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1 Introduction
Mathematical models of natural phenomena can be formulated more accurately by utiliz-
ing fractional di erential equations. Fractional di erential equations have many applica-
tions in various “elds of science, such as physics [L1, 17], chemistry [37], biology [49],
medicine [18], "uid mechanics [26], continuum mechanics 2], signal processing40]
and propagation of spherical "amesZ8]. Consequently, much attention has been devoted
to “nd solutions to fractional di erential equations. Numerous authors have studied the
existence and unigueness of solutions for fractional di erential equationg, 39]. In re-
cent years, many numerical methods have been presented in the literature to solve these
kinds of equations, such as Galerkin metho®], homotopy analysis method35], di er-
ential transformation method P], collocation method [3, 5], cubic B-spline collocation
method [29], hybrid Taylor and block-pulse operational matrix method45], Euler func-
tions method [30], Chebyshev polynomials method2j, 24], and Chelyshkov functions
method [4].

A delay di erential equation is a type of di erential equation where the derivative of
the unknown function at the current time depends not only on the solution at the current
time, but also on the solution at previous times. Fractional delay di erential equations can
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be considered as a generalization of delay di erential equations of integer orders. They
have been used for modeling in di erent “elds of science, such as contr@(], biology [9],
optics [41] and electrical networks 16]. Many researchers have examined the existence
and uniqueness of solutions to fractional delay di erential equation4,[27].

Generally, It is a challenge to “nd exact solutions for most fractional delay di eren-
tial equations, hence numerical or approximate methods should be developed to solve
these equations. Various techniques have been presented to address this type of prob-
lem in recent decades. In31], a numerical method based on “nite di erences has been
presented to approximate solutions of fractional delay di erential equations. The devel-
opment of a predictor-corrector method with error analysis has been introduced it4].

The Bernoulli wavelet operational matrix of fractional integration together with the collo-
cation method has been employed irp] to provide an approximate solution of fractional
delay di erential equations. In R1], the collocation method, optimization techniques and
generalized Laguerre polynomials are applied to approximate a solution of delay fractional
di erential equations. A numerical technique based on hybrid functions of block-pulse
and fractional-order Fibonacci polynomials has been given i43. They used Riemann...
Liouville fractional integral operational matrix and delay operational matrix of the hybrid
functions together with the collocation method to reduce the problem to a system of al-
gebraic equations.

In [15], a computational technique based on the combination of fractional Bessel func-
tions with block-pulse functions to produce a sparse operational matrix to reduce the
problem to a system of algebraic equations. A spectral operational matrices-based algo-
rithm has been presented in48]. These matrices have been generated by using shifted
Gegenbauer polynomials. Instead of using the operational matrix of fractional integration,
which requires some approximation, a numerical method based on the explicit formula
of Riemann...Liouville fractional integral of Legendre wavelets functions has been given in
[50]. A numerical method based on applying the exact formula for the Riemann...Liouville
fractional integral of Taylor wavelet functions together with the collocation method has
been proposed in47]. Recently, Avci 0] has introduced a numerical spectral technique
depending on the operational matrix of fractional integration for fractional-order Taylor
basis.

Approximation by orthogonal functions has grown signi“cantly as a useful tool for solv-
ing fractional di erential equations. They convert the fractional problem into a set of al-
gebraic problems. Some popular orthogonal families are Chebyshev polynomials, Leg-
endre polynomials, Laguerre polynomials, Taylor polynomials, Chelyshkov polynomials
and block...pulse functions. Chelyshkov polynomials were presented 8 §nd have been
used successfully for solving di erent kinds of fractional di erential equations. Solving
fractional di erential equations with basis functions of integer-order may lead to some is-
sues when the solutions contain terms with fractional power$9]. The major weaknesses
are that the rate of convergence is weak and a large number of basis functions are required
to provide accurate results. These drawbacks can be avoided by approximating the solu-
tions using orthogonal functions of fractional order.

Based on the above considerations, the motivation of this paper is to extend the applica-
tion of FCHFs to present a new numerical method for solving fractional delay di erential
equations. In order to accomplish this goal, the operational matrix of fractional integral
for FCHFs is derived and used together with the collection method to convert the frac-
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tional delay problem into a set of algebraic equations. To the best of our knowledge, this
is the “rst time that the operational matrix of fractional integration for FCHFs is applied
to solve fractional delay di erential equations

The main advantages of the presented technique are:

+ FCHFs are fractional-order orthogonal functions. This feature leads to a good rate of
convergence and reduces the number of basis functions required to get satisfactory
results.

+ The solution procedure is simple since the fractional delay problem is reduced to a set
of algebraic equations.

« The computational errors are less than in the conventional methods where the
obtained numerical results in some cases are the exact solutions and in others are in
good agreement with the exact solutions.

The structure of the paper is as follows. Sectidhpresents some fundamental concepts of
fractional calculus that will be used in our subsequent development. In S&;tthe FCHFs
are described, and the operational matrix of fractional integration is also constructed. The
convergence of FCHFs is demonstrated in Sedt.Section5 describes our new numeri-
cal method for solving fractional delay di erential equations. Sectioé considers some
numerical examples and reports our numerical results as well as some comparisons with
other methods. The paper is “nally summarized in Sect.

2 Preliminaries on fractional calculus
Here, we review some de“nitions and properties of fractional integration and di erentia-
tion that will be used in the next sections36, 39].

Definition 2.1 The Riemann...Liouville fractional integration of order > 0 of a function
g(t)is de“ned as

1 ¢ 1
I"g(t) = Wfo (t..0)"%(v)dr = %t”“' %g(t), v>0,t>0, (2.1)
Pg(t) = g(t),

wheret"x g(¢) is the convolution of¢”-*and g(¢).

