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Abstract

In this paper, the fractional-order Chelyshkov functions (FCHFs) and
Riemann-Liouville fractional integrals are utilized to “nd numerical solutions to
fractional delay di�erential equations, by transforming the problem into a system of
algebraic equations with unknown FCHFs coe�cients. An error bound of FCHFs
approximation is estimated and its convergence is also demonstrated. The
e�ectiveness and accuracy of the presented method are established through several
examples. The resulting solution is accurate and agrees with the exact solution, even
if the exact solution is not a polynomial. Moreover, comparisons between the
obtained numerical results and those recently reported in the literature are shown.
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1 Introduction
Mathematical models of natural phenomena can be formulated more accurately by utiliz-
ing fractional di�erential equations. Fractional di�erential equations have many applica-
tions in various “elds of science, such as physics [7, 11, 17], chemistry [37], biology [49],
medicine [18], ”uid mechanics [26], continuum mechanics [12], signal processing [40]
and propagation of spherical ”ames [28]. Consequently, much attention has been devoted
to “nd solutions to fractional di�erential equations. Numerous authors have studied the
existence and uniqueness of solutions for fractional di�erential equations [25, 39]. In re-
cent years, many numerical methods have been presented in the literature to solve these
kinds of equations, such as Galerkin method [6], homotopy analysis method [35], di�er-
ential transformation method [2], collocation method [3, 5], cubic B-spline collocation
method [29], hybrid Taylor and block-pulse operational matrix method [45], Euler func-
tions method [30], Chebyshev polynomials method [23, 24], and Chelyshkov functions
method [4].

A delay di�erential equation is a type of di�erential equation where the derivative of
the unknown function at the current time depends not only on the solution at the current
time, but also on the solution at previous times. Fractional delay di�erential equations can
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be considered as a generalization of delay di�erential equations of integer orders. They

have been used for modeling in di�erent “elds of science, such as control [20], biology [9],

optics [41] and electrical networks [16]. Many researchers have examined the existence

and uniqueness of solutions to fractional delay di�erential equations [1, 27].

Generally, It is a challenge to “nd exact solutions for most fractional delay di�eren-

tial equations, hence numerical or approximate methods should be developed to solve

these equations. Various techniques have been presented to address this type of prob-

lem in recent decades. In [31], a numerical method based on “nite di�erences has been

presented to approximate solutions of fractional delay di�erential equations. The devel-

opment of a predictor-corrector method with error analysis has been introduced in [14].

The Bernoulli wavelet operational matrix of fractional integration together with the collo-

cation method has been employed in [42] to provide an approximate solution of fractional

delay di�erential equations. In [21], the collocation method, optimization techniques and

generalized Laguerre polynomials are applied to approximate a solution of delay fractional

di�erential equations. A numerical technique based on hybrid functions of block-pulse

and fractional-order Fibonacci polynomials has been given in [43]. They used Riemann…

Liouville fractional integral operational matrix and delay operational matrix of the hybrid

functions together with the collocation method to reduce the problem to a system of al-

gebraic equations.

In [15], a computational technique based on the combination of fractional Bessel func-

tions with block-pulse functions to produce a sparse operational matrix to reduce the

problem to a system of algebraic equations. A spectral operational matrices-based algo-

rithm has been presented in [48]. These matrices have been generated by using shifted

Gegenbauer polynomials. Instead of using the operational matrix of fractional integration,

which requires some approximation, a numerical method based on the explicit formula

of Riemann…Liouville fractional integral of Legendre wavelets functions has been given in

[50]. A numerical method based on applying the exact formula for the Riemann…Liouville

fractional integral of Taylor wavelet functions together with the collocation method has

been proposed in [47]. Recently, Avci [10] has introduced a numerical spectral technique

depending on the operational matrix of fractional integration for fractional-order Taylor

basis.

Approximation by orthogonal functions has grown signi“cantly as a useful tool for solv-

ing fractional di�erential equations. They convert the fractional problem into a set of al-

gebraic problems. Some popular orthogonal families are Chebyshev polynomials, Leg-

endre polynomials, Laguerre polynomials, Taylor polynomials, Chelyshkov polynomials

and block…pulse functions. Chelyshkov polynomials were presented in [13] and have been

used successfully for solving di�erent kinds of fractional di�erential equations. Solving

fractional di�erential equations with basis functions of integer-order may lead to some is-

sues when the solutions contain terms with fractional powers [19]. The major weaknesses

are that the rate of convergence is weak and a large number of basis functions are required

to provide accurate results. These drawbacks can be avoided by approximating the solu-

tions using orthogonal functions of fractional order.

Based on the above considerations, the motivation of this paper is to extend the applica-

tion of FCHFs to present a new numerical method for solving fractional delay di�erential

equations. In order to accomplish this goal, the operational matrix of fractional integral

for FCHFs is derived and used together with the collection method to convert the frac-
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tional delay problem into a set of algebraic equations. To the best of our knowledge, this
is the “rst time that the operational matrix of fractional integration for FCHFs is applied
to solve fractional delay di�erential equations

The main advantages of the presented technique are:
• FCHFs are fractional-order orthogonal functions. This feature leads to a good rate of

convergence and reduces the number of basis functions required to get satisfactory
results.

• The solution procedure is simple since the fractional delay problem is reduced to a set
of algebraic equations.

• The computational errors are less than in the conventional methods where the
obtained numerical results in some cases are the exact solutions and in others are in
good agreement with the exact solutions.

The structure of the paper is as follows. Section2 presents some fundamental concepts of
fractional calculus that will be used in our subsequent development. In Sect.3, the FCHFs
are described, and the operational matrix of fractional integration is also constructed. The
convergence of FCHFs is demonstrated in Sect.4. Section5 describes our new numeri-
cal method for solving fractional delay di�erential equations. Section6 considers some
numerical examples and reports our numerical results as well as some comparisons with
other methods. The paper is “nally summarized in Sect.7.

2 Preliminaries on fractional calculus
Here, we review some de“nitions and properties of fractional integration and di�erentia-
tion that will be used in the next sections [36, 39].

Definition 2.1 The Riemann…Liouville fractional integration of orderν ≥ 0 of a function
g(t) is de“ned as

Iνg(t) =
1

�(ν)

∫ t

0
(t …τ )ν…1g(τ )dτ =

1

�(ν)
tν…1∗ g(t), ν > 0,t > 0, (2.1)

I0g(t) = g(t),

wheretν…1∗ g(t) is the convolution oftν…1and g(t).

