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Abstract
The main purpose of this paper is to consider the multiple birth properties for
multi-type Markov branching processes. We first construct a new multi-dimensional
Markov process based on the multi-type Markov branching process, which can reveal
the multiple birth characteristics. Then the joint probability distribution of multiple
birth of multi-type Markov branching process until any time t is obtained by using the
new process. Furthermore, the probability distribution of multiple birth until the
extinction of the process is also given.
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1 Introduction
Markov branching processes play an important role in the research and application of
stochastic processes. Standard references are Anderson [1], Harris [2], Athreya & Ney [3],
Asmussen & Hering [4], Athreya & Jagers [5] and others.

The basic property governing the evolution of a Markov branching process is the
branching property, i.e., different individuals act independently when giving offsprings.
The classical Markov branching processes are well studied, some related references are
Harris [2], Athreya & Ney [3], Asmussen & Hering [4], and Athreya & Jagers [5]. Based
on the branching structure, there are many references concentrating on generalization
of ordinary Markov branching processes. For example, Vatutin [6], Li, Chen & Pakes [7]
considered the branching processes with state-independent immigration. Chen, Li &
Ramesh [8] and Chen, Pollet, Zhang & Li [9] considered weighted Markov branching pro-
cesses, Li & Chen [10] considered generalized Markov interacting branching processes, Li
& Wang [11, 12] and Meng & Li [13] considered n-type branching processes with or with-
out immigration. Recently, Li & Li [14, 15] considered down/up crossing properties of
weighted Markov collision processes and one-dimensional Markov branching processes.

In this paper, we mainly discuss the multiple birth properties of multi-type Markov
branching processes. Different from the one-type case, the number of individuals of other
types may change when an individual splits.
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For convenience of our discussion, we make the following notations throughout of this
paper. Let Z+ be the set of non-negative integers.

(C-1) Zd
+ := {i = (i1, . . . , id) : i1, . . . , id ∈ Z+}, and for any i = (i1, . . . , id) ∈ Zd

+, denote | i |=
d∑

k=1
ik .

(C-2) [0, 1]d = {x = (x1, . . . , xd) : 0 ≤ x1, . . . , xd ≤ 1}.
(C-3) χZd

+
(·) is the indicator of Zd

+

(C-4) 0 = (0, . . . , 0), 1 = (1, . . . , 1), ek = (0, . . . , 1k , . . . , 0) are vectors in [0, 1]d .
(C-5) For any x, y ∈ [0, 1]d , x ≤ y means xk ≤ yk for all k = 1, . . . , d. x < y means xk ≤ yk

for all k = 1, . . . , d, and xk < yk for at least one k.

(C-6) For any x ∈ [0, 1]d , denote ‖x‖1 =
d∑

k=1
|xk|.

A d-type Markov branching process can be intuitively described as follows:
(1) Consider a system involving d types of individuals. The life length of a type-k indi-

vidual is exponentially distributed with mean θ k (k = 1, . . . , d).
(2) Individuals in the system split independently. When a type-k individual dies after a

random time, it is replaced by j1 individuals of type-1, · · · , and jd individuals of type-d,
with probability p(a)

j , here j = (j1, . . . , jd). Without loss of generality, we can assume p(k)
ek =

0 (k = 1, . . . , d), since such split does not change the state of the system.
(3) When this system is empty, it stops, i.e., 0 is an absorbing state.
We now define the infinitesimal generator of d-type Markov branching processes, i.e.,

the Q-matrix.

Definition 1.1 A Q-matrix Q = (qij : i, j ∈ Zd
+) is called a d-type Markov branching Q-

matrix (henceforth referred to as a dTMB Q-matrix), if

qij =

⎧
⎪⎨

⎪⎩

d∑

k=1
ikb(k)

j–i–ek
, if | i |> 0,

0, otherwise,
(1.1)

where b(k)
j = 0 for j /∈ Zd

+ and

b(k)
j = θkp(k)

j ≥ 0 ( j �= ek), b(k)
ek

= –
∑

j �=ek

b(k)
j (k = 1, . . . , d). (1.2)

Definition 1.2 A d-type Markov branching process (henceforth referred to as dTMBP) is
a continuous-time Markov chain with state space Zd

+ whose transition probability function
P(t) = (pij(t) : i, j ∈ Zd

+) satisfies the Kolmogorov forward equation

P′(t) = P(t)Q,

where Q is given in (1.1)–(1.2),

2 Preliminaries
In this section, we make some preliminaries related to the problem considered in this
paper. For k = 1, . . . , d, let Rk ⊂ Zd

+ be finite subsets. Since if b(k)
j0

= 0 for some j0 ∈ Rk , then
there is no individual may giving j0-birth, therefore, we assume b(k)

j > 0 for all j ∈ Rk . Also,
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let rk denote the number of elements in Rk and r = r1 + · · · + rd . This paper is devoted
to considering the probability distribution property of the number of type-k individuals
giving Rk-birth until time t.

For convenience of our discussion, we only discuss the case of 2-type Markov branching
process. The general case of the d-type (d ≥ 3) can be studied analogously.