Definition 2.2 The Caputo fractional derivative of ordep > 0 of a functiong(¢) is de“ned
as

t
Dg(t)= fo(t...r)fﬂ--”--k”“”(r)dr, W]...19<[v],t>0, (2.2)

1
r'{v]..v)
where [v] denotes the smallest integer greater than or equal to

The following properties are satis“ed for Riemann...Liouville fractional integral and Ca-
puto fractional derivative:

rp+l

o I'tP= ——
rB+v+1

AL N (2.3)

o ["2g(t) =I"""2g(t) = 1"21"g(t), vy, v2>0. (2.4)
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e D'K=0, Kisconstant. 2.5)
0, B € Noand B <[v],

o D'tP= rp+1 . 2.6)
Tg.oen " PeNoandp=[v] or pENandf>|v).

° Dvlvg(t) =g(t). (2.7)

fvi]...1 (7')(0+)
. I”D”g(t):g(t)...zg —,

r=0

o D' (c1q1(t) + a2go(t)) = aaD' ga(t) + a2D" ga(2),

t>0. (2.8)
r

2.9)
I (aaga(t) + aaga()) = aal " ga(t) + aral” ga(t),

where |v] denotes the largest integer less than or equal ig Ny = {0,1,2,..}, N =
{1,2,3,..} anday, ay are constants.

Definition 2.3 (Generalized Taylores formula). Suppose th&t?g(¢) € C(0,1] for [ =
0,1,...m+1and 0<B <1, then [36]

m_ B DB
- rB + (m+1)B
0= 1557 ” EO FrpprpD S 0<E st Ve O,

(2.10)

whereD? = DEDP .. DP.
—— ——

r times

If B8 =1, then the generalized Taylores formula converts to the classical Taylores formula.

3 Fractional-order Chelyshkov functions properties

3.1 Fractional-order Chelyshkov functions

The fractional-order Chelyshkov functions (FCHFs) can be de“ned by using Chelyshkov
polynomials in the following form [B]:

¢:;,(t):2(...y--”(”7"’) <m+j+1)tj’3, r=0,1,..m, B>0. 3.1

= j..r m..r
The set{wﬁ,,};“zo of FCHFs is a family of orthogonal functions over the interval = [0, 1]
with respect to the weight functionwg(¢) = ¢#-+1 The orthogonality property for these
functions is

/1 s o p Owa(t)dt Bsi s 1, s=i, ) 1 (3.2)
%) o (Owg(t)dt= ————, 4= . si=0,1,...m. 3.2
0 ms mi B (s+i 1)[3 s,

Itis clear from Equation 8.1) that every member of the Se{wﬁ,,}:';o is of degree8m. This s
the key distinction between the Chelyshkov polynomials and the other sets of orthogonal
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Figure 1 The graph ofp?,() atm=5,r=0,1,..,5and8 = 1/3

Plt)

[_ﬁﬂ

Figure 2 The graph oﬁoﬁz,(t) for various values ¢f atm=5andr=0

B=112 B=13 ——— B=1/4 — — — B=1/5 }

polynomials. Figured and 2 provide graphs of FCHFs for di erent values of and 8, re-
spectively. Let the weighted spadévﬁ (p) be the set of all real-valued measurable functions
u(t) on p that satisfy

1
/O (O Pwy (D)t < oo, (33)

with inner product and norm given by

1
((t), W(O)wy = /O ut)u@)we(t)dt, (3.4)

1
(@)l = ((t), u(®)) i,
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Suppose that{wfno(t),goil(t), . ,go,im(t)] is a set of FCHFs and\,,, = span(¢” (1), 0", (¢),

.. ,(pfnm(t)}. Also, assume thag(z) is an arbitrary function in Lfvﬁ (p). SinceA,, is a closed
“nite-dimensional subspace oLﬁﬁ (p), then for any functiong(z) there exists a unique best
approximation g,,,(¢) € A,, that minimizing the distance tog(¢), that is

1€(5) - gm(Dllws < 18@®) .- B (D),  VOE) € Ay (3.5

Sinceg,,(¢) € A,,, then there are unique coe cients{g, {1, ... £,, such that
O =gu() =) i) ()= LT Dy(t), (3.6)
k=0

whereL and ®4(¢) are given by

T 1
L= (totssotn) + 6=p@+D [ gO s, k=01.m  (37)
0
and

T
()= (ho® (@), thn(®)) (38)

3.2 The operational matrix of fractional integration

This subsection is devoted to construct the fractional integration operational matrix of
the FCHFs, which will be used to reduce the fractional delay di erential equations into a
set of algebraic equations.

Theorem 3.1 Let ®4(t) bea (m+1) x Lvector of FCHFs. The Riemann—Liouville fractional
integral of order v > 0 of the vector ®g(t) can be given by

I"dp(t) = AV Dg(2), (3.9)

where AV = (Mrk)) =0 is the (m + 1) x (m + 1) operational matrix of fractional integral of
order v for FCHFs and its elements can be obtained by

m

A& aex BRk+D TGE+Y  [m.r
krk—j:Zr;(---Jl /3(]'+[+1)+v[‘(j/3+v+1)<]’“,)

+i4+ . +1+
o[ N\ (m. . k\ [m+]l+1 . (3.10)
m..r l.k m.. k

Proof Using Equation @.1) to integrate Equation 8.1), yields

1 1
I'ef ()= F—t”'“ x@f (1), r=0,1,...m. (3.11)

(v)