Definition 2.2 The Caputo fractional derivative of orderν > 0 of a functiong(t) is de“ned
as

Dνg(t) =
1

�(�ν� …ν)

∫ t

0
(t …τ )�ν�…ν…1g(�ν�)(τ )dτ , �ν� … 1 <ν ≤ �ν�,t > 0, (2.2)

where�ν� denotes the smallest integer greater than or equal toν.

The following properties are satis“ed for Riemann…Liouville fractional integral and Ca-
puto fractional derivative:

• Iνtβ =
�(β + 1)

�(β + ν + 1)
tβ+ν , β > …1. (2.3)

• Iν1Iν2g(t) = Iν1+ν2g(t) = Iν2Iν1g(t), ν1, ν2 ≥ 0. (2.4)
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• DνK = 0, K is constant. (2.5)

• Dνtβ =

⎧⎪⎨
⎪⎩

0, β ∈ N0 and β < �ν�,

�(β + 1)

�(β …ν + 1)
tβ…ν , β ∈ N0 and β ≥ �ν� or β /∈ N and β > �ν	.

(2.6)

• DνIνg(t) = g(t). (2.7)

• IνDνg(t) = g(t) …
�ν�…1∑

r=0

g(r)(0+)

r!
tr, t > 0. (2.8)

• Dν
(
α1g1(t) + α2g2(t)

)
= α1Dνg1(t) + α2Dνg2(t),

Iν
(
α1g1(t) + α2g2(t)

)
= α1Iνg1(t) + α2Iνg2(t),

(2.9)

where �ν	 denotes the largest integer less than or equal toν, N0 = {0,1,2, . . .}, N =

{1,2,3, . . .} andα1, α2 are constants.

Definition 2.3 (Generalized Taylor•s formula). Suppose thatDlβg(t) ∈ C(0,1] for l =

0,1, . . . ,m + 1 and 0 <β ≤ 1, then [36]

g(t) =
m∑

r=0

trβ

�(rβ + 1)
Drβg(0+) +

t(m+1)β

� ((m + 1)β + 1)
D(m+1)βg(ξ ), 0 <ξ ≤ t, ∀t ∈ (0,1],

(2.10)

whereDrβ = DβDβ . . .Dβ︸ ︷︷ ︸
r times

.

If β = 1, then the generalized Taylor•s formula converts to the classical Taylor•s formula.

3 Fractional-order Chelyshkov functions properties
3.1 Fractional-order Chelyshkov functions
The fractional-order Chelyshkov functions (FCHFs) can be de“ned by using Chelyshkov

polynomials in the following form [5]:

ϕβ
mr(t) =

m∑
j=r

(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
tjβ , r = 0,1, . . .m, β > 0. (3.1)

The set{ϕβ
mr}m

r=0 of FCHFs is a family of orthogonal functions over the intervalρ = [0,1]

with respect to the weight functionwβ (t) = tβ…1. The orthogonality property for these

functions is

∫ 1

0
ϕβ

ms(t)ϕ
β

mi(t)wβ(t)dt =
δsi

(s + i + 1)β
, δsi =

⎧⎨
⎩

1, s = i,

0, s �= i,
, s, i = 0, 1, . . . ,m. (3.2)

It is clear from Equation (3.1) that every member of the set{ϕβ
mr}m

r=0 is of degreeβm. This is

the key distinction between the Chelyshkov polynomials and the other sets of orthogonal
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Figure 1 The graph ofϕβ
mr(t) atm = 5,r = 0,1,. . ., 5 andβ = 1/3

Figure 2 The graph ofϕβ
mr(t) for various values ofβ atm = 5 andr = 0

polynomials. Figures1 and2 provide graphs of FCHFs for di�erent values ofr andβ, re-

spectively. Let the weighted spaceL2
wβ

(ρ) be the set of all real-valued measurable functions

u(t) on ρ that satisfy

∫ 1

0
|u(t)|2wβ (t)dt < ∞, (3.3)

with inner product and norm given by

〈u(t),μ(t)〉wβ
=
∫ 1

0
u(t)μ(t)wβ(t)dt, (3.4)

‖u(t)‖wβ
= 〈u(t),u(t)〉 1

2
wβ

.
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Suppose that
{
ϕ

β
m0(t),ϕβ

m1(t), . . . ,ϕβ
mm(t)

}
is a set of FCHFs andAm = span{ϕβ

m0(t),ϕβ
m1(t),

. . . ,ϕβ
mm(t)}. Also, assume thatg(t) is an arbitrary function in L2

wβ
(ρ). SinceAm is a closed

“nite-dimensional subspace ofL2
wβ

(ρ), then for any functiong(t) there exists a unique best
approximation gm(t) ∈ Am that minimizing the distance tog(t), that is

‖g(t) …gm(t)‖wβ
≤ ‖g(t) …θ (t)‖wβ

, ∀θ (t) ∈Am. (3.5)

Sincegm(t) ∈Am, then there are unique coe�cients�0,�1, . . . ,�m such that

g(t) � gm(t) =
m∑

k=0

�kϕ
β

mk(t) = LT
β(t), (3.6)

whereL and
β(t) are given by

L =
(
�0,�1, . . . ,�m

)T
, �k = β(2k + 1)

∫ 1

0
g(t)ϕβ

mk(t)wβ(t)dt, k = 0,1, . . . ,m, (3.7)

and


β(t) =
(
ϕ

β
m0(t),ϕβ

m1(t), . . . ,ϕβ
mm(t)

)T
. (3.8)

3.2 The operational matrix of fractional integration
This subsection is devoted to construct the fractional integration operational matrix of
the FCHFs, which will be used to reduce the fractional delay di�erential equations into a
set of algebraic equations.