Define

Bk(x) =
∑

j∈Z2
+

b(k)
j xj, x ∈ [0, 1]2, k = 1, 2, (2.1)

and

Bij(x) =
∂Bi(x)

∂xj
, x ∈ [0, 1]2, i, j = 1, 2.

In order to avoid some trivial cases, we assume the following conditions hold.
(A-1) (B1(x), B2(x)) is nonsingular, i.e., there is no 2 × 2-matrix M such that (B1(x),

B2(x)) = xM;
(A-2) Bij(1, 1) < ∞, i, j = 1, 2;
(A-3) The matrix (Bij(1, 1) : i, j = 1, 2) is positively regular, i.e., there exists an integer m

such that (Bij(1, 1) : i, j = 1, 2)m > 0 in sense of all the elements are positive.
(A-1) guarantees that the model under consideration is not trivial. (A-2) guarantees the

regularity of the process. (A-3) guarantees different type of individuals can exchange.
For any x ∈ [0, 1]2, the maximal eigenvalue of (Bij(x) : i, j = 1, 2) is denoted by ρ(x). The

following lemma is due to Li & Wang [12], we only state it without proof.

Lemma 2.1 The system of equations

⎧
⎨

⎩

B1(x) = 0,

B2(x) = 0,
(2.2)

has at most two solutions in [0, 1]2. Let q = (q1, q2) denote the smallest nonnegative solution
to (2.2). Then,

(i) qi is the extinction probability when the Feller minimal process starts at state ei (i =
1, 2). Moreover, if ρ(1) ≤ 0, then q = 1; while if ρ(1) > 0, then q < 1, i.e., q1, q2 < 1.

(ii) ρ(q) ≤ 0.

The following result is well known and reveals the basic property of 2-type Markov
branching processes.

Lemma 2.2 Let P(t) = (pij(t) : i, j ∈ Z2
+) be the transition function with Q-matrix Q given

in (1.1)–(1.2). Then,

∂Fi(t, x)

∂t
= B1(x)

∂Fi(t, x)

∂x1
+ B2(x)

∂Fi(t, x)

∂x2
,

where Fi(t, x) =
∑

j∈Z2
+

pij(t)xj with xj = xj1
1 xj2

2 .
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Li & Meng [16] derived the regularity criteria for 2-type Markov branching processes.
Assumption (A-1) guarantees the regularity of the process.

Let Y(t) = (Yk(t) : k ∈ R1) be the number of type-1 individuals giving R1-birth until time t
and Z(t) = (Zk(t) : k ∈ R2) be the number of type-2 individuals giving R2-birth until time t.
We will discuss the probability distribution property of (Y(t), Z(t)). For this end, we define

B1(x, y) =
∑

j∈R1

b(1)
j xjyj, B̄1(x) =

∑

j∈Rc
1

b(1)
j xj, (2.3)

B2(x, z) =
∑

j∈R2

b(2)
j xjzj, B̄2(x) =

∑

j∈Rc
2

b(2)
j xj, (2.4)

where x = (x1, x2) ∈ Z2
+; y = (yj : j ∈ R1), z = (zj : j ∈ R2). It is obvious that B̄1(x), B̄2(x) are

well defined at least on [0, 1]2. B1(x, y), B2(x, z) are well defined at least on [0, 1]2+r1 and
[0, 1]2+r2 , respectively.

Since the 2-type branching process itself cannot directly reveal the detailed multi-birth,
we define a new Q-matrix Q̃ = (q(i,k,k̃),(j,l,l̃) : (i, k, k̃), (j, l, l̃) ∈ Z2+r1+r2

+ ) as follows:

q(i,k,k̃),(j,l,l̃) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2∑

a=1
iab(a)

j–i+ea
, if | i | > 0, l = k + IR1 (j–i+e1)εj–i+e1 ,

l̃ = k̃ + IR2 (j–i+e2)ε̃j–i+e2 ,

0, otherwise,

(2.5)

where εk (k ∈ R1) denotes the vector in Zr1
+ with the k’th element being 1 and the others

being 0. ε̃k̃ (k̃ ∈ R2) denotes the vector in Zr2
+ with the k̃’th element being 1 and the others

being 0. IR1 and IR2 are the indicators of R1 and R2 respectively. It follows from the defini-
tion of Q̃, we can see that l = k + εj–i+e1 if and only if j– i+ e1 ∈ R1, l̃ = k̃ + ε̃j–i+e2 if and only
if j– i+ e2 ∈ R2. Hence, Q̃ counts the multi-birth.

It is obvious that the Q-matrix Q̃ defined in (2.5) determines a (2 + r1 + r2)-dimensional
continuous-time Markov chain (X(t), Y(t), Z(t)), where X(t) is the 2-type Markov branch-
ing process, Y(t) = (Yk(t) : k ∈ R1) (or Z(t) = (Zk(t) : k ∈ R2)) counts the number of type-1
(or type-2) individuals giving R1-birth (or R2-birth) until time t. We assume that Yk(0) = 0
and Zk(0) = 0 for all k ∈ R1 and k ∈ R2. In particular,

(1) if R1 = {0} (or R2 = {0}), then Y0(t) (or Z0(t)) counts the pure death number of type-1
(or type-2) individuals until time t.

(2) If R1 = {(n1, n2)}, then Y(n1,n2)(t) counts the (n1, n2)-birth number of type-1 individu-
als until time t.

