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1 Introduction

In recent years, fractional differential equations (FDEs) have been used in various fields
of science, engineering, physics, and chemistry. The time-fractional diffusion equations
were used in the super-diffusive flow process, description of fractional random walk, etc.
Many researchers have considered some efficient and reliable numerical methods to solve
some kinds of FDEs. The FDEs have been discussed by many numerical methods, such
as compact difference method [1], finite element method [2], weakly Galerkin finite ele-
ment method [3], spectral method [4], hp-versions discontinuous Galerkin methods [5],
and piecewise quadratic reconstructions [6]. Many researchers have proposed numerical
methods to solve this problem in dealing with the weakly singular kernel in FDEs, for ex-
ample, Lv and Xu studied a higher-order finite difference method and spectral method
in [7]. The nonuniform meshes were used [8] and [9]. The two-dimensional fractional
diffusion-wave equation was studied by many researchers, such as [10] and [11]. In our
article, we will apply a higher-order finite difference method to approximate the 1D and
2D fractional derivative problems with the rates of convergence O(3 - a) (a is the fractional

derivative order in time).
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As the exponential convergence rate can be derived, the Sinc methods have been con-
sidered to deal with the integro-differential equation in various fields in recent years. On
the one hand, the Sinc collocation is used to deal with some problems by many researchers
[12-17]. The Sinc-collocation method is studied for solving a partial integro-differential
equation with a weakly singular kernel both in temporal discretization and spatial dis-
cretization by Xu in the paper [18]. He demonstrates that the rates of convergence are
both exponential in time and space. In [19], Babaei et al. proposed a discrete scheme for
a 2D variable-order fractional integro-partial differential equation using piecewise lin-
ear interpolation in time and the Sinc collocation method in space. In [20], Yang et al.
investigated a space-time Sinc collocation method for solving a 1D fourth-order partial
integro-differential equation with a weakly singular kernel. On the other hand, some re-
searchers have paid attention to the Sinc-Galerkin method in [21-26]. In [27], the authors
used the L1 formula in time and the Sinc-Galerkin method in space to solve a 1D time
fractional convection-diffusion equation. The numerical solution is 2 — a order in time
and exponential rate order in space. In our present paper, we can achieve 3 — a order using
a higher-order finite difference method in time.

As the Sinc-Galerkin method and the higher-order finite difference are efficient meth-
ods, we will combine these two methods to get the discrete scheme of the 1D and 2D
fractional diffusion equation with 0 < a < 1. This is the first paper to study the 2D frac-
tional diffusion problem using the Sinc-Galerkin scheme, and we will show the detailed
derivation of convergent rate for 2D problems. First, we will give some definitions and
abilities regarding the Sinc interpolation in Sect. 2. Second, the discrete schemes for 1D
and 2D problems are given in Sect. 3. Then, we will show the theoretical analysis of the
discrete scheme in time and space in Sect. 4. In this part, we will demonstrate that the
convergence is 3 — a order in time and exponential convergence rate in space. At last, we
will use some 1D and 2D numerical examples to demonstrate the theoretical analysis in

Sect. 5. The conclusion is introduced in Sect. 6.

2 Introduction of the sinc interpolation
The Sinc function is defined by:

sin(rx)
, x#0
Sinc(x) = ™ 7
1, x=0.

We denote the Sinc basis function by:

x—kh

S(k, h)(x) = Sinc( P

)k=0,£1,%2,...,
so the Sinc function at the interpolating points x; = j is given by

1, k=j
Sk, (i) = 89 = 1
(el =5 =1
Definition 1 [28] If f is a function defined on R, let /# > 0 and define the series

x—jh
h

C(f, () = Y f(jh)Sine(—=).

Jj==00



Luo et al. Boundary Value Problems (2024) 2024:106

The function C(f, h)(x) is called the Whittaker cardinal expansion of f whenever the
series converges.

Let D be a domain in the w = u + iv plane with boundary points a # b. We consider the
conformal map z = ¢(w) to be a one-to-one conformal map of D onto the infinite strip

Ds={zeC,z=x+1iy,|y| <d},

where ¢(a) = —0co and ¢(b) = co. To obtain a good result, we always choose the conformal
map z = ¢(w) = In(3=>), which carries a eye-shaped region in the complex plane

De={wel,| arg(uﬂ <d<ml2},
b-w

onto D;. There are many properties derived by Stenger in [29]. We refer readers to [29]
for more properties.

Definition 2 Let B(D) be the set of all analytic functions in D, which satisfy for some
constanta with0 <a <1,

/ |[F(w)dw| = O(|x|*), x — £00,
Y+l
where L =iy : |y| <d. For y a simple closed contour in D, we define
N(F,D)= lim / |F(w)dw| < oo.
y—0D y

The following lemma will be used for inducing the discrete scheme:

Lemma 1 [28] Let ¢ be the conformal one-to-one mapping of the simple connected domain
D onto Ds, then we can get the following formulas:

50 - = { L kz]: (1)
x=x; 0, k#j.
0= nListemosen_ =V @
do = | S, k)
52 = 2L stmo qb(x)]‘ 5 o X7 3)
dg? 20, k).

It is easy to see that |8(2)| < m?/3, |8(1)| <1,and |8(0)| <1.
The following theorems will be used to demonstrate the convergence order for the dis-
crete scheme in space:

Theorem 1 [28] Let F € B(D) and h > 0. Let ¢ be a one-to-one conformal map of the
domain D to Ds. Let y = ¢4, x; = Y (jh) = Y (jh) and T = y(R). Then,

o0y [t 35 5 [ 0O
Y

2 sin(rr p(x)/h)
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where i is the imaginary unit, and

|aamwnu@Dzwmﬂ”f”%Whmwmmumw=amw

Moreover,

()] < D) ary
~ 2sinh(wd/h) '

Theorem 2 [28] Let ¢ be a one-to-one conformal map of the simple connected domain D
to Ds. Then, for d, h > 0,

Sk, ) o p(w) A B
| Sntr gy weip = g = Cobd:

| %S(k’h) o p(w) || - sd + htanh(wd/h)
sin(mp(w)/h) "D~ g2 tanh(wd/h)

L5S(k, ) o (w)
|W||Weap—

=Ci(hd),

Cl(h d) + = Cy(h, d).

Furthermore, for p = 0,1, 2, there exist constants R, such that
Cy(h,d) < R,h'P.