Theorem 3.1 Let 
β(t) be a (m+1)×1vector of FCHFs.The Riemann–Liouville fractional
integral of order ν > 0 of the vector 
β(t) can be given by

Iν
β(t) � �(ν)
β (t), (3.9)

where �(ν) = (λrk)
m
r,k=0 is the (m + 1) × (m + 1) operational matrix of fractional integral of

order ν for FCHFs and its elements can be obtained by

λrk =
m∑
j=r

m∑
l=k

(…1)j+l…r…k β(2k + 1)

β(j + l + 1) + ν

�(jβ + 1)

�(jβ + ν + 1)

(
m …r
j …r

)

×
(

m + j + 1

m …r

)(
m …k
l …k

)(
m + l + 1

m …k

)
. (3.10)

Proof Using Equation (2.1) to integrate Equation (3.1), yields

Iνϕβ
mr(t) =

1

�(ν)
tν…1∗ ϕβ

mr(t), r = 0, 1, . . . ,m. (3.11)

By taking the Laplace transform of Equation (3.11), we get

L
{

Iνϕβ
mr(t)

}
= L

{
1

�(ν)
tν…1

}
L
{
ϕβ

mr(t)
}

, r = 0,1, . . . ,m. (3.12)
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Since

L
{

1

�(ν)
tν…1

}
=

1
sν

, (3.13)

and

L
{
ϕβ

mr(t)
}

=
m∑
j=r

(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
L
{

tjβ}

=
m∑
j=r

(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

sjβ+1
, r = 0, 1, . . . ,m. (3.14)

Then Equation (3.12) becomes

L
{

Iνϕβ
mr(t)

}
=

m∑
j=r

(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

sjβ+ν+1
, r = 0, 1, . . . ,m. (3.15)

Now, by utilizing the inverse Laplace transform of Equation (3.15), we obtain

Iνϕβ
mr(t) =

m∑
j=r

(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

�(jβ + ν + 1)
tjβ+ν , r = 0, 1, . . . ,m. (3.16)

Approximating tjβ+ν in terms of FCHFs, we get

tjβ+ν �
m∑

k=0

�jkϕ
β

mk (t) , j = 0, 1, . . . ,m, (3.17)

where�jk can be determined from Equations (3.1) and (3.7) as follows

�jk = β(2k + 1)
∫ 1

0
tjβ+νϕ

β

mk(t)wβ(t)dt

= β(2k + 1)
m∑

l=k

(…1)l…k

β(j + l + 1) + ν

(
m …k
l …k

)(
m + l + 1

m …k

)
. (3.18)

From Equations (3.16), (3.17) and (3.18), we can write

Iνϕβ
mr(t) �

m∑
k=0

⎛
⎝ m∑

j=r

m∑
l=k

(…1)j+l…r…k β(2k + 1)

β(j + l + 1) + ν

�(jβ + 1)

�(jβ + ν + 1)

(
m …r
j …r

)

×
(

m + j + 1

m …r

)(
m …k
l …k

)(
m + l + 1

m …k

))
ϕ

β

mk(t)

=
m∑

k=0

λrkϕ
β

mk(t), r = 0, 1, . . . ,m, (3.19)

which leads to the desired result. �
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4 Convergence analysis
In this section, we discuss the convergence of the best approximation and show that by
increasing the number of the FCHFs, the error in calculating the operational matrix of
fractional integration tends to zero.

Theorem 4.1 Let g(t) ∈ L2
wβ

(ρ) such that Dlβg(t) ∈ C(0,1] for l = 0, 1, . . . ,m + 1. Suppose
that LT
β(t) is the best estimation of g(t) in Am, then

lim
m−→∞

∥∥g(t) …LT
β(t)
∥∥

wβ
= 0. (4.1)

Proof Assume the generalized Taylor•s formula ofg(t) is denoted byψ(t), then from Def-
inition 2.3the error bound is

∣∣g(t) …ψ(t)
∣∣ =
∣∣∣∣ t(m+1)β

� ((m + 1)β + 1)
D(m+1)βg(ξ )

∣∣∣∣

≤ Hβ t(m+1)β

� ((m + 1)β + 1)
, 0 <ξ ≤ t, t ∈ (0,1], (4.2)

where

Hβ = sup
t∈(0,1]

{|D(m+1)βg(t)|} .

SinceLT
β(t) is the best estimation ofg(t) in Am andψ(t) ∈ Am then by using Equation
(4.2), we get

∥∥g(t) …LT
β(t)
∥∥2

wβ
≤ ∥∥g(t) …ψ(t)

∥∥2
wβ

=
∫ 1

0

(
g(t) …ψ(t)

)2 wβ(t)dt

≤
(

Hβ

� ((m + 1)β + 1)

)2∫ 1

0
t(2m+3)β…1dt

=
(

Hβ

� ((m + 1)β + 1)

)2 1
(2m + 3)β

, (4.3)

The right-hand side of inequality (4.3) depends on bothm andβ, so for a “xedβ, we have

lim
m−→∞

Hβ

� ((m + 1)β + 1)

1√
(2m + 3)β

= 0, (4.4)

therefore

lim
m−→∞

∥∥g(t) …LT
β(t)
∥∥

wβ
= 0. (4.5)

Theorem 4.2 Let the error vector Eν of the operational matrix of fractional integration
�(ν) be given by

Eν(t) = Iν
β(t) …�(ν)
β(t). (4.6)
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Then

lim
m−→∞‖Eν(t)‖wβ

= 0. (4.7)

Proof Suppose thatEν =
(
ε0,ε1, . . . ,εm

)T
, then by using Equations (3.10), (3.16) and (3.18),

we get

‖εr‖wβ
=

∥∥∥∥∥Iνϕβ
mr(t) …

m∑
k=0

λrkϕ
β

mk(t)

∥∥∥∥∥
wβ

≤
m∑
j=r

∣∣∣∣∣(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣

×
∥∥∥∥∥tjβ+ν …

m∑
k=0

m∑
l=k

(…1)l…k β(2k + 1)

β(j + l + 1) + ν

(
m …k
l …k

)(
m + l + 1

m …k

)
ϕ

β

mk(t)

∥∥∥∥∥
wβ

=
m∑
j=r

∣∣∣∣∣(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣

×
∥∥∥∥∥tjβ+ν …

m∑
k=0

�jkϕ
β

mk(t)

∥∥∥∥∥
wβ

, r = 0,1, . . . ,m. (4.8)

But
m∑

k=0
�jkϕ

β

mk(t) is the approximation oftjβ+ν , so from Equation (4.3) we can write

∥∥∥∥∥tjβ+ν …
m∑

k=0

�jkϕ
β

mk(t)

∥∥∥∥∥
wβ

≤ Ĥβ

� ((m + 1)β + 1)

1√
(2m + 3)β

,

Ĥβ = sup
t∈(0,1]

{|D(m+1)β tjβ+ν |} . (4.9)

Hence, Equation (4.8) becomes

‖εr‖wβ
≤ H̄β

� ((m + 1)β + 1)

1√
(2m + 3)β

×
m∑
j=r

∣∣∣∣∣(…1)j…r

(
m …r
j …r

)(
m + j + 1

m …r

)
�(jβ + 1)

�(jβ + ν + 1)

∣∣∣∣∣ , r = 0,1, . . . ,m. (4.10)

Therefore

lim
m−→∞‖Eν(t)‖wβ

= 0. (4.11)

5 Numerical method
The aim of this section is to present a new numerical method for solving fractional delay

di�erential equations by using FCHFs and their operational matrix of fractional integra-

tion.
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Consider the following two problems:

⎧⎪⎪⎨
⎪⎪⎩

Dνy(t) = f
(
t, y(t), y(t …τ )

)
, t ∈ [0,1], τ ∈ (0,1], ν > 0,

y(i)(0) = ηi, i = 0, 1, . . . ,�ν� … 1,

y(t) = ρ(t), t < 0.