(3) If R2 = {(n1, n2)}, then Z(n1,n2)(t) counts the (n1, n2)-birth number of type-2 individu-
als until time t.

Let P̃(t) := (p̃(i,k,k̃),(j,l,l̃)(t) : (i, k, k̃), (j, l, l̃) ∈ Z2+r1+r2
+ ) be the transition probability of (X(t),

Y(t), Z(t)). Define

Fi,k,k̃(t, x, y, z) =
∑

(j,l,l̃)∈Z2+r1+r2
+

p̃(i,k,k̃),(j,l,l̃)(t)xjylzl̃ , (x, y, z) ∈ [0, 1]2+r1+r2 ,

where xj = xj1
1 xj2

2 , yl =
∏

m∈R1

ylm
m and zl̃ =

∏

m∈R2

zl̃m
m .
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Lemma 2.3 Let P̃(t) = (p̃(i,k,k̃),(j,l,l̃)(t) : (i, k, k̃), (j, l, l̃) ∈ Z2+r1+r2
+ ) be the transition probability

of (X(t), Y(t), Z(t)). Then,
(1) for any (x, y, z) ∈ [0, 1]2+r1+r2 ,

∂Fi,0,0̃(t, x, y, z)

∂t

= [B1(x, y) + B̄1(x)]
∂Fi,0,0̃(t, x, y, z)

∂x1
+ [B2(x, z) + B̄2(x)]

∂Fi,0,0̃(t, x, y, z)

∂x2
, (2.6)

where B1(x, y), B2(x, z), B̄1(x) and B̄2(x) are defined in (2.1), (2.3)–(2.4).
(2) For any (x, y, z) ∈ [0, 1]2+r1+r2 and (i, k, k̃) ∈ Z2+r1+r2

+ ,

Fi,k,k̃(t, x, y, z) = ykzk̃[F(t, x, y, z)]i, (2.7)

where F(t, x, y, z) = (F1(t, x, y, z), F2(t, x, y, z)) with Fk(t, x, y, z) = Fek ,0,0(t, x, y, z) (k = 1, 2).

Proof (1) By the Kolmogorov forward equation, for any (i, k, k̃), (j, l, l̃) ∈ Z2+r1+r2
+ ,

p̃′
(i,k,k̃),(j,l,l̃)(t) =

∑

(a,m,m̃)∈Z2+r1+r2
+

p̃(i,k,k̃),(a,m,m̃)(t)q(a,m,m̃),(j,l,l̃).

Multiplying xjylzl̃ on both sides of the above equation and summing over (j, l, l̃) ∈ Z2+r1+r2
+

yield (2.6).
(2) Let Xa,k(t) denote the offsprings at time t of the k’th individual of type-a at initial,

Ya,k(t) denote the number of R1-birth individuals of Xa,k(t) (a = 1, 2) and Za,k(t) denote
the number of R2-birth individuals of Xa,k(t) (a = 1, 2). Then, {(Xa,k(t), Ya,k(t), Za,k(t)) : k =
1, . . . , ia; a = 1, 2} are independent. Moreover, for a = 1, 2, (Xa,k(t), Ya,k(t), Za,k(t)) has the
common distribution of (X(t), Y(t), Z(t)) starting at (ea, 0, 0). Thus,

E[xX(t)yY(t)zZ(t) | (X(0), Y(0), Z(0)) = (i, k, k̃)]

= E[x

2∑

a=1

ia∑

k=1
Xa,k (t)

y
k+

2∑

a=1

ia∑

k=1
Ya,k (t)

z
k̃+

2∑

a=1

ia∑

k=1
Za,k (t)

]

= ykzk̃E[
i1∏

k=1
xX1,k (t)

i1∏

k=1
yY1,k (t)

i1∏

k=1
zZ1,k (t) ·

i2∏

k=1
xX2,k (t)

i2∏

k=1
yY2,k (t)

i2∏

k=1
zZ2,k (t)]

= ykzk̃(E[xX1,1(t)yY1,1(t)zZ1,1(t)])i1 · (E[xX2,1(t)yY2,1(t)zZ2,1(t)])i2

= ykzk̃[F(t, x, y, z)]i.

The proof is complete. �

The functions B1(x, y) + B̄1(x) and B2(x, z) + B̄2(x) will play a significant role in the later
discussion. The following theorem reveals their properties.
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Theorem 2.1 (1) For any y ∈ [0, 1)r1 , z ∈ [0, 1)r2 ,

⎧
⎨

⎩

B1(x, y) + B̄1(x) = 0,

B2(x, z) + B̄2(x) = 0
(2.8)

possesses exact one root in [0, 1]2, denoted by q(y, z) := (q1(y, z), q2(y, z)). Moreover,
q(y, z) ≤ q, where q = (q1, q2) is the minimal nonnegative solution of (2.2) given in
Lemma 2.1.

(2) qk(y, z) ∈ C∞([0, 1)r1+r2 ) (k = 1, 2), and qk(y, z) can be expanded as a multivariate
nonnegative Taylor series

qk(y, z) =
∑

(k,l)∈Zr1+r2
+

β
(a)
k,l ykzl , (y, z) ∈ [0, 1)r1+r2 , k = 1, 2.