Theorem 3 [28] Let ¢ be a conformal one-to-one map of the simple connected domain D
onto Ds. Assume that ¢p(a) = —00, ¢(b) = +00, and let x; = Yy (kh), uw € B(D), u(S(k,h) o
ow) € B(D), u(S(k, h) o pw)" € B(D), and By = 0, which was defined as (4.11) in [26], then

,d)

| / uw[S(k, h) o §1(x)dx - h?( x)| < —=—N(uw, D)™ ",

and

b oo @)
| / W' WIS(k, h) o pl@)dx —h Y u(x;)[%(d)’w)(xj)

j==00

8(1) "
iR ——(—=w+2w)(x)] -

R hy
ngdwm@>mm+QdewWW+w 1,D)

(xk) |

+ Co(h, d)N(uw", D)Je ™",

Theorem 4 [28] Let ¢ be a conformal one-to-one map of the simple connected domain
D onto Ds. Assume that ¢p(a) = —00, ¢(b) = +00, and let x; = W (kh). Further, assume that
exist these positive constants o, B, and K so that

exp(-alp@)), xel,

|F(x)| <K
exp(=Blp(x))), x €Ty,
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where F = uw, u¢'w, u(%/,/w +2W), T,={ el :¢pE)=x€(-00,0)} and T, ={£ €T :
¢(&) =x € [0,00)}. Make the selections N = [|%M +1|]and h = zd

aM”
(1) If uw € B(D), then

b
| / uw[S(k, h) o ¢1(x)dx — hb;—'f'(xk)| < LoM ™ exp(~(wda)''?),

where Ly = 2N (uw, D)yrd/a*? is a constant depending on u, w, and d.
(2) If u(S(k, h) o pw)” € B(D), then

b N 8 8 ¢
’ / u'w[S(k, ) o p1(x)dx — h Z u(x,»)[h—lz(qb’w)(xj) + TI(WW +2w)(%))]
a j=—M
- h”{‘; (50|

< L\ Mexp(—(mdaM)"'?),

where L = R(ZHV2Nuw’, D) + RiNu[wg" + 2¢'w'1,D) + Ro(Z)2N(u(¢'*w, D) +
K(/a +1/B)(55 +/ 7q)-

3 The discrete scheme

In this paper, we consider the following time-fractional diffusion equation:

thu(x, t) = Aux,t) + f(x,£), (x,£) € 2 x (0,T), Q=[a,b] or 2= [a,b] X [¢,d], (4)
where X =x or x = (x,9), A =02 or A =92 + 85. The initial condition is

u(x,0) = up(x), x € L, (5)
and the boundary conditions are

ux,t)=0,x€dQ  t>0. (6)

The fractional integrals (or Riemann-Liouville integrals) with order a in equation (4) is
defined as

1 L u(x,s)
SDou(x, t) = " (t —s)"ds, L.
o Deu(x, t) F(l—a)/o 3 (t—-s)"%ds, O<ac< (7)

3.1 The discrete scheme in time

Considering the case T = 1, we denote the temporal uniform step to be Az = 1/N, and
t, = nAt. For the first term of equation (4), we use a higher-order finite difference method
to get the discrete scheme just as the semi-discrete scheme, which is presented in [7]. At
the first point, we have

Dy, 1) = 1 /tl du(x,s) ds
0N E AT e T 8s (h-s)0
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1 ux,t)—ux,ty) /tl ds 1
+ 1y,
T(l-a) At by (G —s)°

- _ 1
P Az HO0 ) — UG ) 4

where r}, is the first-step truncation error. Then, for the remaining points, we will deal
with the fractional integral term in equation (4) using the Taylor formula

M(X, lfl‘) - M(X, tj—l)

Hj(X, 7) = u(X, t)) - t—1)

At
X L) = 2u(X ) + uX, ) (G — T)(T — )
A2 2 ’

which interpolates the function « at 3 points {¢;_1, ¢, £j,1}, i.e.,
Hy(ti-1) = (X, t-1), Hy(t) = u(X, 1), Hy(tj1) = u(X, tjs1),
so, for the all discrete functions u(x, t,,), where n > 2, we have

n-1 :
c 1 ftl ds /‘” ds
D rqn = e . aS ’ aS ’
§ Det(X, 1) m_a)(; AR B D

n-1 X
1 4 ; ds tn ds
=0 dsH, O HY ! "
-2 /t T T [ 2 O, ) T

n-1

a2
== (@ju(X, ty_j_1) + bju(X, t,_;) + c;u(X, t,_j1))

rG-wae | 4

4-a

a
+§u(x, ty-2) = 2u(X, t,1) + u(x, tn)} +7,2<n <N,

where 7, is the truncation error of the approximation, and

3 1
a=-SQ2-a)+ Dy 52~ @' "+ G+ 17—,
bi=2(2— )+ 1) —2(j + 1)>7* + 277,

G = ‘%0 — G+ DT+ G DT

If we denote

n-1

Liuty) = > (@, t_j1) + b, byy) + (X, ty_jin))
j=1

1
(3- a)Ata{

4—-aq

a
+§u(x, bu2) = 2u(X, t, 1) + u(x, tn)},z <n<N,
then %, = §D,u(X, t,) — Lou(t,) = Au(x, t,) +f(X, t,) — Liu(t,), ie.,

Liu(t,) — Au(x,t,) = f(X,t,) — A,
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The above reformulation motivates the following time scheme if we omit the error term

n .,
NS

Lou" = Au’ + f

M(xryo) = Uo,
where u” ~ u(x, t,,), which is come from the semi-discrete scheme in time.

Lemma 2 (7] For any « € (0, 1), it holds

Irl,] < CaM(u) At? 9, ¥x € Q,

I"a,] < CaMu)At®®,Vn=2,3,...,N,Vx € Q,
where C, depends only on a, M(u) = maxejo,r) |02u(t)|, M(u) = maxejo,r) |93u(t)|.
If we denote
@ = T3 = a)At%, & = T(2 — a)AL%, By = 1 +2 — g

then for n > 4, the semi-discrete scheme has to be changed to:

n-2
a
u" + ozo,BalAu” = ﬂgl(—(bl to-2u" +(~a1 —by—c5 — E)M”_2 + Z(_ai—l - b;
i=3
iU + (=@p — by — a,1u®) + oo By .

When n = 3,2, 1, the semi-discrete scheme has to be changed to:
ud+ 010/351Au3 = ﬂal(—(bl +0 - U+ (—a; — by — g)u1 —ayu) + aoﬁalf?’,
u? + oo By Au® = Byl (=(by - 2)u' + (—ay - g)u") +aofy f
u' + @oAu' = u® + Gof .
If we denote these labels as follows:
d? = (b1 - DB} = (a1 = )"} = ~(b1 + 2 - VPG,
d} = (-1 by = )" d = ~aah,
and for k > 4,
g = (b1 + ¢ = DB iy = (-1~ by - ca = DB,

a
dy ;= (-ai-y - bi—ci)By (i =3,4,...,n-2),d} = (—a, — by - 5)561:

d}f = _(an—2 - bn—l)ﬂ(;lvdg = —(,l,,,_l,B(;l,
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then the semi-discrete scheme is changed as follows:

n
u" + oo Byt Au" = Zdﬁ_iun_i +aoByf", 2<n <N, (8)

i=1

u' + @oAu' = u® + Fyf". )

3.2 The full-discrete scheme for 1D problem

The Sinc-Galerkin method is applied to solve the one-dimensional problem of equation (4)
in this subsection, where x is chosen to be x. Denoting the approximate solution u”"(x) &
up,(x) = ZQLM C{Sk(x), which is achieved from Theorem 1, where n=1,2,...,N + 1, and
Sk(x) is a dense linearly independent set of functions S(k, /1) o ¢(x) for spatial step 4. Sup-
posing the < .,. > represents the inner product defined by

b
<f,g>= / fx)gx)w(x)dx.