(5.1)

⎧⎨
⎩

Dνy(t) = f
(
t, y(t), y(τ t)

)
, t ∈ [0,1], τ ∈ (0,1], ν > 0,

y(i)(0) = ηi, i = 0, 1, . . . ,�ν� … 1,
(5.2)

where f and ρ are known analytical functions,τ is delay,ηi, i = 0, 1, . . . ,�ν� … 1 are real

constants,y is the unknown function andDν is the Caputo fractional derivative of order

ν. To “nd approximate solutions of Problems (5.1) and (5.2), we approximateDνy(t) by

FCHFs as

Dνy(t) �
m∑

k=0

�kϕ
β

mk(t) = LT
β(t). (5.3)

By applying the Riemann…Liouville integration to Equation (5.3) and using Equations (2.8)

and (3.9), we get

y(t) � Iν
(
LT
β(t)

)
+

�ν�…1∑
i=0

ηi

i!
ti

� LT�(ν)
β(t) + PT
β(t), (5.4)

whereP is the fractional-order Chelyshkov coe�cient vector of the polynomial
�ν�…1∑

i=0

ηi

i!
ti

and is given by

P =
(

p0,p1, . . . ,pm

)T
,

pz = β(2z + 1)
�ν�…1∑

i=0

m∑
j=z

(…1)j…zηi(
β(j + 1) + i

)
�(i + 1)

(
m …z
j …z

)(
m + j + 1

m …z

)
,

z = 0,1, . . . ,m.

(5.5)

Then for Problems (5.1) and (5.2), y(t) take the form

y(t) �
⎧⎨
⎩

LT�(ν)
β(t) + PT
β(t), t ∈ [0,1]

ρ(t), t < 0,
(5.6)

y(t) � LT�(ν)
β(t) + PT
β(t), t ∈ [0,1]. (5.7)

Making use of Equations (5.6) and (5.7), we get

y(t …τ ) �
⎧⎨
⎩

LT�(ν)
β(t …τ ) + PT
β(t …τ ), t ∈ [τ , 1],

ρ(t …τ ), t < τ ,
(5.8)
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y(τ t) � LT�(ν)
β(τ t) + PT
β (τ t), t ∈ [0,1]. (5.9)

By substituting Equations (5.3), (5.6)…(5.9) in Problems (5.1) and (5.2), we obtain the fol-

lowing algebraic equations

⎧⎪⎪⎨
⎪⎪⎩

LT
β(t) � f
(
t, LT�(ν)
β(t) + PT
β(t), ρ(t …τ )

)
, t ∈ [0,τ ),

LT
β(t) � f
(
t, LT�(ν)
β(t) + PT
β(t),

LT�(ν)
β(t …τ ) + PT
β(t …τ )
)
, t ∈ [τ , 1],

(5.10)

LT
β(t) � f
(
t, LT�(ν)
β(t) + PT
β(t), LT�(ν)
β(τ t) + PT
β(τ t)

)
,

t ∈ [0,1]. (5.11)

Now, by collocate Equations (5.10) and (5.11) at the pointsts =
s
m

, s = 0, 1, . . . ,m, we obtain

the following two systems ofm + 1 algebraic equations,

⎧⎪⎪⎨
⎪⎪⎩

LT
β(ts) …f
(
ts, LT�(ν)
β(ts) + PT
β(ts), ρ(ts …τ )

)� 0, ts ∈ [0,τ ),

LT
β(ts) …f
(
ts, LT�(ν)
β(ts) + PT
β(ts),

LT�(ν)
β(ts …τ ) + PT
β(ts …τ )
)� 0, ts ∈ [τ , 1],

(5.12)

LT
β(ts) …f
(
ts, LT�(ν)
β(ts) + PT
β(ts), LT�(ν)
β(τ ts) + PT
β (τ ts)

)� 0,

ts ∈ [0,1]. (5.13)

These systems can be solved to “ndm + 1 unknown constants�0,�1, . . .�m and hence, an

approximate solutions of Problems (5.1) and (5.2) can be determined from Equations (5.6)

and (5.7) respectively.

Based on the above, we present an algorithm for solving Problems (5.1) and (5.2) as

follows

Algorithm 5.1
Input: The numbers ν , ηi, i = 0, 1, . . . ,�ν� … 1and the functions f , ρ
Step 1: Choose m ∈ N , β > 0and construct the fractional-order Chelyshkov vector 
β (t)

using Equations (3.1) and (3.8).
Step 2: Compute the operational matrix �(ν) and the vector P using Equations (3.10) and

(5.5).
Step 3: Define the unknown vector L =

(
�0,�1, . . . ,�m

)T
.

Step 4: Compute the algebraic equation (5.10) or (5.11).
Step 5: Construct the nonlinear system of algebraic equations (5.12) or (5.13) by using

the points ts =
s
m

, s = 0,1, . . . ,m.
Step 6: Find the unknowns of the algebraic system obtained in Step 5.
Output: An approximate solution given by equation (5.6) or (5.7).

6 Numerical results
To demonstrate the applicability and e�ectiveness of the introduced method, we use it

to solve some examples, and we compare the numerical results it generates with those
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reported in the literature. All numerical results have been obtained using Mathematica 11

software and a laptop with Intel(R) Core(TM) i7-4600M 2.90 GHz CPU and 8.0 GB RAM.

Example 1 Consider the following fractional delay di�erential equation [10, 47, 50]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dνy(t) = y(t …τ ) …y(t) + 2t2…ν

�(3…ν)

… t1…ν

�(2…ν) + 2τ t …τ 2 …τ , t ∈ [0,1], ν ∈ (0,1], τ ∈ (0,1],

y(0) = 0,

y(t) = t2 …t, t < 0.