By taking the Laplace transform of Equatior8(11), we get

1
v, B — v... 1 B -
L{'el (1)} Li—r(v)t }L{gomr(t)}, r=0,1,...m. (3.12)
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1
c { tv---l} s (3.13)
r'w) sV

and

cvmnegon () (e

=39 ('7:) (V”+j+1> %;1) r=0,1,...m. (3.14)

- m..r
j=r

Then Equation 3.12 becomes

{I'e},®}= Z( Y ( )<m+j+l>%;11), r=0,1,...m. (3.15)

m..r

Now, by utilizing the inverse Laplace transform of Equatior8(15, we obtain

m+j+1\ TGB+D .
q)mr(t) Z( 11 < )( "r )Wtj y V—O,l,...m. (316)

Approximating ##*¥ in terms of FCHFs, we get

PPN el 1), j=0,1,...m, (3.17)
k=0

where £ can be determined from Equations3;1) and 3.7) as follows
1 .
= pk+ ) [ gl wpo
0
-~ (LK m.k\ (m+i+1
=B2k+1 - . 3.18
Al );;ﬂ(i+l+1)+v l..k m.. k ( )

From Equations 8.16), (3.17 and (3.18), we can write

~ N ek BRK+D) TGE+D) (m.r
L))~ Z(ZZ(JI /3(j+l+l)+uF(j,B+p+1)<]'__r>

k=0 \ j=r I=k
m+j+1\ (m. . k\ (m+i+1 8
t
x ( m..r )(Zk)( m..k ))W”’k()
=Y b ®, r=0,1,...m, (3.19)
k=0

which leads to the desired result. O
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4 Convergence analysis

In this section, we discuss the convergence of the best approximation and show that by
increasing the number of the FCHFs, the error in calculating the operational matrix of
fractional integration tends to zero.

Theorem 4.1 Let g(t) € Liﬂ (p) such that D"g(t) € C(0,1] for [ =0,1,...m + 1. Suppose
that LTQDﬂ(t) is the best estimation of g(t) in A,,, then

Tim_[g(t) .. LT@40)],, =O. (4.1)

Proof Assume the generalized Taylores formula gft) is denoted by (¢), then from Def-
inition 2.3the error bound is

0 ) = | piig)
SO VO [T nrprn”
Hﬂt(m+l)ﬁ
EMm+—]M, O<$§t, te(O,l], (42)
where

Hg = sup {ID" gt}
0.1

te(0,

SinceL” ®4(2) is the best estimation of(¢) in A,, and ¥ (¢) € A,, then by using Equation
(4.2), we get

le® L @p0)[;, < @ w0},

1
= /0 (6®) . (D) we()dt

- ( Hg )2/lt(zm+3)ﬁ...1dt
“\I'((m+DB+1)) Jo

_ Hp 21
- <F((m+1)ﬂ+l)> (2m+3)B’ (4-3)

The right-hand side of inequality 4.3 depends on both# and 8, so for a “xed 8, we have

. Hyp 1 _
A T DB+ D) o DB (“44)
therefore
lim lg@® ..LT<I>,3(t)||Wﬁ =0. (4.5)

Theorem 4.2 Let the error vector E, of the operational matrix of fractional integration
A™ be given by

E () =T"®g(t) .. AV Dp(2). (4.6)
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Then

lim ||E\,(t)||wﬁ =0. 4.7)
m—00

T
Proof Suppose that, = (60,61, e ,em) , then by using Equations3.10, (3.16 and (3.19,
we get

el @). Zx,kwmkm

k=0

el

wp
o\ (m+j+1\ T@FB+1)
j..r m..r rgg+v+1

v NN, wk BCk+D  fmok\ (m+l+1) 4
D IHDEE piri+ Do \ ik )\ ok ) O

<3|

j=r

k=0 I=k wh
_i( g [ m+j+1\ T(B+1)
- = j..r m..r ) GiB+v+1)
x |07 3 el | . r=0,1,...m. (4.8)
k=0 B

m
But > Z,szk(t) is the approximation of#/#*”, so from Equation &.3) we can write
k=0

H 1
A SNl | < p ,
kX(; O =g D VEnTIe
Hg = sup {|D(’"+1)’3t’f‘+”|}. (4.9)
te(0,1]

Hence, Equation 4.8) becomes

lerly = & m 51/3),3 +1) J(erle)/ﬁ
) Fi o (;;n;") (mn;r];l) lf(;gﬁ—:i)l) , r=0,1,...m. (4.10)
Therefore
im E ()]l =0. o

5 Numerical method

The aim of this section is to present a new numerical method for solving fractional delay
di erential equations by using FCHFs and their operational matrix of fractional integra-
tion.



Ahmed and Al-ShariBoundary Value Problems  (2024) 2024:107 Page 10 of 27

Consider the following two problems:

DYy(t)=f (t, y(t), y(t ...r)) , te[0,1, 7e(,1, v>0,
y9(0)=n;, i=0,1,...[v]... 1, (5.1)
y(®) = p(@), £<0.