Proof Note that B1(1, y) + B̄1(1) < 0 and B2(1, z) + B̄2(1) < 0, by a similar argument as
Lemma 2.8 in Li & Wang [12], we can prove that (2.8) possesses exact one root in [0, 1]2.
Note that

⎧
⎨

⎩

B1(x, y) + B̄1(x) ≤ B1(x),

B2(x, z) + B̄2(x) ≤ B2(x),

we further know that q(y, z) ≤ q.
Next to prove (2). Integrating (2.6) yields that for k = 1, 2,

∑

(j,k,k̃)∈Z2+r1+r2
+

p̃(ek ,0,0̃),(j,l,l̃)(t)xjylzl̃ – xek

= [B1(x, y) + B̄1(x)]
∫ t

0

∂Fek ,0,0(u, x, y, z)

∂x1
du

+[B2(x, z) + B̄2(x)]
∫ t

0

∂Fek ,0,0(u, x, y, z)

∂x2
du.

Since all the states (i, l, l̃) with | i | > 0 are transient and all the states (0, l, l̃) are absorbing,
letting x = q(y, z) in the above equality and then letting t → ∞ yield that

qk(y, z) =
∑

(k,k̃)∈Zr1+r2
+

p̃(ek ,0,0̃),(0,l,l̃)(+∞)ylzl̃ , k = 1, 2.

The proof is complete. �

3 Multiple birth property
Having prepared some preliminaries in the previous section, we now consider the multiple
birth property of 2-type Markov branching processes.

We first give the following theorem, which will play a key role in discussing the multiple
birth property of 2-type Markov branching processes.

Theorem 3.1 Suppose that x ∈ [0, 1]2, y ∈ [0, 1)r1 , [0, 1)r2 .
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(1) The differential equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u1
∂t = B1(u, y) + B̄1(u),

∂u2
∂t = B2(u, z) + B̄2(u),

u(0) = x

(3.1)

has unique solution u(t) = G(t, x, y, z), where

u(t) = (u1(t), u2(t)), G(t, x, y, z) = (g1(t, x, y, z), g2(t, x, y, z)).

(2) lim
t→∞ G(t, x, y, z) = q(y, z), where q(y, z) is given in Theorem 2.1.

Proof We first prove (1). For fixed (y, z) ∈ [0, 1)r1+r2 , denote

⎧
⎨

⎩

H1(u) = B1(u, y) + B̄1(u) – b(1)
e1 u1,

H2(u) = B2(u, z) + B̄2(u) – b(2)
e2 u2.

By the assumption (A-2), we know that Hk(u) satisfies Lipchitz condition, i.e., there exists
a constant L such that for any u = (u1, u2), ũ = (ũ1, ũ2) ∈ [0, 1]2,

|Hk(u) – Hk(ũ)| ≤ L‖u – ũ‖1, k = 1, 2,

For x ∈ [0, 1]2, define u(0)
k (t) = xkeb(k)

ek t (k = 1, 2) and

u(n)
k (t) = eb(k)

ek t[xk +
∫ t

0
e–b(k)

ek sHk(u(n–1)(s))ds], n ≥ 1, k = 1, 2.

We can prove that

0 ≤ u(n)
k (t) ≤ 1, t ≥ 0, n ≥ 1, k = 1, 2 (3.2)

and

‖u(n+1)(t) – u(n)(t)‖1 ≤ M(2L)n

(n + 1)!
tn+1, t ≥ 0, n ≥ 1. (3.3)

where M := |b(1)
e1 | + |b(2)

e2 |. Indeed, it is obvious that 0 ≤ u(0)
k (t) = xkeb(k)

ek t ≤ 1 (k = 1, 2). As-
sume that

0 ≤ u(n)
k (t) ≤ 1, t ≥ 0, k = 1, 2.

Then it is obvious that u(n+1)
k (t) ≥ 0, since Hk(u) ≥ 0 for all u ∈ [0, 1)2. On the other hand,

for k = 1, 2,

u(n+1)
k (t) = eb(k)

ek t[xk +
∫ t

0
e–b(k)

ek sHk(u(n)(s))ds]

≤ eb(k)
ek t[xk +

∫ t

0
e–b(k)

ek sHk(1)ds]
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= eb(k)
ek t[xk – b(k)

ek

∫ t

0
e–b(k)

ek sds]

= eb(k)
ek t[xk + e–b(k)

ek t – 1]

≤ 1.

(3.2) is proved. As for (3.3), by the definition of u(n)(t),

|u(n+1)
k (t) – u(n)

k (t)| ≤ eb(k)
ek t

∫ t

0
e–b(k)

ek s|Hk(u(n)(s)) – Hk(u(n–1)(s))| ds

≤ L
∫ t

0
‖u(n)(s) – ũ(n–1)(s)‖1 ds, n ≥ 1, k = 1, 2.