(6.1)

The exact solution to this problem isy(t) = t2 …t. By using the technique described in

Sect.5, we get

Dνy(t) = LT
β(t),

y(t) �
⎧⎨
⎩

LT�(ν)
β(t) + PT
β(t), t ∈ [0,1],

t2 …t, t < 0,

y(t …τ ) �
⎧⎨
⎩

LT�(ν)
β(t …τ ) + PT
β(t …τ ), t ∈ [τ , 1],

(t …τ )2 …(t …τ ), t < τ ,
(6.2)

whereL =
(
�0,�1, . . . ,�m

)T
is the vector of unknown constants that we must identify and

P can be calculated from Equation (5.5). By substituting Equations (6.2) into the fractional

delay di�erential equation (6.1), we get the following matrix equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

LT
β(t) …
(
(t …τ )2 …(t …τ )

)
+ LT�(ν)
β (t) + PT
β (t)

… 2t2…ν

�(3…ν) + t1…ν

�(2…ν) … 2τ t + τ 2 + τ � 0, t ∈ [0,τ ),

LT
β(t) …
(
LT�(ν)
β(t …τ ) + PT
β(t …τ )

)
+ LT�(ν)
β(t)

+ PT
β(t) … 2t2…ν

�(3…ν) + t1…ν

�(2…ν) … 2τ t + τ 2 + τ � 0, t ∈ [τ , 1].

(6.3)

By consideringν = 1, we takem = 2,β = 1 and hence

�(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

18

5

12

19

36

…
1

36

1

6

11

18

1

180
…

1

30

5

18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =
(
0,0,0

)T
. (6.4)

In caseτ ∈ (0,0.5], making use of Equation (6.4) and collocate Equations (6.3) at the points

0, 1
2, 1, we obtain the following system

190�0 … 5�1 + �2 + 60 = 0,
(
20τ 2 … 10

)
�0 +

(
10τ 2 + 10τ + 15

)
�1 +

(
…10τ 2 + 6τ + 5

)
�2 + 20τ 2 = 0,
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(
τ 2 …τ + 1

)
�0 +

(
1
2
τ 2 … 1

)
�1 +

(
…

1
2
τ 2 +

4
5
τ + 1

)
�2 + τ 2 …τ … 1 = 0. (6.5)

Solving system (6.5) for the unknowns�0, �1, �2 gives the solution

�0 = …
1

3
, �1 = …

1

2
, �2 =

5

6
, (6.6)

thus

y(t) = LT�(1)
1(t) =
(

…
1

3
,…

1

2
,
5

6

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

18

5

12

19

36

…
1

36

1

6

11

18

1

180
…

1

30

5

18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

10t2 … 12t + 3

…5t2 + 4t
t2

⎞
⎟⎠ = t2 …t,

t ∈ [0,1], (6.7)

which is the exact solution. Forτ ∈ (0.5,1], we use Equation (6.4) and collocate Equations
(6.3) at the points 0,1

2, 1, then we get the following system

190�0 … 5�1 + �2 + 60 = 0,

2�0 … 25�1 … 7�2 … 6 = 0,

(
τ 2 …τ + 1

)
�0 +

(
1
2
τ 2 … 1

)
�1 +

(
…

1
2
τ 2 +

4
5
τ + 1

)
�2 + τ 2 …τ … 1 = 0. (6.8)

Solving system (6.8) for the unknowns�0, �1, �2 gives the same solution

�0 = …
1

3
, �1 = …

1

2
, �2 =

5

6
, (6.9)

which leads to the exact solution. Further, the total CPU time required to “nd the solution
using the proposed method for the two cases ofτ in this example is 0.0156 seconds. Thus,
the proposed method is accurate and time-e�cient.

For ν =
1
2

, we takem = 4,β =
1
2

, and again we can obtain the exact solution, where

�( 1
2 ) =

1√
π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8

75

1

50

131

30
…

10π

7

2366

75
… 10π

11274

25
…

1005π

7

…
16

225

8

25

10π

21
…

56

45

10π

3
…

4739

450

531π

7
…

11907

50

16

525
…

24

175

8

15

77

150

3303

50
… 21π

…
4

525

6

175
…

2

15

56

75
3π …

216

25

4

4725
…

2

525

2

135
…

56

675

24

25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =
(
0,0,0,0,0

)T
.

(6.10)
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Similarly, by using Equation (6.10), subdivide the interval(0,1] into four subintervals and

consider the following cases ofτ

τ ∈
(

0,
1
4

]
, τ ∈

(
1
4

,
1
2

]
, τ ∈

(
1
2

,
3
4

]
, τ ∈

(
3
4

,1
]

, (6.11)

then collocate Equations (6.3) at the points ts =
s
4

, s = 0,1, . . . , 4, for each case ofτ and

solving the resulting systems for the unknowns�0, �1, �2, �3, �4, we get the same solution

�0 = 0, �1 = …
1

10
√

π
, �2 = …

1

2
√

π
, �3 = …

16

15
√

π
, �4 = 0, (6.12)

for all cases ofτ , thus

y(t) = LT�( 1
2 )
 1

2
(t) = t2 …t, t ∈ [0,1], (6.13)

which is the exact solution. Additionally, the total CPU time needed to “nd this solution

using the proposed method for the four cases ofτ in Equation (6.11) is 24.0608 seconds.

Problem (6.1) has been solved in [10, 47, 50]. By comparing the obtained solution with

those in [10, 47, 50], it can be observed that the introduced method is more accurate be-

cause we get the exact solution forν = 1 and for any value ofτ with three terms of FCHFs,

whereas they used four terms of Legendre wavelets, six terms of Taylor wavelets and eight

terms of fractional-order Taylor functions in [47, 50] and [10] respectively to obtain only

approximate solutions.

Example 2 Consider the following fractional delay di�erential equation [8, 10]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D 1
2 y(t) = y(t … 1) …y(t) +

�(3)

�(2.5)
t 3

2 + 2t … 1, t ∈ [0,1],

y(0) = 0,

y(t) = t2, t < 0.

(6.14)

The exact solution is given byy(t) = t2. By applying the method proposed in Sect.5, we

obtain

D
1
2 y(t) = LT
β(t),

y(t) =

⎧⎨
⎩

LT�( 1
2 )
β(t) + PT
β(t), t ∈ [0,1],

t2, t < 0,

y(t … 1) =

⎧⎨
⎩

LT�( 1
2 )
β(t … 1) + PT
β(t … 1), t = 1,

(t … 1)2, t < 1.
(6.15)
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Equations (6.15) transform Equation (6.14) to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

LT
β(t) …(t … 1)2 +
(

LT�( 1
2 )
β(t) + PT
β(t)

)

…
�(3)

�(2.5)
t 3

2 … 2t + 1 � 0, t ∈ [0,1),

LT
β(t) …
(

LT�( 1
2 )
β (t … 1) + PT
β(t … 1)

)

+
(

LT�( 1
2 )
β(t) + PT
β(t)

)
…

�(3)

�(2.5)
t 3

2 … 2t + 1 � 0, t = 1.