D'y&)=f (¢, y(t), y(xt)), tel0,l, t€(0,l, v>0,

, (5.2)
y9(0) = n;, i=0,1,...[v]... 1,

wheref and p are known analytical functionsyg is delay,n;, i =0,1,...[v] ... 1 are real
constants,y is the unknown function andD" is the Caputo fractional derivative of order
v. To “nd approximate solutions of Problems%.1) and (5.2), we approximateD"y(¢) by
FCHFs as

Dy(6) = Y ligh ()= LT (), (5.3)
k=0

By applying the Riemann...Liouville integration to Equatiob.8 and using EquationsZ.8)
and (3.9, we get

M1
yO =1 (LT op0)) + Y %t’

i=0

~ LT AP Dy (1) + PTdy(0), (5.4)
fvl.. 1,7
where P is the fractional-order Chelyshkov coe cient vector of the polynomial > Ly
=0 i

and is given by

p= (PO,PL e Pm)Tv

wl...1m .
(.Y *n, m..z\ (m+j+1 (5.5)
ﬂ(ZZ+l)§]XZ: (BGi+1) +i) F(l+l)< )( mz)
z=0,1,...m.
Then for Problems 6.1) and (5.2), y(¢) take the form
LTAM®4(t) + PTdg(t), tel0,1
y(t):{ 1) 1) [0, 1] 5.6)
p(@), £<0,
y(t) = LT AV ®4(t) + PTd4(t), tel0,1. (5.7)
Making use of Equationsg.6) and (5.7), we get
TAM pT 1
y(tf):{L A qDﬂ(t T)+ @ﬂ(t 1), telr,1], (58)
p(t..1), t<rt,
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y(tt) = LTAV ®y(rt) + PTOp(zt), te0,1]. (5.9)

By substituting Equations%.3), (5.6)...5.9) in Problems 6.1) and (5.2), we obtain the fol-
lowing algebraic equations

LT®g(t) > f (¢, LTAY @p(t) + PTDp(2), p(¢..1)), t€][0,1),
LT®p(t) = f(t, LT AV ®p(2) + PTdy(2), (5.10)
LTAD®g(t..1) + PTdy(¢ .. 1)), te(r, 1],

LT @pt) = f (t, L" AV ®pg(t) + PTDy(2), LT AV Dp(t) + PT Dy(xt)),

te[0,1]. (5.11)

S

Now, by collocate EquationsH.10 and (.11 at the pointst; = —,s=0, 1, ... m, we obtain
m

the following two systems ofx + 1 algebraic equations,

LT ®p(t,) ..f (£, LT AV Dp(t;) + PTDp(L), p(ts .. 7)) =0, t,€[0,7),
LT®p(t;) .. f (ts, LTAV ®p(t;) + PT D (1)), (5.12)
LTAV®g(t; .. 1) + PTdp(t .. 7)) =0, te[r, 1,

LT@p(t) ..f (b, LT AV @p(t) + PT Dp(t), LT AV @p(cty) + PT Dp(12,)) ~ 0,

t, € [0, 11. (5.13)

These systems can be solved to “net + 1 unknown constantstg, 1, .. .£,, and hence, an
approximate solutions of Problemsy. 1) and (5.2) can be determined from Equationsy(.6)
and (5.7) respectively.

Based on the above, we present an algorithm for solving Problerbsl) and (5.2) as
follows

Algorithm 5.1
Input: The numbers v, ;,i =0,1,...[v] ... land the functions f, p
Step 1: Choosem € N, B > 0and construct the fractional-order Chelyshkov vector ®4(t)
using Equations (3.1) and (3.8).
Step 2: Compute the operational matrix A’ and the vector P using Equations (3.10) and
(5.5).
Step 3: Define the unknown vector L = (60,21, e £m>T
Step 4: Compute the algebraic equation (5.10) or (5.11).
Step 5: Construct the nonlinear system of algebraic equations (5.12) or (5.13) by using

s
the points t,= —,s=0,1,...m.

m
Step 6: Find the unknowns of the algebraic system obtained in Step 5.
Output: An approximate solution given by equation (5.6) or (5.7).

6 Numerical results
To demonstrate the applicability and e ectiveness of the introduced method, we use it
to solve some examples, and we compare the numerical results it generates with those
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reported in the literature. All numerical results have been obtained using Mathematica 11
software and a laptop with Intel(R) Core(TM) i7-4600M 2.90 GHz CPU and 8.0 GB RAM.

Example 1 Consider the following fractional delay di erential equation10, 47, 50]:

D'y()= y(t ..1) . p(t) + %
s +2et a2z, tel0,1, ve(,1, Te@1, 6.)
y(0)=0,

y(t) =17 ..t, £<0.

The exact solution to this problem isy(t) = ¢? ...t. By using the technique described in
Sect.5, we get

D'y(t)=L" p(t),

LTAM®4(t)+ PTd4(t), te(0,1],

y(t) =~ 2

.t t<0,

LTAM®g(t..1)+PT Dyt ..7), ter,1],

y(t..T)~ (6.2)
(t..1)%..(t..7), t<r,

T
whereL = (60,61, e ,em) is the vector of unknown constants that we must identify and

P can be calculated from Equatiorf(.5). By substituting Equationsg.2) into the fractional
delay di erential equation (6.1), we get the following matrix equations

LT®p(t) .. ((t..7)% ..(t..7)) + LT AV Dy(2) + PTDy(2)
ﬂ tl..v

@ * TEw - 2T T=0, £ 0, (6.3)
LT®g(t) .. (LTAVDp(t..1) + PT Dyt ..17)) + LTAV Dp(2)
+PTd>5(t)...%+%...2t+1:2+7:20, telr, 1.
By consideringv = 1, we takem = 2, 8 =1 and hence
1 5 19
18 12 36
T
aw=| L L2 p=(000 . (6.4)
36 6 18
1 15
1803018

In caser € (0, 0.9, making use of Equationf.4) and collocate Equationsg.3) at the points
0, % 1, we obtain the following system