Let us take the inner product of both sides of equation (8). By choosing the inner product
function g to be the orthogonal basis function {Sk}ffz _yp the equation (8) turn to be:

n
<u", S > —aoﬂgl < Uy, Sk >= Zd;’_i <u" S > +a0ﬂ51 <f"Sk>. (10)
i=1

For the second term in the left-hand side of equation (10), using integrating by parts, we
have

b
<ul, Sk > = —[U'Sp(x)w)]’ + / uly (%) (Sk(x)w(x)) dx
b
= [ Sk ()w(x)12 + [ () (S () (x)) 12 - / u" (%) (Sk(x)w(x))" dx
b
=Br— / " (Se(x)w(x)) dx. (11)

Supposing By = 0, using Theorem 4 to the integral term in equation (11), and omitting the
small errors, the above equation can be changed to

N 2
(%)
xerk >R Z Z lhl 1(5) 1(%7). (12)
1=0

We also have

s n Y 40 ) = (13)
j=—M

where

=—w(@) g1 =-wo" —2wW ¢/, go=—w', FP =u or f’, p=norn—i,
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X = “;bj are Sinc grid points. Combing equations (12) and (13), using the formulas (1) in

Lemma 1, the fully discrete scheme of equation (9) leads to:

W(xk) Ul 0} gl(x/) 1 w(xg) 40 W( ©) 1
ha E E —5 h ha
¢( 0 O‘OI Mzohl Vg (x ) () = @' (x ) (%) + 0 f(k)

and the fully discrete scheme of equation (8) leads to:

W(xk) S 1 (,)gl(x, i (s
oy 1 (56) + oy ]%;hl 4 g7y

g WE) W)
=h;dn S0 ") + hato By pR AL

As 8,((?) = Si(x;) = 0 for k #j, and Si(xj) = 1 for k = j, the approximate solution ), (x;) =
Zi\i_ m Cj'Sk(x)) can be written to C}'. Dividing each side of the above equation by /, the
finally full discrete scheme of the fractional diffusion equation (4)—(6), which uses a high-
order finite difference and Sinc-Galerkin methods are given as follows:

W(xk) Ck %, Z Z 1 50 gz(x,) _ w(xx) O+ w(oxy) o,

i l"'qs(x)’ ¢G0T ¢ )
and
W) 5O @) o _ = G L W) L,
PIERA XA;ZO R et 21: g E P G

where k = -M,...,N.
Substituting g; into the above equations, we can get the approximate solution for solving

the unknown coefficients C;’:

W(xk) Fo Z (_ (2) (w(¢’ )2)(361) cl_ 1 3(1) w(x,)qb”(x]) +2u (x1)¢ (x])C

o0 R AT a AL o' (%) i
and

;V(Xk) o] Z (_ﬁ 51<qz>w(¢>/) ¢ 584 8<1)W(x1)¢”(x,()p+é;v (x)¢' (%) e

A S S S

To make the boundary term By = O and the functions F to satisfy the conditions in Theo-

rem 4, (where F = uw, u¢'w, u(*2- + 2w')), we choose the weight function w(x) =

¢’ @) (x)

the Sinc-Galerkin inner product.
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In the rest part of this section, we will consider the situation of M = N. Defining I =
[8,(;)],1 =0,1,2 to be the (2M + 1) x (2M + 1) matrices. It is easy to see that the matrix
1 is an identity matrix, the matrix IV is a symmetric matrix, and the matrix I?) is a

skew-symmetric matrix. Define the (2M + 1) x (2M + 1) diagonal matrix as follows:

(QC'), k=j

Dy =&
0, k#j.

Define the column matrix C" = (C",,,...,CipT, D2, = (di,d},...,d" )T and F" =

(- fi)T. The following matrix will be used for the solution of the unknown matrix

lel

c, C., . cul

Cn—l _ C9M+1 CEM+1 tee Ci’}_\/IlJrl
1=

e c, . cp

By substituting w(x) = % into Eq. (14) and Eq. (15), the discrete systems (14)—(15) can

be changed to the following matrix form:
1 1 @"
i 1D — @y D(—()"IC!
[D (<¢>2) G351 + oy 1VD( ) -G <¢/<¢,))]

C? +q,D F;
(<¢>>2) + G ((¢>2)

¢ 1 n
D( 5 )2)—0601‘30 h21(2)+aﬁ0 hI“)D(( - )2> aoﬂol3(O)D(a(a) )IC

1+ oy D @ )2) (16)

D
(¢

ity -2 (LY = (LY —2(LyY =—(Ly =2
where we use the equality - 57 - 2(57) = (5) = 2(5) = =(3) =
If we denote

D) oy 8D (")

M = D( 1<2> " 1<1>
@) "k aof’ 1D ¢ ¢

(¢ ?

(whenn > 1),

or

1 1 1
M=D(—)-dy— 1<2>+520—1<1>D(¢

(¢')? h? A @ )2) - 05k,)D(—( Y (when n = 1),

¢ ¢
and let

R= ((¢ )Z)C“ D2+ aoBy ' D(

(¢ 7 YF'(when n>1),



Luo et al. Boundary Value Problems (2024) 2024:106 Page 11 of 32

orR= D((¢ o )C0 + GoD(—L5
lowing brief form:

@7 YF(when n = 1), system (16) can be represented by the fol-

M-C"=R. 17)

We can get the numerical solution C” by moving the left term M to the right side of the

above equation.

3.3 The full-discrete scheme for 2D problem

The Sinc-Galerkin method is applied to solve the two-dimensional problem of equa-
tion (4), where x is chosen to be (x,y). The approximate solution of u"(x,y) ~ u}, (x,y) =
Yol M, Zﬁy_ M, Ct Su(x) can be achieved using Theorem 1, where Sy(x) = Sk(x)S(y) =

Sk, hy) o ¢ (2)S(L, hy) 0 ¢y (), m=1,2,...,N + 1. Suppose that the (,,.) represents the inner
product defined by

d b
f,g) = / / f@)gx)w(x)v(y)dxdy,

where the product w(x)v(y) plays the role of a weight function. Let us take the inner prod-
uct of both sides of equation (8). By orthogonalizing the residual for the inner product,

the full discrete scheme of equation (8) is changed to:
(u", ) — o By (A", S} = Zd,q (" Su) + 0B (", Su). (18)

For the second term in the left-hand side of equation (10), using the integrating by parts,
we have

d b
(AW, ) = / / AU (6,9)S(k, 1) 0 du(8)S (L ) 0 by (YW dxcly
d b
= —f f u" (%, ) A[S(k, hy) o p(%)S(L, hy) o by (y)WX)IV(y)1dxdy — Br,,

where the number of By, is given on page 196 of paper [20]. Assume that Br, = 0, then

d b
(AW Sy) = / / (6, ) [S(h 1) © e OWER' S ) 0 by )W)y
d b
+ [ f " )S (s ) 0 o WIS hy) o 6, (V)] dxcly.