(6.16)

By consideringm = 4 andβ =
1
2

and collocating Equation (6.16) at the nodests =
s
4

, s =

0,1, . . . , 4, and solving the resulting system, we obtain the solution

�0 = 0, �1 = 0, �2 = 0, �3 =
1

3
√

π
, �4 =

3√
π

, (6.17)

which leads to the exact solution. Also, the total CPU time required to “nd the solution us-

ing the presented method in this example is 0.2969 seconds. This problem has been solved

by using the fractional-order Taylor method [10], the Haar wavelet collocation technique

[8] and the fractional backward di�erence method [32]. Their solutions were approximate

solutions. By comparing with these methods, it is clear that the proposed method is more

e�ective, more accurate and less time-consuming than these methods.

Example 3 Consider the following fractional delay di�erential equation [50]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D0.2y(t) = …y(t … 1) +
�(3)

�(2.8)
t1.8 …

�(2)

�(1.8)
t0.8 + t2 … 3t + 1, t ≥ 0,

y(0) = …1,

y(t) = t2 …t … 1, t < 0.

(6.18)

The exact solution to this problem isy(t) = t2 …t … 1. Figure3 displays the approximate so-

lution obtained for various values ofβ at m = 10 with the exact solution, while Fig.4 plots

the absolute error function atβ = 0.2 andm = 10. It can be observed that our numerical

solutions agree with the exact solution for all choices ofβ and high-accuracy numerical

solutions can be obtained with some terms of FCHFs. Table1 shows a comparison be-

tween the results obtained by the present method and those reported in [50] in terms of

absolute errors, whereM denotes the number of basis functions used in [50] for solving

the problem. From Table1, it can be seen that the absolute errors achieved by the intro-

duced method are less than those in [50] for all corresponding cases which shows the ad-

vantage of using basis functions of fractional-order. In addition, we have used only eleven

basis functions, while they used more than a hundred basis functions in [50]. This demon-

strates that the introduced method is in more agreement with the exact solution than [50]

for this problem and can identify high-precision solutions at reasonable computational

costs.
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Figure 3 The graph of the approximate solution for various choices ofβ atm = 10 and the exact solution for
Example3

Figure 4 The graph of the absolute error function atm = 10 andβ = 0.2 for Example3

Table 1 Comparison of the absolute errors for Example3

t Present method Yuttanan•s [50]

m = 10,β = 0.40 m = 10,β = 0.30 m = 10,β = 0.20 M = 12 M = 48 M = 192

0.2 5.84×10…6 6.38×10…7 5.21×10…10 4.40×10…4 8.23×10…6 7.66×10…7

0.4 3.21×10…6 4.06×10…7 2.42×10…10 7.81×10…5 4.67×10…6 4.37×10…7

0.6 2.31×10…6 2.46×10…7 1.09×10…10 2.26×10…5 3.92×10…6 3.12×10…7

0.8 1.82×10…6 2.66×10…7 9.69×10…12 3.37×10…5 3.15×10…6 2.50×10…7

1.0 1.37×10…6 3.83×10…7 7.31×10…11 2.15×10…5 2.00×10…6 2.03×10…7

CPU time 0.1094 s 0.0625 s 0.1094 s … … …

Example 4 Consider the following fractional delay di�erential equation [15, 50]:

⎧⎪⎪⎨
⎪⎪⎩

Dνy(t) = …y(t) …y(t … 0.3) + e…t+0.3, t ∈ [0,1], ν ∈ (2,3],

y(0) = 1, y′(0) = …1, y′′(0) = 1,

y(t) = e…t, t < 0.

(6.19)

This problem has the exact solutiony(t) = e…t whenν = 3. Figures5 and6 present graphi-

cally the obtained results for the approximate solution for various values ofν with the exact
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Figure 5 The graph of the approximate solution for various values ofν atm = 10,β = 1 and the exact
solution for Example4

Figure 6 The graph of the absolute error function atm = 10,β = 1 andν = 3 for Example4

solution for ν = 3 and the absolute error atν = 3, respectively. From Fig.5, it can be seen

that asν approaches 3, the approximate solution converges to the exact solution forν = 3

and from Fig.6, we can see that the absolute error is at most of order 10…14, which means

that the present method has good accuracy using a reasonable number of basis functions.

Table2 compares the results obtained by the present method with the collected results in

[15] in terms of absolute errors. It can be observed that the results obtained by the present

method are less than those in [15,22,38,46] for most of the listed values in that table by us-

ing a fewer number of basis functions for each case. Also, Problem (6.19) has been solved

using the Legendre wavelet method [50] by selectingM = 14. The maximum absolute er-

ror achieved by this method is approximately 8.78× 10…12while our maximum absolute

error is approximately 1.74× 10…15at m = 10. This means that the introduced method

outperforms the method in [50] with respect to accuracy. These comparisons show that

the presented method is more accurate, e�cient, and coincidental with the exact solution

than [15, 22, 38, 46, 50].
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Table 2 Comparison of the absolute errors atβ = 1 andν = 3 for Example4

t Present method Dehestani•s [15] Iqbal•s [22] Sezer•s
[46]

Ozturk•s
[38]m = 7 m = 10 M = 9 M = 13 M = 20

0.0 1.21×10…9 2.20×10…14 0 0 0 0 0
0.2 2.47×10…10 5.11×10…15 3.05×10…7 1.86×10…15 1.00×10…10 8.54×10…8 3.70×10…7

0.4 4.12×10…11 3.77×10…15 9.81×10…7 3.79×10…13 0 5.36×10…6 2.38×10…6

0.6 6.32×10…11 2.66×10…15 1.85×10…6 8.11×10…12 1.00×10…10 5.95×10…5 5.97×10…6

0.8 2.35×10…10 3.11×10…15 2.64×10…6 7.00×10…11 1.00×10…10 3.26×10…4 3.48×10…5

1.0 1.12×10…9 6.52×10…14 3.03×10…6 3.71×10…10 2.00×10…10 1.21×10…3 2.03×10…4

CPU time 0.0625 s 0.1562 s … … … … …

Example 5 Consider the following fractional delay di�erential equation [21]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dνy(t) =
3
4

y(t) + y
(

1
2

t
)

+
�(q + 1)

�(q + 1 …ν)
tq…ν …

(
1
2q +

3
4

)
tq,

t ∈ [0,1], ν ∈ (1,2], q > 1,

y(0) = y′(0) = 0.