Hence,

‖u(n+1)(t) – u(n)(t)‖1 ≤ 2L
∫ t

0
‖u(n)(s) – ũ(n–1)(s)‖1 ds, n ≥ 1. (3.4)

Note that

|u(1)
k (t) – u(0)

k (t)| = eb(k)
ek t

∫ t

0
e–b(k)

ek sHk(u(0)(s))ds ≤ |b(k)
ek

|t, k = 1, 2,

we know that

‖u1(t) – u0(t)‖1 ≤ Mt, (3.5)

It follows from (3.4), (3.5) and mathematical induction that (3.3) holds.
Since

u(n)
k (t) = u(0)

k (t) +
n∑

j=1

(u(j)
k (t) – u(j–1)

k (t)), k = 1, 2,

by (3.3), we know that u(n)
k (t) (k = 1, 2) converges uniformly in any finite interval [0, T].

Therefore, uk(t) := lim
n→∞ u(n)

k (t) exists and it can be easily checked that u(t) = (u1(t), u2(t))

is a solution of (3.1). On the other hand, since B1(u, y), B̄1(u), B2(u, z) and B̄2(u) satisfy
Lipchitz condition, by the differential equations theory, we know that (3.1) has unique
solution. The unique solution of (3.1) is denoted by G(t, x, y, z).

We now prove (2). For fixed (x, y, z) ∈ [0, 1]2 × [0, 1)r1+r2 , denote

f1(u) := B1(u, y) + B̄1(u),

f2(u) := B2(u, z) + B̄2(u),

G(t) = (g1(t), g2(t)) := G(t, x, y, z)

for a moment.
(a) Suppose that f1(x) ≥ 0, f2(x) ≥ 0. We prove that

ω := inf
t≥0

{min(f1(G(t)), f2(G(t)))} ≥ 0.
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Indeed, suppose that ω < 0. Then by the continuity of f1, f2 and G(t), there exist t̃ < +∞
and δ > 0 such that

min(f1(G(t̃)), f2(G(t̃))) = 0, min(f1(G(t̃) + s), f2(G(t̃ + s))) < 0, ∀s ∈ (0, δ). (3.6)

We can assume f1(G(t̃)) = 0 without loss of generality. If f2(G(t̃)) > 0, then there exists δ̃ ∈
(0, δ) such that

f1(G(t̃ + s)) < 0, f2(G(t̃ + s)) > 0, s ∈ (0, δ̃),

which, by (3.1), implies that

g1(G(t̃ + s)) < g1(G(t̃)), g2(G(t̃ + s)) > g2(G(t̃)), s ∈ (0, δ̃).

Therefore,

f1(g1(G(t̃ + s)), g2(G(t̃))) ≤ f1(G(t̃ + s)) < 0, s ∈ (0, δ̃). (3.7)

However, it is well known that u = g1(G(t̃)) is the unique root of f1(u, g2(G(t̃))) = 0 in [0, 1]

with f1(u, g2(G(t̃))) > 0 for u ∈ [0, g1(G(t̃))), which contradicts with (3.7). Therefore,

f1(G(t̃)) = 0, f2(G(t̃)) = 0.

By Theorem 2.1, G(t̃) = q(y, z). Hence, by (1), we know that G(t) = q(y, z) for t ≥ t̃. Thus,

f1(G(t̃ + s)) = f2(G(t̃ + s)) = 0, s ≥ 0,

which contradicts with (3.6). Therefore, we have ω ≥ 0. Hence, G(t) is increasing in t ≥ 0.
By (3.1),

gk(t) = eb(k)
ek t[xk +

∫ t

0
e–b(k)

ek sHk(G(s))ds], k = 1, 2. (3.8)

Letting t → ∞ in the above equality yields

⎧
⎨

⎩

B1( lim
t→∞ G(t), y) + B̄1( lim

t→∞ G(t)) = 0,

B2( lim
t→∞ G(t), z) + B̄2( lim

t→∞ G(t)) = 0.

Therefore,

lim
t→∞ G(t) = q(y, z).

(b) Suppose that f1(x) ≤ 0, f2(x) ≤ 0. We can prove that

ω := sup
t≥0

{min(f1(G(t)), f2(G(t)))} ≤ 0.
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By a similar argument as in (a), it can be proved that G(t) is decreasing in t ≥ 0 and

lim
t→∞ G(t) = q(y, z).

(c) Suppose that f1(x) ≥ 0, f2(x) < 0. Let

σ = inf{t ≥ 0 : f1(G(t)) ≤ 0 or f2(G(t)) ≥ 0}.

If σ < +∞, then g1(G(t)) is increasing and g2(G(t)) is decreasing in [0,σ ). It can be easily
checked that G(σ + t) is the solution of (3.1) with initial condition G(σ ). Furthermore,
we have that f1(G(σ )) ≥ 0, f2(G(σ )) = 0 or that f1(G(σ )) = 0, f2(G(σ )) < 0. In the case that
f1(G(σ )) ≥ 0, f2(G(σ )) = 0, by (a), we know that g1(G(t)) and g2(G(t)) are both increasing in
t ∈ [σ , +∞) and

lim
t→∞ G(t) = q(y, z).

while in the case that f1(G(σ )) = 0, f2(G(σ )) < 0, by (b), we know that g1(G(t)) and g2(G(t))
are both decreasing in t ∈ [σ , +∞) and

lim
t→∞ G(t) = q(y, z).