Applying the quadrature rule (Theorem 4) to the above-iterated integrals, deleting the
error terms, replacing u(xx,y;) by Cy, dividing h,h,, and using these formulas (1) to (3),
the discrete sinc system can be changed to

W) V()’z)
<b (1) oy (y1)

Cu + 8o Z[——a% (W (xl)——(s(”(% + 20 (x7))



Luo et al. Boundary Value Problems (2024) 2024:106

[opn0))
_8(0)W "(x:) cl V()’l) 5 w(xk) 8(2) 8(1) by V0
kg U % g Z i B - 0

o V')

w208 = S Z ;t((fckk)) S
and
) 0D NZM R QL LI
G o S Z[ hza% v = -4 4 ;y/,;y]w
o -8y ¢/gj - idﬁ ’;v/(gcki (;/((y;)) el ZM Z/(gck)) q:((yyl)ﬁ” 1
where these points x;,y; are Sinc grid points x; = “5% and y; = <25 (for a = 0,b = 1).

In this paper, we choose M, = N,, M, = N,. By denoting the labels m, = 2 x M, + 1, m, =
2% M, +1, defining the notation I) = [5<’>]mxxmy,z 0,1,2,C" = [Cllmymys B = [t g smy»
(%) = P(x;) and @y (y) = ¢(¥))(i,j = —M,, ... M,), the discrete scheme leads to the matrix

form
¢//
ClD(— —1<2>D 1<1>D +2 1©p C'D
(¢,) (¢y)+0lo[ 2 (pw) — (¢x w)— (¢x)] (¢,)
¢ //
MYt @ il (60) y (0)
+aoD(¢x)C[ h 1°D(¢yv) ~ y D(—- o +20) =1 D(¢y)]
- pyeop L D—FID—,
(¢,) (¢,)+O€0 (¢,) (¢,)
and
dyw

C"D(— ——1<2>D I(DD +20) - 19D C'D
(¢,) (¢/)+<10/30 [ 2 (ppw) — (¢x - (¢x)] (¢,)

1 W \n @) ) PV N ) V_// T
+aofy D(%)C[ 2 1 D(¢yv) — hy[ D(—— o +2v) -1 D(%)]

Zd” D( C” ‘D($)+aoﬁolD(g)P”D(¢/)

Premultiplying by D(¢) and postmultiplying by D(¢)) yields the equivalent system

d)//

x

D(w)C'D(v) + & D(¢;, =73 I(Z)D(¢> w) - I(“D( +2w)~19D(2 o )]C D(v)

+GoD(w)C [~ 1<2>D<¢ V) - 1“>D(¢ Y o) - 1‘°)D(¢, ITD(g))

x y
=D(w)[C° + aoPl]D(v);
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D(w)C"D(v) + o By D(@))[ - 1<2>D<¢ w) — 1<1>D<¢’¢: +2w) - IOD(- Y )]C"D(v)

x X x

+ao By ' D(W)C"[~ 1<2>D(¢> 1<1>D(¢y +20)— 1OD(% )]TD(¢>
h y ¢x ¢y

=DW)[Y_di_C"" +ao By F'1D().

- _1/>_
Denote A(w) = h%I (¢ )2 +

present the following matrlx form:

25 L4 )~ IOpD(H— o )2 ). From the above equations, we

D(w)C' D(v) + &o[ D(AW)D($,)ID(W)C' D(v) + & D(w)C' D()[D(¢; ) AM)D(¢;)]"
= D(w)(C° + GoFHD(v);
D(w)C"D(v) + o By [D($)A(W)D(¢h;,) | D(w)C"D(v)

+ a0 By DW)C" DD, »AMD(¢;)] "

=DwW)(Y_d_.C" + ooy FHD().

In this paper, we define V* = D(w)C"D(v)(n > 1), G! = D(w)(C° + axF})D(v), and G" =
Dw)Q L, dr C "+ 2By F")D(v)(n > 1). Using the weight function w(x)v(y) = m
in the Sinc-Galerkin inner product, we can know A, = D(¢,)A(w)D(¢),) = D(¢.)[ h12 I® 4

D(i)]D(qﬁ;), with an analogous definition for A,, so the matrix form may be written in the

following form

Vi+ %A V! + & V'A] = GY; (20)

V" + a0y ALV + a0y ' VIA] = G (21)

To solve the solution of V, we use the Kronecker product and concatenate the system in
(20)—(21) to arrive at (see [28, Thm. A.33])

Ly ® Ly, + Tolm, ® Ay + ToA, ® I, ]Co(V") = Co(G); (22)
Uy ® Ly + 0By Ly ® Ay + 0By Ay ® Iy, 1Co(V") = Co(G"), (23)
T
where Co(G") = (CO(G ) Co(G}) ... Co(G;’my)) is the concatenation of G”, which
T
is a m,m, x 1 vector, where Co(GZ) = (G;’j Gg’j G:’nx]) (G=1,2,...,my)). I, isa

m, X m, identity matrix, the same as the matrix Ly, The symbol ® represents the Kro-
necker product.
By premultiplying by D~!(w) and postmultiplying by D~!(v) of V", we can get the nu-

merical solution C” from the solution of V”.
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4 The stability and convergence analysis of the discrete scheme

4.1 The stability and convergence analysis of the discrete scheme in time

The weak form of the formulation of the discrete scheme (8) with the homogeneous
boundary condition u” € H}(A) is defined as:

W, v) + ooy (Vi Vv) = > " di_(u"™,v) + oy (", v), ¥v € Hy (), (24)

i=1

where (,,.) is the usual L2-inner product, A = [0,1]. Just as the same derivation process in
[5], the bellowing theorem is easily demonstrated:

Theorem 5 [7] If we assume the solution of problem (4) has the necessary regularity and
that the f = 0 to deduce the stability analysis, the semi-discretization of equation (11) is
unconditionally stable and its solution satisfies the following inequality:

™ llo + /0By 1 Vet lo < 4l14° o (25)

The following error estimate is established.

Theorem 6 [7] Let u be the exact solution of equation (4), and let {u"}ﬁio be the semi-
discrete solution of (11) with the initial u® = u(ty). Suppose 33u € L*([0, T1;L*(A)), then
the following error estimate holds:

lle(tn) = " llo + /0B IV Wiltn) = u)lo < Co 7l ttll o2y A, 2 < < N.  (26)

4.2 The convergence analysis of the discrete scheme in space for 1D problem
Considering the fully discrete scheme (10), supposing the function F(x) satisfies the con-
dition in Theorem 4, we can get the following exponential convergence:
| <u, s> —hM| < LoM™? exp(—(mdaM)*?),
@' (k)
N @ o,

| <uloSe>—h 3 uel o (@' w)e) + LI LA T I Ko
k

/ — ()]
~ ho¢ ¢

< L\ Mexp(~(rdaM)"'?).

4.3 The convergence analysis of the discrete scheme in space for 2D problem
In this section, we will analyze the convergence rates of each term in equation (18). We
will use the following lemmas to derive the convergence order.

Lemma 3 Define the notations 8,(;)(5 =0,1,2) as formulas (1)—(3) and ¢,(x) via ¢.(x) =

In %, then we have

W18 1= Y 1Stk I 0 pulx)] |= 1

1=—00

@1 )5 1<%
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3] 28@ =4+

Proof (1). The first equality can be directly obtained from [28](P.53).