(6.20)

We havey(t) = tq as the exact solution for this problem. By using the technique described
in Sect.5, we get

Dνy(t) = LT
β(t),

y(t) � LT�(ν)
β(t) + PT
β(t),

y
(

1
2

t
)

� LT�(ν)
β

(
1
2

t
)

+ PT
β

(
1
2

t
)

. (6.21)

The fractional delay di�erential equation (6.20) can be written after using Equations (6.21)
in the form

LT
β(t) …
3
4

(
LT�(ν)
β(t) + PT
β(t)

)
…
(

LT�(ν)
β

(
1
2

t
)

+ PT
β

(
1
2

t
))

…
�(q + 1)

�(q + 1 …ν)
tq…ν +

(
1
2q +

3
4

)
tq � 0. (6.22)

Considerν = 2 andq = 2 with the exact solutiony(x) = t2. In order to solve this case, we
takem = 2, andβ = 1, hence

�(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

…
1

105

17

210

3

7

…
1

1260
…

1

140

65

252

1

420
…

1

84

5

84

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P =
(
0,0,0

)T
. (6.23)

By using Equation (6.23) and collocate Equation (6.22) at the points 0, 1
2, 1, we get the

following system

732�0 + �1 … 3�2 … 480 = 0,
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1186�0 … 1167�1 … 419�2 + 2940 = 0,

964�0 … 2113�1 + 1579�2 … 1680 = 0. (6.24)

Solving Equations (6.24) gives the solution

�0 =
2
3

, �1 = 2, �2 =
10
3

, (6.25)

hence

y(t) = LT�(2)
1(t) =
(

2
3

,2,
10
3

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

…
1

105

17

210

3

7

…
1

1260
…

1

140

65

252

1

420
…

1

84

5

84

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

10t2 … 12t + 3

…5t2 + 4t
t2

⎞
⎟⎠ = t2, (6.26)

which is the exact solution. Moreover, the total CPU time required to “nd this solution

using the introduced method in this example is 0.0156 seconds. Therefore, the presented

method is accurate and time-e�cient. Additionally, in caseν =
3
2

andq =
3
2

, we can again

obtain the exact solutiony(x) = t 3
2 . By employingm = 2 andβ =

3
4

, computing�( 3
2 ), collo-

cate Equation (6.22) at the nodes 0,12, 1, and solving the generated system, we obtain the
solution

�0 =
√

π

4
, �1 =

3
√

π

4
, �2 =

5
√

π

4
, (6.27)

which leads to the exact solution for this case. Also, the total CPU time needed to “nd
the solution using the proposed method for this case is 0.0937 seconds. The collocation

Laguerre operational matrix technique [21] has been used to solve Problem (6.20). By
comparing with our solution, it is clear that our method is more e�cient than [21], because
we utilized three terms of FCHFs to get the exact solution forν = 2, while they used six

terms of the generalized Laguerre polynomials to obtain only approximate solution.

Example 6 Consider the following fractional delay di�erential equation [33, 42]:

⎧⎨
⎩

Dνy(t) = …y(t) +
τ

2
y (τ t) …

τ

2
e…τ t, t ∈ [0,1], ν ∈ (0,1], τ ∈ (0,1],

y(0) = 1.
(6.28)

The exact solution to this problem atν = 1 isy(t) = e…t . Figures7 and8 display the approx-
imate solution obtained for several values ofν and τ together with the exact solution for
ν = 1, respectively. Figure7 shows that asν approaches 1, the approximate solution con-

verges to that of the integer-order delay di�erential equation. From Fig.8, it can be seen
that the approximate solution obtained by our method coincides with the exact solution
for all the used values of the delayτ . The absolute error of the presented method is plot-

ted in Fig.9. This “gure shows that the proposed method is accurate because the error is
at most of order 10…13. Table3 presents the absolute errors for di�erent values ofm. It is
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Figure 7 The graph of the approximate solution for di�erent values ofν atm = 10,β = ν,τ = 0.2 and the
exact solution for Example6

Figure 8 The graph of the approximate solution for various values ofτ atm = 10,β = ν = 1 and the exact
solution for Example6

Figure 9 The graph of the absolute error function atm = 10,β = ν = 1 andτ = 0.2 for Example6
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Table 3 The absolute errors for di�erent values ofm atβ = ν = 1 andτ = 0.2 for Example6

t m = 6 m = 8 m = 10

0.0 3.54×10…8 3.46×10…11 2.16×10…14

0.2 1.16×10…8 2.02×10…12 4.66×10…15

0.4 1.04×10…8 8.49×10…12 6.22×10…15

0.6 1.01×10…8 8.35×10…12 8.09×10…14

0.8 1.15×10…8 1.36×10…12 3.84×10…13

1.0 3.53×10…8 3.44×10…11 1.49×10…12

CPU time 0.0469 s 0.1094 s 0.2656 s

Table 4 Comparison of the absolute errors atβ = ν = 1 andτ = 0.2 for Example6

t Present method Rahimkhani•s [42] Muroya•s [33]

m = 8 m = 10 M = 12

2…2 9.44×10…12 2.66×10…15 1.05×10…8 1.08×10…5

2…3 1.09×10…11 1.89×10…15 5.79×10…9 3.81×10…5

2…4 8.09×10…12 2.22×10…15 2.00×10…8 1.26×10…5

2…5 1.26×10…11 8.33×10…15 3.70×10…9 4.09×10…5

2…6 2.18×10…13 4.77×10…15 2.03×10…8 1.20×10…5

CPU time 0.1094 s 0.2656 s … …

obvious that the absolute errors decrease when the value ofm increases, which demon-

strates the convergence of the introduced method to the exact solution. Table4 compares

the absolute errors obtained by the introduced method with the collected results in [42].

From Table4, we can note that the presented technique is more accurate and e�cient in

comparison to the methods [33, 42].

Example 7 Consider the following fractional delay di�erential equation [34, 42, 50]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dνy(t) = …y(t) +
1
2

y
(

1
2

t
)

+ cos(t) + sin(t) …
1
2

sin

(
1
2

t
)

,

t ∈ [0,1], ν ∈ (0,1],

y(0) = 0.

(6.29)

The exact solution for this problem isy(t) = sin(t) when ν = 1. The approximate solution

obtained for di�erent values ofν together with the known exact solution atν = 1 is plot-

ted in Fig.10. It can be noted that asν tends to 1, the approximate solution converges to

the exact solution forν = 1. The absolute error function forν = 1 is presented in Fig.11.