If σ = +∞, then g1(G(t)) is increasing and g2(G(t)) is decreasing in t ≥ 0. By (3.8), we still
have

lim
t→∞ G(t) = q(y, z).

(d) Suppose that f1(x) < 0, f2(x) ≥ 0. Let

σ = inf{t ≥ 0 : f1(G(t)) ≥ 0 or f2(G(t)) ≤ 0}.

A similar argument as in (c) yields the conclusion. The proof is complete. �

The following theorem gives the joint probability generating function of (Y(t), Z(t)).

Theorem 3.2 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek , (k = 1 or 2). G(t, x, y, z) = (g1(t, x, y, z), g2(t, x, y, z)) is the unique solution of (3.1). Then,
the joint probability generating function of (Y(t), Z(t)) is given by

E[yY(t)zZ(t) | X(0) = ek] = gk(t, 1, y, z), (y, z) ∈ [0, 1)r1+r2 , k = 1, 2. (3.9)

In particular, the joint probability generating function of Y(t) and Z(t) are given by

E[yY(t) | X(0) = ek] = gk(t, 1, y, 1), y ∈ [0, 1)r1 , k = 1, 2. (3.10)

and

E[zZ(t) | X(0) = ek] = gk(t, 1, 1, z), z ∈ [0, 1)r2 , k = 1, 2, (3.11)

respectively.
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Proof Let P̃(t) = (p̃(i,k,k̃),(j,l,l̃)(t) : (i, k, k̃), (j, l, l̃) ∈ Z2+r1+r2
+ ) be the transition probability of

(X(t), Y(t), Z(t)). We need to prove that for any fixed (x, y, z) ∈ [0, 1]2+r1+r2 ,

gk(t, x, y, z) = Fk(t, x, y, z), k = 1, 2, (3.12)

where Fk(t, x, y, z) (k = 1, 2) are given in Lemma 2.3. It is sufficient to prove that for any
(y, z) ∈ [0, 1)r1+r2 ,

uk(t, x) := Fk(t, x, y, z), k = 1, 2.

is a solution of (3.1). Indeed, suppose k = 1 without loss of generality, by Kolmogorov
backward equation, for any t ≥ 0, we have,

p̃′
(e1,0,0̃),(j,l,l̃)(t) =

∑

(i,k,k̃)∈Z2+r1+r2
+

q(e1,0,0̃),(i,k,k̃)p̃(i,k,k̃),(j,l,l̃)(t).

Multiply xjylzl̃ on both sides of the above equality and take summation over (j, l, l̃) ∈
Z2+r1+r2

+ , we get

∑

(j,l,l̃)∈Z2+r1+r2
+

p̃′
(e1,0,0̃),(j,l,l̃)(t)xjylzl̃ =

∑

i∈R1

b(1)
i Fi,εi ,0̃(t, x, y, z) +

∑

i∈Rc
1

b(1)
i Fi,0,0̃(t, x, y, z)

By (2.7),

∂F1(t, x, y, z)

∂t
= B1(F(t, x, y, z), y) + B̄1(F(t, x, y, z)).

By a similar argument, we have

∂F2(t, x, y, z)

∂t
= B2(F(t, x, y, z), y) + B̄2(F(t, x, y, z)).

Note that Fk(0, x, y, z) = xk (k = 1, 2), we know that uk(t, x) = Fk(t, x, y, z) (k = 1, 2) is a so-
lution of (3.1).

Therefore, (3.12) and hence (3.9) hold. Finally, (3.10) and (3.11) follow directly from (3.9).
The proof is complete. �

The following proposition presents the probability generating function of (Y(t), Z(t))
when the process t starts at X(0) = i.

Proposition 3.1 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with
X(0) = i. Then,

E[yY(t)zZ(t) | X(0) = i] = [G(t, 1, y, z)]i, (y, z) ∈ [0, 1)r1+r2 . (3.13)

In particular,

E[yY(t) | X(0) = i] = [G(t, 1, y, 1)]i, y ∈ [0, 1)r1 . (3.14)
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and

E[zZ(t) | X(0) = i] = [G(t, 1, 1, z)]i, z ∈ [0, 1)r2 . (3.15)

Proof Since E[yY(t)zZ(t) | X(0) = i] = Fi,0,0̃(t, 1, y, z), by (2.7) and Theorem 3.2, we immedi-
ately obtain (3.13). (3.14) and (3.15) follows directly from (3.13). The proof is complete. �

As direct consequences of Theorem 3.2, the following corollaries give the probability
generating functions of the pure death number of type-k individuals and twins-birth num-
ber of type-k individuals.

Corollary 3.1 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek (k = 1, 2), Y (t) and Z(t) are the pure death numbers of type-1 and type-2 individuals,
respectively. Then,

E[yY (t)zZ(t) | X(0) = ek] = gk(t, y, z), y, z ∈ [0, 1), k = 1, 2. (3.16)

In particular,

E[yY (t) | X(0) = ek] = gk(t, y, 1), y ∈ [0, 1), k = 1, 2 (3.17)

and

E[zZ(t) | X(0) = ek] = gk(t, 1, z), z ∈ [0, 1), k = 1, 2, (3.18)

where (g1(t, y, z), g2(t, y, z)) is the unique solution of the equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u1
∂t = B1(u1, u2) – b(1)

0 (1 – y),
∂u2
∂t = B2(u1, u2) – b(2)

0 (1 – z),

u1(0) = u2(0) = 1.