(2). We change the sum ) ©° 8(1) to two parts, which is Zf’ck 8(1) and Zk ! 8(1) For
the first part, it is an alternating series, whose general term l > and lim,,_, o X +=0.50
according to the Leibniz law, this series is limited. Then,

1 1 1
|28(1)| |1_§+§_Z+...|:1n2<1.

And the rest part, if we choose n = —(i — k), then

i=k-1

o0
(=1)" 11 1
sD 2 =|l- -4+ —-=4+...|=ln2<1.

1
So, | Y 8 1< 2. 1

(3). Just as the demonstration of (2), the sum > ;= 8,((1.) also can be changed to two parts
of 7 5(2) and YF 6(2) The first part is also limited.

2( 1)k 72 2 2 2 T2 2
52 AR S e A PP L S
lZ = ll;l —k)? 3 = 22 32 42 3 = 3
And the rest part, if we choose n = —(i — k), then
i 2( 1)” 2 2 2
E: (2) §
| 5 | | —2—2+§—E+"'|§2.
So, we get the proof. O

Lemma 4 Let ¢,(x) be defined via ¢.(x) = In 3=, then it holds that

1 b-a
|<

| ¢.(x) 4

Proof According to ¢,(x) = In 7=7, we have

| 1 - |(x a)(b - x)I |—x2+(a+b)x—ab|_| —(x—“%b)2+%| b-a
PL(x) b-a b-a - b-a <7y O
d—c
It is easy to see that 7 (y) e
Lemma 5 Let ¢,(x) be defined via ¢p,(x) =In =%, w= \/ﬁ, oy =1n Z—:;, V= \/M then
it holds that
wi(x) -1 @y (%) ,
1) = —/PL(x), w(x) + 2w = 0.
Do =2V g™
v -1 ;) ,
2 0)_ &), v(y)+2v =0.

60 & )
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Proof (1) According to ¢,(x) = In 3=%, we have

=P
0= T —x)
1 Ja-ab-x) 1 o ING-a)+} Inb—)-} Inb—a)
VoL(x) vb—a
and
¢ (x) )] 1, ¢/ "
2w = 2 = — =0,
@ "= G T g T e T 2)(./—¢>/ o O )
then
W _ezln(x a)+ % In(b-x)-% In(b-a) l 1 _l 1 ),
2 (x a) 2b-x)
W = ln(x a)+ ln(b—x)——ln(b a) [( 1 1 1 2 _ l 1 _ l 1 ]
2(x—a) 2(b—x) 2(x—a)? 2((b-x)?
_Vx—a)b-x) 1 1 1 |
T Jh—a | 4x-a® 4b-x? 2x-a)b-x)
-1 b - a)*?

- Z (x— a)3/2(b —x)3/2

- @

The results for parameter y can be demonstrated just as above, so the proof is completed.

O

Theorem 7 Let ¢, and ¢, be conformal one-to-one maps of the simple connected domain
D, and D,, respectively, onto Ds. D, x D, is the domain Q. Assume that x; =y (khy), y; =
Y (lhy), kLl € Z, uF; € B(D), (F; = \/$/ (1)), 0,1/ b ()%, (11 /B))"), and f1./G] €
B(D),(q =xor y), Br, = O which is defined as (4.13) in [26]. To simpllfy the discrete scheme,
y_
we choose w = m, v= \/7 In this paper, we choose ¢.(x) = ln 2 2, and ¢,(y) = In 3=, then
w(x)v(y1)
D). (s, S} = hachyuu(xre, Y1) —————
[0Sia) = oy 30 3]

_ (b-aPCo(hy, dy) (d -’ Colhy, dy)

e ™™ N(uv, Dy) +

hye ™% N (uw, D,)

16 16
Co(hy, dy)Co(hy, d
+ 0( ZL 0( y J’) e—ndx/hx e—ndy/hyN(N(uW’ sz)V’ Dy):

O (aw S~y 33 ¢/”(x)lj’(y [S(,hy) 0 ¢, VO (1)
i=—00 j=—00 Xi ]

+ LISk, hy) 0 alx)w(x)1}|

< Lpemiis o, d )N (u Dl <4+—>+ ]

N

Page 16 of 32
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1 1
+ Shye ™ ol d)N (a0, D)l <4+”—>+

(b _ a)3/2
+ —
4
(d— C)S/Z
+

1 X7 /7
hye ™| Cy(hy, dy) — 2 Colly, d)IN@Y", D)

1 X7 /!
hye 5| oy, ) — ZCo(hx»dx)|N(”W ,Dy)
1
+ Co(hy, dy)e ™M e My N(N(uw'’, D), Dy)| Ca by, di) - Eco(hx’ )

1/ 1
+ Colhy, dy)e ™M= h/My N(N (uw, Do)V, Dy)|Ca(hy, dy) - 2 Colhy,dy)|

= R(Q),

where N(u,D,) = Jo, W2 0)y, N'(u/®,v,Dy) = max; Jop, WG V)G, (i)dly, and
the same as N(u,D,) = faD u(x, y))dx, K[’(u\/gy’w,Dx) = max; f3D u(x, y)w(x) /L (y)dx,
N(N(uw, Dy)v,Dy) = fapy Jo, @ yIWEV(y)dxdy,

2
d¢?
+[S(k, 1) 0 P ()W (x).

L) = =5 [S(k, i) 0 ¢u(0)](PL)* (R)W(x) + ——— 6, [S(k hy) 0 x ()P w + 2¢,w)(x)

At the same,
Li(y) = d¢2 [S(l hy) o ¢y(y)](¢) vy + —— i, [5(1 hy) 0 (Mg v +2¢,V)(9)
+[S(L, hy) 0 oy (NI (9).

Applying Lemma 3, Lemma 4, Theorem 1, and Theorem 2 to each term of equation (18),

we can prove the above theorem.

Proof (1) Utilizing the integral approximation in Theorem 1 for variable x, we have

d b
[, Sia) | = | / / u(x, Y)[S(k, he) 0 du(IWX)[S(U, 1y) © by (y)V(y)]dxdy|

e wxi YISk, ) 0 (o) Wi
_ |/ I Z u(x;, YISk, hy) o du(x)w(x;)] [S(,hy) 0 6, (9V()dy

¢(x)

u (%, YK (s My ) (%)
/ / i S )0 IS ) 9y

Then, using the inequalities about « (¢, /1,)(x) in Theorem 1 and the first inequality about

m% in Theorem 2, we deduce the above equality as:
o [S(k, 1) 0 () w(ix:)]
0] = i 3 ) ¢/‘fx( / i, IS hy) o 8,V 1dy|

i=

Ny Collts ds) _ain,

: / / e,y WIS, y) o by (V)1
c 3Dy

Page 17 of 32
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Then utilizing the integral approximation in Theorem 1 for variable y, we have

[S(k, 1) 0 pr(x)W(x:)] [S(, hy) © by (yp)v(y)]
< |hxh, Xi,y
< Z s Z D500

{MSkz

—00

[S(L, hy) 0 §y(y)V(»)1dy|

o [S(k, 1) 0 po(xi)w(x)] i / u(xi, y)k (py, hy)(y)
aD.