1900 ... B, + ¢, +60=0,

(202 ... 10€o + (102 + 107 + 15) £1 + (...18% + 67 +5) £, + 20r2 =0,
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1 1 4
(?x+l) o+ (o2 b+ | pr?+ 1)+ 7% r .. 1=0. (6.5)
2 2 5
Solving system#§.5) for the unknowns ¢y, ¢1, £, gives the solution
o= L 1= . 12 —5 6.6
0_"55 l_'-§| 2_61 (-)
thus
5 19
8 12361 1102 12+3
y(t):LTA(l)cpl(t):(..i...} §> LM wea |=2.
3726 36 6 18 .
1 15
180 '30 18
tel0,1, (6.7)

which is the exact solution. For € (0.5, 1, we use Equation§.4) and collocate Equations
(6.3 at the points 0,%, 1, then we get the following system

1900 ... B4+ ¢, +60=0,
ZKO 251 22 6:0,

1 1
('EZ ...t+1)€0+ (étz §61+ (..§r2+ —r+1>€2+r2 ..Tr...1=0. (6.8)

Solving system#§.8) for the unknowns ¢y, €1, £, gives the same solution

5
=g =5 b=g (6.9)

which leads to the exact solution. Further, the total CPU time required to “nd the solution
using the proposed method for the two cases ofin this example is 0.0156 seconds. Thus,
the proposed method is accurate and time-e cient.

1 . . :
Forv = > we takem =4, 8= > and again we can obtain the exact solution, where

8 1 131 107 2366 " 11274 10057
75 50 30 7 75 7 25 7
16 8 107 56 10r 4739 5317 11907
"925 25 21 45 3 7450 7 50
ab- t| 16 24 8 77 3808
vr| 525 "175 15 150 50 (6.10)
4 6 2 56 216
P e P p—— 37T e
525 175 15 75 25
4 2 2 56 24
4725525 135 675 25

p:(o,o,o,o,(jT.

Page 13 of 27
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Similarly, by using Equation§.10, subdivide the intervalO, 1] into four subintervals and
consider the following cases of

re(O,ﬂ, re(%:—zﬂ re(%g] re(i—i,l}, (6.11)

then collocate Equations&.3) at the points¢, = % s=0,1,...,4, for each case efand
solving the resulting systems for the unknown&, £, €2, £3, £4, We get the same solution

1 1 16
00=0, 1= fp=..;——) l3g=..——, €4=0, 6.12
0 R T A WA A T- W/ 6.12)
for all cases ofr, thus
y(t) :LTA(%)GD%(t) =22 .4,  tel0,1, (6.13)

which is the exact solution. Additionally, the total CPU time needed to “nd this solution
using the proposed method for the four cases afin Equation (6.11) is 24.0608 seconds.
Problem 6.1) has been solved in]0, 47, 50]. By comparing the obtained solution with
those in [10, 47, 50], it can be observed that the introduced method is more accurate be-
cause we get the exact solution for= 1 and for any value ot with three terms of FCHFs,
whereas they used four terms of Legendre wavelets, six terms of Taylor wavelets and eight
terms of fractional-order Taylor functions in 7, 50] and [10] respectively to obtain only
approximate solutions.

Example 2 Consider the following fractional delay di erential equation§, 10:

Diy(t)=y(t ... 1..90) + F1;(23)5)t% +2¢...1, te[0,1],
(0)=0, (6.14)
y(@t) =2, £<0.

The exact solution is given by(¢) = t2. By applying the method proposed in Seds, we
obtain

D2y(t)= LTdy(t),

LTA(%)CDﬁ(t) +PTCI>ﬂ(t), te[0,1],

y(£) = )
2, t<0,

LTA@D @yt ... 1+ PTdy(¢ ... t=1,
Yt ... )= , ple--3 plt-- 3 (6.15)
(t...2, t<1.
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Equations 6.19 transform Equation 6.14) to

LTo4t) . (t... P+ (LTA<%>q>,3(t) +PTq>,3(t))
(3
IO 3 ar1n0, te[0,1),
re.5 ) (6.16)
LT®4(0) ...(LTA(2)¢,3(L‘ A+ PT Dt 1)
re) s
+(LTAD D4(t) + PTD4(D)) ... t2..2+1~0, t=1.
( s®) p( )> r2.5
1
By consideringm =4 and g = > and collocating Equation §.16 at the nodest; = % s=
0,1,...,4, and solving the resulting system, we obtain the solution
020, 0,20, (20, fa= —  gy=— (6.17)
0o—Y, 1-Y, 2—Y, 3= 3ﬁ1 4 — ﬁv .

which leads to the exact solution. Also, the total CPU time required to “nd the solution us-
ing the presented method in this example is 0.2969 seconds. This problem has been solved
by using the fractional-order Taylor method 10], the Haar wavelet collocation technique

[8] and the fractional backward di erence method32). Their solutions were approximate
solutions. By comparing with these methods, it is clear that the proposed method is more
e ective, more accurate and less time-consuming than these methods.

Example 3 Consider the following fractional delay di erential equation$0]:

. INE)) 18 '@
I'2.9

08+¢2 . 3+1, t>0,

0.2, 4\ —
D>y(t)= .yt ... 1 ...F(l's)b

y0)=...1,
y)y=t?..t... 1, £<0.