Proof Take R1 = R2 = {0} ⊂ Z2
+. Then, we have

B1(u, y) + B̄1(u) = B1(u) – b(1)
0 (1 – y),

B2(u, z) + B̄2(u) = B2(u) – b(1)
0 (1 – z).

By Theorem 3.2, we immediately obtain (3.16). (3.17) and (3.18) follows directly from
(3.16). The proof is complete. �

Corollary 3.2 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek (k = 1, 2), Y (t) is the 2e1-birth numbers of type-1 individuals and Z(t) is the 2e2-birth
numbers of type-2 individuals. Then,

E[yY (t)zZ(t) | X(0) = ek] = gk(t, y, z), y, z ∈ [0, 1), k = 1, 2.



Li and Zhang Boundary Value Problems        (2024) 2024:105 Page 13 of 17

In particular,

E[yY (t) | X(0) = ek] = gk(t, y, 1), y ∈ [0, 1), k = 1, 2

and

E[zZ(t) | X(0) = ek] = gk(t, 1, z), z ∈ [0, 1), k = 1, 2,

where (g1(t, y, z), g2(t, y, z)) is the unique solution of the equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u1
∂t = B1(u1, u2) – b(1)

2e1 (1 – y)u2
1,

∂u2
∂t = B2(u1, u2) – b(2)

2e2 (1 – z)u2
2,

u1(0) = u2(0) = 1.

Proof Take R1 = {2e1} ⊂ Z2
+ and R2 = {2e2} ⊂ Z2

+. Then we have

B1(u, y) + B̄1(u) = B1(u) – b(1)
2e1 (1 – y)u2

1,

B2(u, z) + B̄2(u) = B2(u) – b(2)
2e2 (1 – z)u2

2.

By Theorem 3.2, we immediately obtain all the conclusions. The proof is complete. �

Since 0 is the absorbing state of {X(t) : t ≥ 0}, now we consider the multiple birth prop-
erty until the extinction of the system. Let

τ = inf{t ≥ 0 : X(t) = 0}

be the extinction time of {X(t) : t ≥ 0}.
The following theorem gives the joint probability generating function of multi-birth

number of individuals until the extinction of the system.

Theorem 3.3 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek (k = 1, 2).

(i) If ρ(1) ≤ 0, then the probability generating function of (Y(τ ), Z(τ )) is given by

E[yY(τ )zZ(τ ) | X(0) = ek] = qk(y, z), (y, z) ∈ [0, 1)r1+r2 , k = 1, 2,

where (q1(y, z), q2(y, z)) is the unique solution of

⎧
⎨

⎩

B1(u, y) + B̄1(u) = 0,

B2(u, z) + B̄2(u) = 0.

(ii) If ρ(1) > 0, then the probability generating function of (Y(τ ), Z(τ )) conditioned on
τ < ∞ is given by

E[yY(τ )zZ(τ ) | τ < ∞, X(0) = ek] =
qk(y, z)

qk
, (y, z) ∈ [0, 1)r1+r2

+ , k = 1, 2,
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where (q1, q2) is the minimal non-negative solution of

⎧
⎨

⎩

B1(u) = 0,

B2(u) = 0.

Proof We first prove (i). It follows from Lemma 2.3(i) that for k = 1, 2 and any (x, y, z) ∈
[0, 1]2 × [0, 1)r1+r2 ,

∑

(j,l,l̃)∈Z2+r1+r2
+

p̃(ek ,0,0̃),(j,l,l̃)(t)xjylzl̃ – xk

= [B1(x, y) + B̄1(x)]
∫ t

0

∂Fek ,0,0̃(s, x, y, z)

∂x1
ds + [B2(x, z) + B̄2(x)]

∫ t

0

∂Fek ,0,0̃(s, x, y, z)

∂x2
ds.

Letting x = q(y, z) = (q1(y, z), q2(y, z)) in the above equality and then letting t → ∞ yield
that

∑

(l,l̃)∈Zr1+r2
+

p̃(ek ,0,0̃),(0,l,l̃)(∞)ylzl̃ – qk(y, z) = 0.

If ρ(1) ≤ 0, then qk = P(τ < ∞ | X(0) = ek) = 1. Therefore, noting that (0, l, l̃) is absorbing
state, we have

E[yY(τ )zZ(τ ) | X(0) = ek]

=
∑

(l,l̃)∈Zr1+r2
+

P((Y(τ ), Z(τ )) = (l, l̃) | X(0) = ek)ylzl̃

=
∑

(l,l̃)∈Zr1+r2
+

lim
t→∞ P((Y(τ ), Z(τ )) = (l, l̃), τ < t | X(0) = ek)ylzl̃

=
∑

(l,l̃)∈Zr1+r2
+

lim
t→∞ P((Y(t), Z(t)) = (l, l̃), τ < t | X(0) = ek)ylzl̃

=
∑

(l,l̃)∈Zr1+r2
+

lim
t→∞ p̃(ek ,0,0̃),(0,l,l̃)(t)ylzl̃

=
∑

(l,l̃)∈Zr1+r2
+

p̃(ek ,0,0̃),(0,l,l̃)(∞)ylzl̃

= qk(y, z).