This “gure shows that even if the exact solution is not a polynomial, an accurate approx-

imation can be achieved using a su�cient number of FCHFs. In Table5, we compare the

absolute errors of the present method with those collected in [50] for the Bernoulli wavelet

method [42], the spectral method based on a modi“cation of hat functions [34] and the

Legendre wavelet method [50]. These results show that the proposed method is superior

to the methods in [34, 42, 50] for most of the listed values of absolute errors by using a

smaller number of basis functions than they have been used in [34, 42, 50]. This example

shows that the present method provides high e�ciency regardless of the type of the exact

solution for the problem.



Ahmed and Al-SharifBoundary Value Problems       (2024) 2024:107 Page 22 of 27

Figure 10 The graph of the approximate solution for several choices ofν atm = 10,β = ν and the exact
solution for Example7

Figure 11 The graph of the absolute error function atm = 10 andβ = ν = 1 for Example7

Table 5 Comparison of the absolute errors atβ = ν = 1 for Example7

t Present method Rahimkhani•s [42] Nemati•s [34] Yuttanan•s [50]

m = 9 m = 10 M = 12 M = 41 M = 16

0.0 7.11×10…13 3.08×10…14 5.93×10…9 0 0
0.2 3.97×10…13 8.05×10…15 2.27×10…10 1.97×10…10 3.42×10…13

0.4 1.48×10…13 2.81×10…14 1.22×10…9 5.36×10…11 3.33×10…13

0.6 4.27×10…13 4.70×10…13 5.57×10…6 3.29×10…10 8.95×10…13

0.8 2.36×10…12 2.92×10…12 4.56×10…6 9.01×10…10 7.76×10…13

CPU time 0.0625 s 0.0781 s … … …

Example 8 Consider the following fractional delay di�erential equation [42]:

⎧⎪⎨
⎪⎩

Dνy(t) = 1 … 2y2

(
1
2

t
)

, t ∈ [0,1], ν ∈ (1,2],

y(0) = 1, y′(0) = 0.
(6.30)

The exact solution for this problem isy(t) = cos(t) when ν = 2. Figure12 shows the ob-

tained approximate solution for various choices ofν with the exact solution forν = 2. It
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Figure 12 The graph of the approximate solution for various values ofν atm = 10,β = 1 and the exact
solution for Example8

Figure 13 The graph of the absolute error function atm = 10,β = 1 andν = 2 for Example8

can be seen that asν converges to 2, the approximate solution approaches the exact solu-
tion for ν = 2. Figure13 displays the absolute error function forν = 2. This graph shows
that the presented method has a good convergence rate and its solutions are accurate.
Table 6 presents a comparison between the obtained results and those reported in [42]
in terms of absolute errors. It can be noted that our method outperforms the method in
[42] since the absolute errors achieved by the introduced method are less than those in
[42] for all corresponding cases by using a fewer number of basis functions for each case.
This demonstrates the agreement of our method with the exact solution with reasonable
computational costs.

Example 9 Consider the following fractional delay di�erential equation [44]:

⎧⎪⎨
⎪⎩

Dνy(t) =
1
2

y(t) +
1
2

y
(

1
2

t
)

Dνy
(

1
2

t
)

, t ∈ [0,1], ν ∈ (0,1],

y(0) = 1.
(6.31)

This problem has the exact solutiony(t) = et whenν = 1. The approximate solution for dif-
ferent values ofν is plotted in Fig.14along with the exact solution forν = 1. The absolute
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Table 6 Comparison of the absolute errors atβ = 1 andν = 2 for Example8

t Present method Rahimkhani•s [42]

m = 6 m = 8 m = 10 M = 10 M = 14 M = 18

0.0 2.59×10…8 2.57×10…11 1.64×10…14 2.33×10…7 1.05×10…10 1.62×10…11

0.2 8.81×10…9 3.53×10…13 6.31×10…14 8.01×10…8 3.21×10…11 3.30×10…13

0.4 6.76×10…9 7.24×10…12 1.49×10…12 3.78×10…8 3.81×10…11 4.17×10…12

0.6 9.40×10…9 6.89×10…12 9.30×10…12 1.01×10…4 1.31×10…6 1.08×10…8

0.8 8.18×10…9 1.69×10…12 2.89×10…11 1.42×10…4 1.82×10…6 1.62×10…8

CPU time 0.1875 s 0.3437 s 0.6874 s … … …

Figure 14 The graph of the approximate solution for various values ofν atm = 9,β = ν and the exact
solution for Example9

Figure 15 The graph of the absolute error function atm = 9 andβ = ν = 1 for Example9

error of the presented method is drawn in Fig.15. These graphs demonstrate the conver-

gence of the obtained approximate solutions to the exact solution. Table7 compares the

results obtained by the present method with the those in [44]. It can be seen that our re-

sults are in agreement with the results in [44] for m = 8 and slightly better form = 9. This

means that the presented method is compatible with the method in [44] for this problem.

For all tested examples, the presented method has found the solutions with high accu-

racy within acceptable computation costs. We can observe that using fractional values of
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Table 7 Comparison of the absolute errors atβ = ν = 1 for Example9

t Present method Saeed•s [44]

m = 8 m = 9 M = 9

0.0 9.40×10…11 2.47×10…12 0
0.2 1.94×10…11 1.11×10…12 1.15×10…11

0.4 2.11×10…12 6.23×10…13 6.30×10…12

0.6 6.43×10…11 2.95×10…12 1.57×10…11

0.8 5.23×10…11 1.64×10…11 6.08×10…11

1 1.71×10…10 6.45×10…11 8.36×10…11

CPU time 0.4531 s 0.6718 s 1.2100 s

β leads to a good rate of convergence and a low number of basis functions is required

to obtain satisfactory results when the solutions of fractional delay di�erential equations

contain terms with fractional powers or when the fractional derivativeν is a proper frac-

tion.

7 Conclusion
This paper has used FCHFs and their properties to provide an accurate numerical method

for solving fractional delay di�erential equations. The fractional derivative was considered

in the Caputo sense. The problem of “nding a solution to a fractional delay di�erential

equation was transformed into the problem of solving a system of algebraic equations. The

convergence of the presented approximation has been discussed. The introduced method

has been applied to solve many problems and the obtained results were compared with

exact solutions and some other published numerical methods. It can be observed that the

presented method has high accuracy by using a smaller number of basis functions than

other methods used in the comparisons. This reveals that the presented method is e�-

cient, accurate and its performance is quite satisfactory, which establishes the signi“cance

of the present method for solving fractional delay di�erential equations.
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