+ by = :
@L(x:) 2 Jop, sin(y(y)/hy)

i=—00

Co(hy,dy) _, = [S(, 1)) 0 by (y))v(¥)]
+|%e “hy Y / u(x, y))w(x)dx—— ¢;(yy,)l !

CO(hxrdx) _ﬂdx/hxif /
+ — e 2 )y, Joo, u(x, y)wx)v(y)dx SnCréy )/

Using the inequalities in Theorem 1 and Theorem 2, we also have

[SCk, hy) o () w(x:)] [SU, hy) 0 y(y)v(y))]
Sw) hyh, Xy
[ Sl <] X;IZ; ) $1(x0) aop |
CO( ) —nd Ihy [S(k, hy) o P (x)W(x;)]
i d
* [k Z e i, I |
Colhs dy) _, N (S y) o ¢y (v
+ | 0 = e dx/hxhngo:o Y %(;j) YT /3Dx u(x,yj)w(x)dx|
N ’CO(h;;dx) —1dx/hx CO(hzyyd ) —ﬂdy/hy/ / u(x’y)w(x)v(y)dxdy|

For the second part of the right side of equation (27), we will use the Lemma 3, Lemma 4,

and the fact that S(k, /1,) o ¢.(x;) = O(if i # k) to demonstrate:

| 1 [S(k, ) 0 () w(x:)]

i d’
() g I |

i=—00

—a~b-a

2 Jip,

bh— 32
u(x,»,y)v(y)dy| = %N(MV,DJ,).

IA

The same as the third term of the right side of equation (27), we have:

)3/2

[S(, By) o ¢y (y))v(y))]
|Z y) © ¢y 0IVY

N(uw, D).
¢y(y] 0Dy (uw )

u(x, yj)w(x)dx|

Combining these above inequalities into equation (27), we can prove the first result in

Theorem 8.

(2) Using the integration by parts, and assuming Br, = 0, we can change the second term

of the left side in Eq. (18) to
d b
I= / / Au"(x,y)S(k, hy) 0 dx(x)S(, hy) 0 y(y)W(X)V(y)dxdy

d b
= / / u" (%, ) A[S(k, hx) 0 p(x)w(R)[S(L, hy) 0 p(y)v(y)dxedy

K (dy i) NISU hy) 0 y(y)] ).

Page 18 of 32
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d pb
= / / u(@x, YL F)[SL hy) 0 dy(NIV)] + [S(k, ) © P ()W) 1 ()} dxdly.

Applying the integral approximation for variable x described in Theorem 1, we have

/ A Z ‘;(x( ly))h(x,-)[su,hy)oqw)v(y)]dy

/ I Z ”(x"y) 180 ) 0 @usw I )y

U, Y)k (Pxs 1) (%)
/ /3 . STy @)/h) —————————L(%)dx[S(l, hy) o d,(Y)V()))dy

u(%, Y) (s P ) (x)
f _/ oD, SIN(TPy(x)/hy) —o o [S(k, ) 0 ()W) dxy (y)dly.

Using Theorem 1 and Theorem 2, we can get

) d )
on Y | S neis i) ooy
/ Z B S0k ) o W )

_ndx/hx M(x y) .
< / /Dx Sln(nt,bx(x)/hx)Il(x)dx[s(l’ hy) ¢>y(y)V(y)]dy|

+ ] 5 Co(hy, dy)e ™%/ / N(uw, D) (y)dy|.

Applying the integral approximation for variable y, we can obtain

Iy 3 ¢/”(")‘;f/(y [0, y) 0 6, OV (30
Xi i)

+I (IS(k, hy) 0 ax) w1} |

i u(i, ) by, ) () . 4
<3 3 /a e ooy 1S ) B )

i=—00 j=—00

i+ u(xi, Yk Py, hy) () o bl
> /B S oMoy OIS )]

2y g-mdslhy [S( hy) o ¢y (ypv(y)] / u(x, y;)
Zoo ) o, STyl

e @y IS0 ) 0 6,000y 1))
/ D, f 0, Sinr gyl O sin( ey ()/h,) @l

N ol ’ X I
’ hy eI Cy(h dl,) Z (u(x, y)w, D) (y))
j=—00 ¢J’(y/

Lemdidheco (b d / N(uw, D)L )k ¢y, 1)) .
+4e 0Ny, dy) - SN by (7)/hy) J/|
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Applying Theorem 1 and Theorem 2 yields

IETS303 - (’f)‘;’”@} [0, 1) 0y V) (5

+L (IS, 1) © ) w(x)]1} |

1. > u(x;, y)v(y)
< Zhe ™M Co(hy, d,) / =02 Ayl (%)
2 o y’i;o TRl

i=—00 j=—00

L ()’)dy|

1 =\ [SCk, 1) 0 pu(xry ()] u(x;,y)
_hx wdylhy / .
T |Z ¢, v, SINGTd,()/hy)

—rdylhy [S(, hy) 0 ¢y()’;)V()/,)]/ u(x,y;)
+= h | Z ¢y()’1 . sm(nqu(x)/hx)ll(x)dx|

—00

| — u(x, y)v(y)
+4e e ™Y YCO(hy,dy)| », Jom, 7sin(n¢x(x)/hx)Il(x)dmiﬂ

N (u(x, y)w, D)l (y)) |
¢y(y/

N(MW:Dx)Il(y)dy|
oD, SIN(TPy(y)/hy)

h e
+re ”’x’hxco(hx,d>|2

] —00
1
+Ze—ﬂdx/hx e My Co(hy, dx)| (28)

Next, we will analyze the error of each term in the right side of inequality (28). For the

second term, we will use Lemma 3 and Lemma 5 to deduce the following error:

/ — (i, Y)V(Y)
DJ’L —00 o

/‘ u(xl, y)v(y) d?
DJ’ i=

—— 1 (x:)dy|

.50 {d¢2 [SCk, 1) 0 i) 1(L)> (1) w(x;)

[S(k h) 0 G ()@ w + 29wV (i) + [S(k, i) © o)W (%)) dy |

" g,
00 (2) 2 5(1) ”
- | Z[ " (@ )/ () + L("’d),w + 2w ()

. [S(k, 1) © () IW" (%)
¢/

IN(u(xi, y)v, Dy)|

—[ﬁ(4+_)+ N’(u v, Dy). (29)

Just the same as above, the sixth term can be considered:

N(u(x,y,)w, Dy)
| Z ’

2,00 —— L0y < (4+—)+ N/(u ¢, w, Dx) (30)

Jj=—00
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Now we consider the third and forth terms. Utilizing Lemmas 3—5 and Theorem 2, we get

= u(xi, )L (D)S(k, ) 0 () Iw(x;)
d
| Z / Sin(r b, (y)/ 1) (x7) bl

{5 [SU hy) 0 oy PIV()

| Z/ u(x;, YISk, hy) o dr(x:) Iw(x;) d?
@ (x;) sin(rw gy (y)/ ) d¢2

¥ dT)y[S(l, ) 0 byMI@Lv + 26)0) + [SU 1y) 0 byOIIV 9}y
b—a~b- 1 ~
< 4= X2 (Calhy, dy) ~ 5 Colly )NV, Dy, (31)
and
[S(, hy) qby(y,)v(y,)]/' M(x’yj
| Zw 9,0)) 1o, SCe gy O
< 4‘1; - ”12_ |y i) - }Lco(hx,dx)W(uw”,Dx). (32)

