.97 ×10–10 3.42 ×10–13

0.4 1.48 ×10–13 2.81 ×10–14 1.22 ×10–9 5.36 ×10–11 3.33 ×10–13

0.6 4.27 ×10–13 4.70 ×10–13 5.57 ×10–6 3.29 ×10–10 8.95 ×10–13

0.8 2.36 ×10–12 2.92 ×10–12 4.56 ×10–6 9.01 ×10–10 7.76 ×10–13

CPU time 0.0625 s 0.0781 s – – –

Example 8 Consider the following fractional delay differential equation [42]:

⎧⎪⎨
⎪⎩

Dνy(t) = 1 – 2y2
(

1
2

t
)

, t ∈ [0, 1], ν ∈ (1, 2],

y(0) = 1, y′(0) = 0.
(6.30)

The exact solution for this problem is y(t) = cos(t) when ν = 2. Figure 12 shows the ob-
tained approximate solution for various choices of ν with the exact solution for ν = 2. It
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Figure 12 The graph of the approximate solution for various values of ν atm = 10, β = 1 and the exact
solution for Example 8

Figure 13 The graph of the absolute error function atm = 10, β = 1 and ν = 2 for Example 8

can be seen that as ν converges to 2, the approximate solution approaches the exact solu-
tion for ν = 2. Figure 13 displays the absolute error function for ν = 2. This graph shows
that the presented method has a good convergence rate and its solutions are accurate.
Table 6 presents a comparison between the obtained results and those reported in [42]
in terms of absolute errors. It can be noted that our method outperforms the method in
[42] since the absolute errors achieved by the introduced method are less than those in
[42] for all corresponding cases by using a fewer number of basis functions for each case.
This demonstrates the agreement of our method with the exact solution with reasonable
computational costs.

Example 9 Consider the following fractional delay differential equation [44]:

⎧⎪⎨
⎪⎩

Dνy(t) =
1
2

y(t) +
1
2

y
(

1
2

t
)

Dνy
(

1
2

t
)

, t ∈ [0, 1], ν ∈ (0, 1],

y(0) = 1.
(6.31)

This problem has the exact solution y(t) = et when ν = 1. The approximate solution for dif-
ferent values of ν is plotted in Fig. 14 along with the exact solution for ν = 1. The absolute
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Table 6 Comparison of the absolute errors at β = 1 and ν = 2 for Example 8

t Present method Rahimkhani’s [42]

m = 6 m = 8 m = 10 M = 10 M = 14 M = 18

0.0 2.59 ×10–8 2.57 ×10–11 1.64 ×10–14 2.33 ×10–7 1.05 ×10–10 1.62 ×10–11

0.2 8.81 ×10–9 3.53 ×10–13 6.31 ×10–14 8.01 ×10–8 3.21 ×10–11 3.30 ×10–13

0.4 6.76 ×10–9 7.24 ×10–12 1.49 ×10–12 3.78 ×10–8 3.81 ×10–11 4.17 ×10–12

0.6 9.40 ×10–9 6.89 ×10–12 9.30 ×10–12 1.01 ×10–4 1.31 ×10–6 1.08 ×10–8

0.8 8.18 ×10–9 1.69 ×10–12 2.89 ×10–11 1.42 ×10–4 1.82 ×10–6 1.62 ×10–8

CPU time 0.1875 s 0.3437 s 0.6874 s – – –

Figure 14 The graph of the approximate solution for various values of ν atm = 9, β = ν and the exact
solution for Example 9

Figure 15 The graph of the absolute error function atm = 9 and β = ν = 1 for Example 9

error of the presented method is drawn in Fig. 15. These graphs demonstrate the conver-
gence of the obtained approximate solutions to the exact solution. Table 7 compares the
results obtained by the present method with the those in [44]. It can be seen that our re-
sults are in agreement with the results in [44] for m = 8 and slightly better for m = 9. This
means that the presented method is compatible with the method in [44] for this problem.

For all tested examples, the presented method has found the solutions with high accu-
racy within acceptable computation costs. We can observe that using fractional values of
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Table 7 Comparison of the absolute errors at β = ν = 1 for Example 9

t Present method Saeed’s [44]

m = 8 m = 9 M = 9

0.0 9.40 ×10–11 2.47 ×10–12 0
0.2 1.94 ×10–11 1.11 ×10–12 1.15 ×10–11

0.4 2.11 ×10–12 6.23 ×10–13 6.30 ×10–12

0.6 6.43 ×10–11 2.95 ×10–12 1.57 ×10–11

0.8 5.23 ×10–11 1.64 ×10–11 6.08 ×10–11

1 1.71 ×10–10 6.45 ×10–11 8.36 ×10–11

CPU time 0.4531 s 0.6718 s 1.2100 s

β leads to a good rate of convergence and a low number of basis functions is required
to obtain satisfactory results when the solutions of fractional delay differential equations
contain terms with fractional powers or when the fractional derivative ν is a proper frac-
tion.

7 Conclusion
This paper has used FCHFs and their properties to provide an accurate numerical method
for solving fractional delay differential equations. The fractional derivative was considered
in the Caputo sense. The problem of finding a solution to a fractional delay differential
equation was transformed into the problem of solving a system of algebraic equations. The
convergence of the presented approximation has been discussed. The introduced method
has been applied to solve many problems and the obtained results were compared with
exact solutions and some other published numerical methods. It can be observed that the
presented method has high accuracy by using a smaller number of basis functions than
other methods used in the comparisons. This reveals that the presented method is effi-
cient, accurate and its performance is quite satisfactory, which establishes the significance
of the present method for solving fractional delay differential equations.
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