(i) is proved.
Next we prove (ii). If ρ(1) > 0, then qk = P(τ < ∞ | X(0) = ek) < 1. Therefore, similarly as

the above argument, we have

E[yY(τ )zZ(τ ) | τ < ∞, X(0) = ek]

= q–1
k

∑

(l,l̃)∈Zr1+r2
+

P((Y(τ ), Z(τ )) = (l, l̃), τ < ∞ | X(0) = ek)ylzl̃
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= q–1
k

∑

(l,l̃)∈Zr1+r2
+

lim
t→∞ P((Y(τ ), Z(τ )) = (l, l̃), τ < t | X(0) = ek)ylzl̃

=
qk(y, z)

qk
.

The proof is complete. �

By Theorem 3.3, we immediately obtain the following corollaries, which gives the prob-
ability generating functions of the pure death number of type-k individuals until the ex-
tinction of the system and twins-birth number of type-k individuals until the extinction
of the system.

Corollary 3.3 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek (k = 1, 2), Y (t) and Z(t) are the pure death numbers of type-1 and type-2 individuals,
respectively. If ρ(1) ≤ 0, then

E[yY (τ )zZ(τ ) | X(0) = ek] = qk(y, z), y, z ∈ [0, 1), k = 1, 2.

If ρ(1) > 0, then

E[yY (τ )zZ(τ ) | τ < ∞, X(0) = ek] =
qk(y, z)

qk
, y, z ∈ [0, 1), k = 1, 2,

where (q1(y, z), q2(y, z)) is the unique solution of the equation

⎧
⎨

⎩

B1(u1, u2) – b(1)
0 (1 – y) = 0,

B2(u1, u2) – b(2)
0 (1 – z) = 0.

Proof Note R1 = R2 = {0}, we immediately get the conclusions. �

Corollary 3.4 Suppose that {X(t) : t ≥ 0} is a 2-type Markov branching process with X(0) =
ek (k = 1, 2), Y (t) is the 2e1-birth numbers of type-1 individuals and Z(t) is the 2e2-birth
numbers of type-2 individuals. If ρ(1) ≤ 0, then

E[yY (τ )zZ(τ ) | X(0) = ek] = qk(y, z), y, z ∈ [0, 1), k = 1, 2.

If ρ(1) > 0, then

E[yY (τ )zZ(τ ) | τ < ∞, X(0) = ek] =
qk(y, z)

qk
, y, z ∈ [0, 1), k = 1, 2,

where (q1(y, z), q2(y, z)) is the unique solution of the equation

⎧
⎨

⎩

B1(u1, u2) – b(1)
2e1 (1 – y)u2

1 = 0,

B2(u1, u2) – b(2)
2e2 (1 – z)u2

2 = 0.

Proof Note R1 = {2e1} and R2 = {2e2}, we immediately get the conclusions. �
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Finally, we give an example to illustrate the main results obtained.

Example 3.1 Suppose that {X(t) : t ≥ 0} is a 2-type birth-death branching process with

B1(x) = p – x1 + qx2
2, B2(x) = α – x2 + βx1,

where p, α ∈ (0, 1), q = 1 – p, β = 1 – α. Y (t) is the pure death number of type-1 individ-
uals until time t and Z(t) is the pure death number of type-2 individuals until time t. By
Corollary 3.1, we know that

E[yY (t)zZ(t) | X(0) = ek] =

⎧
⎨

⎩

u(t, y, z), k = 1,

v(t, y, z), k = 2,
y, z ∈ [0, 1),

where (u(t, y, z), v(t, y, z)) is the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = qv2 – u + py,
∂v
∂t = βu – v + αz,

u(0) = v(0) = 1.

It is easy to see that the maximum eigenvalue of (Bij(1) : i, j = 1, 2) is ρ(1) =
√

2qβ – 1.
For y, z ∈ [0, 1), solving the equation

⎧
⎨

⎩

qv2 – u + py = 0,

βu – v + αz = 0,

yields that

u = u(y, z) =
1

2qβ2 [1 –
√

1 – 4qβ(pβy + αz)] –
αz
β

,

v = v(y, z) =
1

2qβ
[1 –

√
1 – 4qβ(pβy + αz)].

By Corollary 3.3, if 2qβ ≤ 1, then

E[yY (τ )zZ(τ ) | X(0) = e1] =
1 –

√
1 – 4qβ(pβy + αz) – 2qβαz

2qβ2 , y, z ∈ [0, 1),

E[yY (τ )zZ(τ ) | X(0) = e2] =
1 –

√
1 – 4qβ(pβy + αz)

2qβ
, y, z ∈ [0, 1),

If 2qβ > 1, then

E[yY (τ )zZ(τ ) | X(0) = e1] =
1 –

√
1 – 4qβ(pβy + αz) – 2qβαz

2(1 – 2qβ + qβ2)
, y, z ∈ [0, 1),

E[yY (τ )zZ(τ ) | X(0) = e2] =
1 –

√
1 – 4qβ(pβy + αz)

2(1 – qβ)
, y, z ∈ [0, 1).
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