(6.18)

The exact solution to this problemig/(t) = 2 ..£ ... 1. Figur& displays the approximate so-
lution obtained for various values op at m = 10 with the exact solution, while Fig4 plots
the absolute error function at8 = 0.2 andm = 10. It can be observed that our numerical
solutions agree with the exact solution for all choices ¢f and high-accuracy numerical
solutions can be obtained with some terms of FCHFs. Taldleshows a comparison be-
tween the results obtained by the present method and those reported 0] in terms of
absolute errors, whereV! denotes the number of basis functions used iB{] for solving
the problem. From Tablel, it can be seen that the absolute errors achieved by the intro-
duced method are less than those ib()] for all corresponding cases which shows the ad-
vantage of using basis functions of fractional-order. In addition, we have used only eleven
basis functions, while they used more than a hundred basis functions3@]. This demon-
strates that the introduced method is in more agreement with the exact solution thas(]
for this problem and can identify high-precision solutions at reasonable computational
costs.
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Figure 3 The graph of the approximate solution for various choice8 af m = 10 and the exact solution for
Example3
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1.2x107°} ]
_ 1.x107°f 1
g b i
S 8.x107F
2 [ ]
§ 6.x 10710}
2 [ ]
4.x107"¢
2.x10710f ]
of ]
0.0 0.2 04 0.6 0.8 1.0
t
Figure 4 The graph of the absolute error functionrat= 10 andg = 0.2 for Exampl8
Table 1 Comparison of the absolute errors for Exantple
t Present method Yuttanan&]
m=10,=0.40 m=10,=0.30 m=10,=0.20 M=12 M=48 M=192
0.2 5.84¢10 -6 6.38x10"7 5.21x10-10 4.40x10* 8.23x10-® 7.66x107
0.4 3.21x10-6 4.06x107 2.42x10--10 7.81x10-° 4.67x10-% 4.37x10-7
0.6 2.31x10--6 2.46x107 1.09x10-10 2.26x10-° 3.92x10-® 3.12x10-7
0.8 1.8%10-8 2.66x107 9.69x10-12 3.37x10-° 3.15x10-® 2.50x107
1.0 1.3%10-6 3.83x107 7.31x10-11 2.15x10-® 2.00x10-® 2.03x10-7
CPUtime 0.1094s 0.0625s 0.1094 s
Example 4 Consider the following fractional delay di erential equation5, 50]:
D'y(t)=.y(t) ..yt ...0.8+e 03 te[0,1, ve(2,3,
Y0 =1, y(O)=..1, y'(0=1, (6.19)
yt)y=e, t<0.

This problem has the exact solution(¢) = e whenv = 3. Figuress and 6 present graphi-
cally the obtained results for the approximate solution for various valuesiofvith the exact

Page 16 of 27
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1.0f . Exact
AN
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Figure 5 The graph of the approximate solution for various valuesafm = 10, = 1 and the exact
solution for Examplé
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Figure 6 The graph of the absolute error functionrat= 10,8 = 1 andv = 3 for Example

solution for v = 3 and the absolute error ab = 3, respectively. From Figb, it can be seen
that asv approaches 3, the approximate solution converges to the exact solutionifer 3
and from Fig.6, we can see that the absolute error is at most of order-1% which means
that the present method has good accuracy using a reasonable number of basis functions.
Table 2 compares the results obtained by the present method with the collected results in
[15] in terms of absolute errors. It can be observed that the results obtained by the present
method are less than those irl5, 22, 38, 46] for most of the listed values in that table by us-
ing a fewer number of basis functions for each case. Also, Probleégrl has been solved
using the Legendre wavelet method{)] by selectingM = 14. The maximum absolute er-
ror achieved by this method is approximately 8.78 10--*while our maximum absolute
error is approximately 1.74x 10-1%at m = 10. This means that the introduced method
outperforms the method in B0] with respect to accuracy. These comparisons show that
the presented method is more accurate, e cient, and coincidental with the exact solution
than [15, 22, 38, 46, 50].
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Table 2 Comparison of the absolute errorsfat 1 andv = 3 for Examplé

t Present method Dehestanids] IgbalssZ2] Sezeres Ozturkes
m=7 m=10 M=9 M=13 M=20 [46] (39
0.0 1.21x10-°9 2.20x10-14 0 0 0 0 0
0.2 2.4%10-10 511x10-15 3.05x10-7 1.86x10-1> 1.00x10-1° 8.54x10-8 3.70x10-7
0.4 411011 3.77x10-15 9.81x10-7 3.79x10-13 0 5.36x10+6 2.38x10+6
0.6 6.3%10-11 2.66x10-15 1.85x10-® 8.11x10-12 1.00x10-1° 595x10-5 5.97x10-6
0.8 2.35¢10-10 3.11x10-1® 2.64x10-6 7.00x10-11 1.00x10-19 3.26x10-4 3.48x10-°
1.0 114109 6.52x10-1* 3.03x10-8 3.71x10-1° 2.00x10-10 1.21x10-3 2.03x10*
CPUtime 0.0625s 0.1562's
Example 5 Consider the following fractional delay di erential equation21]:
D’ (t)_3 )+ 1)+ farh v (L43)m
FO=POIN) " rq+t.0) \2a73)" 620
rel0.1, ved2, g¢>1, (6.20)
¥(0)=y'(0)=0.

We havey(¢) = t7 as the exact solution for this problem. By using the technique described
in Sect.5, we get

D'y(t)= LT ®g(t),

y() = LT AV 4(t) + PT Dy (1),

1 1 1
St)=LTAM g (St ) +P oy 22 ). 6.21
y (2 ) g (2 s\ 3 (6.21)
The fractional delay di erential equation 6.20 can be written after using Equationsg.21)
in the form

LT ®g(2) Z (LTAY ®g(t) + PTDp(2)) ...(LTA<”>¢,3 Gt) +PT o, (%t))

Fg+D 1 3
e+ | =+ - |1 ~0. 6.22
'g+1..v) (24 4) ( )

Considerv = 2 and g = 2 with the exact solutiony(x) = £. In order to solve this case, we
takem =2, andB =1, hence