The fifth and the last term will be considered as follows:

U y)V(y)
/Dy ./an Sin( ¢ (%) /1) ——— =L (x)dxdy|

uyvy) 4 .
/wy / 1, SNCT a0y dgd Lo ) 0 B))(@ ) ewix)

@@ w + 20, w)(x) + [S(k, 1) © po(@) W (x))dxdly |

< 4'N(N(MW//1Dx)V7 Dy)|C2(hxr dx) - ico(hxr dx)|r (33)
N(uw, DI (y) B 1
| o mdy| <AN(N(uw,Dy)V', D,)|Ca(hy, dy) — Zco(hy,dyn. (34)

Combining inequalities (29)—(34) into inequality (28), the proof of the second result in
Theorem (8) is completed. O

Utilizing the formulas (1)—(3) yields

5@ 5D
N ki N2, . Tkioar 1IN e ©)_ 7
L) = 5 5 (@) (e)wii) + 5 = (G w + 2, W) + 8 W (x2).
x X

So, we can get

(2) 1

_uxiy) oy Sk, "
- {hh, § il O . oS
II-{ -~ G000 ()’1)[ (¢)(x)W(x)+ (¢W

u(Xx, y1)

#2)m) + hehy 2o
x y

viyw” (i)
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u(Xi, y;) (2) 8(1)
+hehy Z 6 (p,’(y] (k)[ (¢> )2@,)v(y,)+—<¢”v

V2 o] + e y% WV (o0} < R().

The following inequalities can be directly obtained by the definition of /4, = NP
V74 2nd the fact that Cy(, d) < R,h'7:

VayMy
1 7T2 1 1 7[2 1
thO(hy’dy)[h_%(‘L + ?) + Z_L] < Rohy[h—(4+ ?) + th]
Vﬂdy leMx w2 1 Jm x
4+—=—)+-
OZyMy Jd, 3 4 axMx
d 2 A
T ) Vo 4" +_«/T[d ! (35)

< MxMyRQ

N AR N

1 1 1
hx|C2(hyr dy) - _CO(hy: dy)l = hx[RZ_ + _R()hy]
4 hy, 4

Jrd, Jmd, 1 rd, /7d,
=Ry / —Ro
oM, Ja,M, 4 oM, \Jo,M,
Vs 1 d.d
< MoMy(Ry Y= + —Romr Y2, (36)
oxd, 4 ore

and

1 hy 1
Co(hy, dy)|Co(hy, d) — ZCO(hxrde < Roth—y + ZR(z)hxhy

= RoR, % 1R2 4y ﬂdy
V& oM, 4 0\/ aM, \Ja

. . (37)
aydx * R m

<M, M (ROR2

Just as above, we can get the similar bound of /1, Cy (%1, d. )[ (4 + ) + i], hy[Co(hy, dy) +

ZCO(hx:dx) 1, and Cy(hy, dx)|Co(hy, dy) Lcon,d)). Combmmg these above inequalities

(35)—(37) into R(L2) yields:

1 -
R(Q) < MM, {5 exp(~ /o, M,mdy)N'(u/§y, Dy)

,/ Y%, rr_2 ), VA
f OV 4 Ja,
1 ~ NET R 2
+ 5 exp(—/aMyrd)N (u, ¢}, DolRg ;_ ( % 4+ )+
(b-a)*? , \/dT:y 1 d.d,
+ ————exp(—,/ay,M,md )N(uv »Dy)[R, o, L_LROT[ \/OTO‘y]

4

1,/ndy]
TR
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(d-c)*? ~ dyo, 1 dyd,
e - M,md, )N " D[R —-R
+ 2 exp(—/ oM, d )N (uw", Dy)[Ry o, *3 onm

+ exp(—v/ axM,mdy) exp(—,/ayMym dy,)N(N(uw”, D,)v, D,)

Voxd, s len Vdxdy
ayd, 4 /000

+ exp(—v/ axM,md,) exp(—,/a,Mym dy )N (N (uw, D,)v", Dy)
Jo,d, 1 Jd,d,
% +-R 2

]

X [RoR> ]

2
T

ad, 4 0 /000

= MM, L, exp(—/ axM,mwdy) + MM, L} exp(—,/ o, M, d,)

+ MM, Ly exp(—/ axM,mwd,)exp(—,/a,M,md,)

X [RoR> 1}

=R(Q),
where
1, wd, Jo n?  1/nd
Ly= =N'(u,/¢;w, D:)[Ro (== + )+ = Y2
2 J& Jd, 3 4 Ja,
—c)3? . dyo, 1 d,d,
+("I—C)N<uw’/,Dx>[Rz 2 R 2,

ayd, 4 /0y 0Ly,

Jmd, @(4 7? lx/ndx)]

( )

o k3 a

—ap? Jaa, 1 Jad
PO R, DRy Y | Ly VD
4 /ledy 4 [0l

Ly= ~N'(uy/¢.v,D,)[Ro

N =

]’

and
L = NN Doy, D[RRy Y22 1 Lo Yy
= uw , v, — T
2 DR 2 I e,

hy 2 _ Vrd, oM, \/6Ty oM,

2= 4+1) =
i VT et 3d, ' Ja v
< MM ndy(nax ozx) (38)
N, 3d, T 7y

which will be used to demonstrate Theorem 8.
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Theorem 8 Assume that there are positive constants K, K', o, oy, B, and B, so that

exp(—ax|p«(x)), x €Ty,

F(x, <K
[P < {exp(—ﬁxm(x)n, xeTy,

where F(x,y1) = u(® y)¢,(x)w(x)v(y) or M(x,}’z)(ﬁ((z)) w(x) + 2w (x)v(y), and
|Fy)| <K' exp(=ay gy (M), yele,
exp(=Byloy), yeTq,

where F(xi,y) = u(xi, y)$, (V)W) or s, y)( 50 D) + 2 )W), Te = (£ € T

PpE)=y€(-00,0)} and Ty ={E T :¢p(§) =y € [O 00)}. Choosing N = [|%M, + 1|1,

A
N, = [|;_;My+1|]; hx:,/a’;;’\l/’[‘x and hy = ;M , we have

| / / W'WISG, ) o $l(x)dx — high, Z “("“”) Lix l);/((y;))

Ny
u(x, ¥;) wi(x) p
—hyh, E i LM M —V o, M,md, —Joe,M,md
. ¢/(y] l(y])¢;(xk)|§ 2 yexp(—va 7 dy) exp(—,/ayMymdy)

+(Ly + MM, exp(— axMymdy) + (Ly + ] )M M, exp(—, /o, M, d,),

where ] = K0 (1, + 1B 52 %7 + [ 290, ' = K/ =022 (1, + 1/B,)( S 55 +

aydy )
wdyay "

Proof The positive proportional series )i, ., €™ is limited, and the sum is satisfied