1 17 3
105 210 7
ao=| 1 181 p=(000" . (6.23)
1260140 252
1 15
420 B4 84

By using Equation §.23 and collocate Equation §.22 at the points 0,%, 1, we get the
following system

7320+ 4£1...8,...480=0,
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11860 ... 1167, ... 418, + 2940 = 0,
964( ... 2118, + 157%, ... 1680 = 0. (6.24)

Solving Equations§.24) gives the solution

2 10
=—, :2' = —, 2
N 3 0 2 3 (6.25)
hence
1 17 3
> 10 105 210 7 1062 ... 12+3
y(t):LTA@’dn(t):(—,z,—) 11 S wea |z (6.26)
3 '3 1260 140 252 2
1 1 5
420 B4 84

which is the exact solution. Moreover, the total CPU time required to “nd this solution
using the introduced method in this example is 0.0156 seconds. Therefore, the presented

: : . " _ 3 3 :
method is accurate and time-e cient. Additionally, in casev = > andg = > we can again

. . . 3 .
obtain the exact solutiony(x) = £3. By employingm =2 andg = 7 computing A(%>, collo-

1

cate Equation 6.22 at the nodes 03,

solution

1, and solving the generated system, we obtain the

= 3ﬁ, Ly = Sﬁ, (627)

bo=—, ¢
0 1 2 7

which leads to the exact solution for this case. Also, the total CPU time needed to “nd
the solution using the proposed method for this case is 0.0937 seconds. The collocation
Laguerre operational matrix technique1] has been used to solve Problen.20. By
comparing with our solution, itis clear that our method is more e cientthan [21], because
we utilized three terms of FCHFs to get the exact solution far= 2, while they used six
terms of the generalized Laguerre polynomials to obtain only approximate solution.

Example 6 Consider the following fractional delay di erential equation33, 42):

D'y(t) = .y(6) + %y(‘rt) ...ée“”, te[0,1, ve (0,1, 7 e (0,1,
HO)=1.

(6.28)

The exact solution to this problem ab = 1 isy(¢) = e-*. Figures7 and 8 display the approx-
imate solution obtained for several values efand r together with the exact solution for

v =1, respectively. Figur& shows that as) approaches 1, the approximate solution con-
verges to that of the integer-order delay di erential equation. From Fi@, it can be seen
that the approximate solution obtained by our method coincides with the exact solution
for all the used values of the delay. The absolute error of the presented method is plot-
ted in Fig.9. This “gure shows that the proposed method is accurate because the error is
at most of order 1013 Table 3 presents the absolute errors for di erent values of:. It is
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Figure 7 The graph of the approximate solution for di erent valuesyadt m = 10,8 = v, =0.2 and the
exact solution for Example
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Figure 8 The graph of the approximate solution for various values afm = 10,8 = v = 1 and the exact
solution for Examplé
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Figure 9 The graph of the absolute error functionrat= 10,8 = v =1 andt = 0.2 for Examplé
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Table 3 The absolute errors for di erent valuesrofat 8 = v = 1 andt = 0.2 for Examplé

t m=6 m=8 m=10
0.0 3.54¢10-8 3.46x10-11 2.16x10-14
0.2 1.16<10-8 2.02x10-12 4.66x10-1°
0.4 1.0410-8 8.49x10-12 6.22x10-15
0.6 1.01x10-8 8.35x10-12 8.09x10-14
0.8 1.15¢10-8 1.36x10-12 3.84x10-13
1.0 353108 3.44x10-11 1.49x10-12
CPUtime 0.0469s 0.1094 s 0.2656's

Table 4 Comparison of the absolute errorsft v =1 andt = 0.2 for Examplé

t Present method Rahimkhanig][ Muroyass33]
m=8 m=10 M=12

22 9.44x10-12 2.66x10-1° 1.05x10-8 1.08x10°
23 1.09x10-11 1.89x10-15 5.79x10-° 3.81x10-°
24 8.09x 1012 2.22x10-1° 2.00x10-8 1.26x10°
25 1.26x10-11 8.33x10-1° 3.70x10-° 4.09x10+5
26 2.18x10-13 4.77x10-15 2.03x10-8 1.20x10-°
CPU time 0.1094 s 0.2656 s

obvious that the absolute errors decrease when the valuemincreases, which demon-
strates the convergence of the introduced method to the exact solution. Tadleompares
the absolute errors obtained by the introduced method with the collected results #].
From Table4, we can note that the presented technique is more accurate and e cient in
comparison to the methods 33, 42).

Example 7 Consider the following fractional delay di erential equation34, 42, 50]:

D'y(t) = t+1 lt+ t) + sin(t LS 1L‘
y(t) = ..y(t) §y<§> cos(t) s1n()...§sm(§),

te[0,1, ve(,1], (6.29)
y(@=0.

The exact solution for this problem isy(¢) = sin(¢) whenv = 1. The approximate solution
obtained for di erent values ofv together with the known exact solution at = 1 is plot-
ted in Fig.10. It can be noted that as) tends to 1, the approximate solution converges to
the exact solution forv = 1. The absolute error function forv = 1 is presented in Figl11.
This “gure shows that even if the exact solution is not a polynomial, an accurate approx-
imation can be achieved using a su cient number of FCHFs. In Table we compare the
absolute errors of the present method with those collected iB(Q)] for the Bernoulli wavelet
method [42], the spectral method based on a modi“cation of hat functions3g] and the
Legendre wavelet methoddQ]. These results show that the proposed method is superior
to the methods in [34, 42, 50] for most of the listed values of absolute errors by using a
smaller number of basis functions than they have been used 34[42, 50]. This example
shows that the present method provides high e ciency regardless of the type of the exact
solution for the problem.
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t

Figure 10 The graph of the approximate solution for several choicasaifm = 10,8 = v and the exact
solution for Exampl@
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Figure 11 The graph of the absolute error functionat= 10 andg = v = 1 for Exampl&

Table 5 Comparison of the absolute errorsfat v = 1 for Exampl&

t Present method Rahimkhaniég][ Nematies34] Yuttananes5(]
m=9 m=10 M=12 M=41 M=16
0.0 7.11x10-13 3.08x10-14 5.93x10 2 0 0
0.2 3.9%10-13 8.05x101° 2.27x10-10 1.97x10-10 3.42x10-13
0.4 1.48¢10-13 2.81x10-14 1.22x10-° 5.36x10-11 3.33x10-13
0.6 4.2%10-13 4.70x1013 5.57x10-6 3.29x10-10 8.95x 1013
0.8 2.36¢10-12 2.92x10-12 4.56x10-6 9.01x10-10 7.76x10-13
CPU time 0.0625s 0.0781s
Example 8 Consider the following fractional delay di erential equation42]:
D"y(t):1...22(}t) te[0,1, ve(,2
2 (6.30)

y©@=1, y(©=0.

The exact solution for this problem isy(¢) = cos(¢) when v = 2. Figure12 shows the ob-
tained approximate solution for various choices af with the exact solution forv = 2. It
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Figure 12 The graph of the approximate solution for various valuesafm = 10,8 = 1 and the exact
solution for Exampl8
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Figure 13 The graph of the absolute error functionrat= 10,8 = 1 andv = 2 for Exampl&

can be seen that as converges to 2, the approximate solution approaches the exact solu-
tion for v = 2. Figure13 displays the absolute error function for = 2. This graph shows
that the presented method has a good convergence rate and its solutions are accurate.
Table 6 presents a comparison between the obtained results and those reported4 [

in terms of absolute errors. It can be noted that our method outperforms the method in
[42] since the absolute errors achieved by the introduced method are less than those in
[42] for all corresponding cases by using a fewer number of basis functions for each case.
This demonstrates the agreement of our method with the exact solution with reasonable
computational costs.

Example 9 Consider the following fractional delay di erential equation44]:

1 1 /1 1
D'y(t) = Ey(t)+ Ey (Et)D y(ét) , te[0,1, ve(0,1]],
¥(0)=1.

(6.31)

This problem has the exact solutiom(z) = e’ whenv = 1. The approximate solution for dif-
ferent values ob is plotted in Fig.14 along with the exact solution forv = 1. The absolute
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Table 6 Comparison of the absolute errorsfat 1 andv = 2 for Exampl&

t Present method Rahimkhanig][
m=6 m=8 m=10 M=10 M=14 M=18
0.0 2.5%10-%  257x10-11  1.64x10-1* 2.33x10-7  1.05x10-10  1.62x10-11
0.2 8.81x10-°  353x10-1¥  6.31x10-1%  8.01x10-8  3.21x10-11  3.30x10-13
0.4 6.76<10-°  7.24x10-12  1.49x10-12 3.78x10-8  3.81x10-11  4.17x10-12
0.6 9.4x10°  6.89x10-12  9.30x10-12  1.01x10-*  1.31x10-6 1.08x10-8
0.8 8.18<10-2  1.69x10-12  2.89x10-11  1.42x10-*  1.82x10-6 1.62x10-8
CPU time 0.1875s 0.3437s 0.6874s
45—
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Figure 14 The graph of the approximate solution for various valuesafm = 9, 8 = v and the exact
solution for Exampl@
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Figure 15 The graph of the absolute error functionat=9 and 8 = v = 1 for Exampl®

error of the presented method is drawn in Figl5. These graphs demonstrate the conver-
gence of the obtained approximate solutions to the exact solution. Tableompares the
results obtained by the present method with the those id4f]. It can be seen that our re-
sults are in agreement with the results irdd] for m = 8 and slightly better form = 9. This
means that the presented method is compatible with the method id4] for this problem.

For all tested examples, the presented method has found the solutions with high accu-
racy within acceptable computation costs. We can observe that using fractional values of
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Table 7 Comparison of the absolute errorsfat v = 1 for Exampl®

t Present method Saeed4]
m=8 m=9 M=9

0.0 9.40¢10-11 2.47x10-12 0

0.2 1.94¢10-11 1.11x10-12 1.15x10-11
0.4 2.11x10-12 6.23x10-13 6.30x1012
0.6 6.43<10-11 2.95x 1012 1.57x10-11
0.8 5.23¢10-11 1.64x10-11 6.08x10-11
1 1.71x10-10 6.45x10-11 8.36x10-11
CPU time 0.4531s 0.6718's 1.2100s

B leads to a good rate of convergence and a low number of basis functions is required
to obtain satisfactory results when the solutions of fractional delay di erential equations
contain terms with fractional powers or when the fractional derivative is a proper frac-
tion.

7 Conclusion

This paper has used FCHFs and their properties to provide an accurate numerical method
for solving fractional delay di erential equations. The fractional derivative was considered
in the Caputo sense. The problem of “nding a solution to a fractional delay di erential
equation was transformed into the problem of solving a system of algebraic equations. The
convergence of the presented approximation has been discussed. The introduced method
has been applied to solve many problems and the obtained results were compared with
exact solutions and some other published numerical methods. It can be observed that the
presented method has high accuracy by using a smaller number of basis functions than
other methods used in the comparisons. This reveals that the presented method is e -
cient, accurate and its performance is quite satisfactory, which establishes the signi“cance
of the present method for solving fractional delay di erential equations.
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