—noxh
Z gt _ graxMetDhe (] | gavhs | g oy _ gt Dl [y 1— e
A n—oo 1 — e—“xhx
i=My+
. e—mxxhx e—ax(Mx+1)hx
= o %x(Mx+1) % ( —_ lim )=
1- e—axhx n—o00 ] — e—axhx 1- e—axhx
— e—axMxhx — e—axMxhx 1
e~oxhx — 1 L+ aphy + 3(ohy)? + - — 1
1
< e oM 0 (39)
X'Ex
The following sum is conducted by the inequality IS(Z)I =’ and |8§jl)| <1,

& i) v(y1)
hoh I (x;
hehy 2 =y 1 51

i=—00

o) = 8% 5“) ¢!
< |y~ [ =2 (g, w)(x_y) : )|
) _MZ+1 2 #,
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4 Kn?
E| ) /(yl) Sh I() Z e—axzhx
¢ (y) i=My+1
Vi Kn? 1
< |h, ,(”) + Kye M —— |.(if k € (-M,, Ny)), (40)
%()’1) 3hx axhx
u(xiyp) N Yo VD) ~BxNyhy(Ka?
As the same, we have |h h Zl Net1 g (x)Il(x,)q}W[) < hyﬁxhw;(yl)e ohae e K),
=My=1 ulxp,y;) V() W) o —ayMyhy ( K'n? /
’h h Z o ¢(y)11(y] Fop| = ayhy(p ol yy(—ghy +K"),
u(xg y} v(y)) w(xg) —ByNyh K'n? / . :
and ’h h Z_Ny+1 50) L(y) aop| = hxﬁyhyka)e yNy y(—Shy + K’). Substituting the

above inequalities (38)—(40) into the error in Theorem 8, we have

(A, St} = (e Z Z d),”( )’(’py’ (IS 1y) © ¢y v ()
i=—My j=—My i ()/;

+1 (IS(k, hy) © () w(x)D}]

N yl) u(%x, yj) wi(axy)
= 1-hhy - ; h.h, 2 L (y;
| " 2 g )¢ (y) & oo e

—My-1 (1) ”
< ey Y Z)”(x“”) % @ (G2

i=—00  i=Nyx x ¢ ('b/(yl)
+ht (_sz Z)”(xk %) (¢ R L RS |+ RE@)
T L 50 | P ey ")
VO M VO g @
= |[hy axhxgb;(yl)e " hy ,Bxhx%()’l)e ]( 3hx +I()
WX ok wx) g nn o KT ,
hy " eoMyhy T oAyl + K R (22
[ O‘yhy‘ﬁa/c(xk)e ’ 5yhy¢a/c(xk)e ]( 3hy )| @
(d - C)3/2 7Tdy OlxTT Oy —Jrdya My
< MM, |K T‘/a—ya/ax + UG-+ o e
32 [ ra
(bTa) (1 + 1/,3y)(— / )6_v herMy| 4 R(Q). (41)
The proof is completed. O

Remark 1 Set u”(x) to be the numerical solution of semi-discrete equation (8) using the
high-order finite difference method and u/,(x) to be the full-discrete solution of (15) and
(19) using the Sinc-Galerkin method and a high-order finite difference method. Then,
using the quality of 0 < gB8~! <@ and Y, d” , = 1 (which is described in [7]), it is easy to

see:

sup |u"(x) — uj,(x)| < CMexp(—(nadM)l/z).
x€(a,b)

Page 25 of 32
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For the 1D problem, and

sup  [u"(X) = u,,,(X)]
x€(a,b)x(c,d)

< CiM M, exp(—(radM,)"?) + CM M, exp(—(wadM,)"'*)

+ GM M, exp(—(nade)m) exp(—(mdey)l/z),
for the 2D problem, where C, Ci, C, and C; are constants independent of M, and M,

5 Numerical results

In this section, we will give some numerical examples to verify the convergence analysis.

We consider the problem (4)—(6) for that [a, b] and [c, d] are both chosen to be [0, 1], and
_ . . . _ _ y

we set d = 7. In this section, we select the function ¢(x) = In 1~ and ¢(y) = In i

5.1 Numerical results for 1D problem

Suppose that u' is denoted to be the approximate solution and u(x;, t,) is denoted to be

the exact solution. The absolute maximum error and L? error at Sinc grid points are taken

as

M
- ; —y" = ; —u'")?
lellooLN) = max (G ) = ], llell2(M, N) = ZM(uoc,,tn) w)?,
=

and the following space-time convergence rates

llell(M, Na) llella(Ma, N)
order' = logn, (———"—2), order” = logm, (————"—2),
% eV, Ny) $32 el (1, N)

) jh
respectively, where x; = ;;}7.
In this part, we choose the parameters w = —+

)"

Example 1 We consider the following 1D nonhomogeneous problem for f = —33¢*(—x% —

3x) + r(}ﬁa) tB-9e¥x(1 — x) and u(x,0)) = 0,0 < x < 1, the data are chosen so that the exact

solution is

u(x,t) = 3¢"x(1 — x)8°.

In this example, we can see that when ¢(x) = In 1xTx’ o = f =1. We choose M = N, and
d = /2, which yield & = ﬁ The maximum absolute errors, Ly errors, and the related
convergence rates are displayed in Table 1 for different M at different a with Az =1/100.

In Table 1, the maximum-norm errors, L, errors, and the spatial convergence or-
ders with a = 0.4, 0.7 are presented, respectively. From Table 1, we can see that when
At =1/100, M = 64, and a = 0.4, the L? error can be 1.07194e-06, the maximum error is
2.02353e-07. The spatial convergence rates are also shown to be exponential convergence
orders.

Table 2 lists the temporal errors and convergence rates at a = 0.4,0.7, when M = 64 is
fixed at time T = 1. It is shown that the convergence order is 3 — a, which is a very high
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Table 1 Errors for |le||2, llellcc When a =04, a=0.7, At =1/100 for Example 1

a=04 a=07
N M llelloo (M, N) llell2 (M, N) order” llelloo (M, N) llell2(M, N) order*
100 4 3.55261e-02 7.23719e-02 - 3.54749e-02 7.09014e-02 -
100 8 7.69362e-03 2.19636e-02 1.72031 7.69220e-03 2.16296e-02 1.71281
100 16 6.97755e-04 2.83983e-03 295124 6.97747e-04 2.80653e-03 294614
100 32 2.02529e-05 1.17516e-04 459488 2.02528e-05 1.13988e-04 462183
1

00 64 2.02353e-07 1.07194e-06 6.77649 3.22017e-06 9.56008e-06 3.57572

Table 2 Errors and orders at a =04 and a = 0.7 for Example 1

a=04 a=07
M N lell> (M, N) ordert N lell> (M, N) order
64 4 4.24900e-03 - 4 1.66898e-02 -
64 8 6.63444e-04 267908 8 3.34640e-03 231828
64 16 1.04421e-04 2.66756 16 6.74620e-04 231047
64 32 1.63450e-05 267549 32 1.36144e-04 230894
64 64 2.52077e-06 2.69691 64 2.73293e-05 2.31661
10" 107
107 o N 10° N N
~N ~N
3 N ~
10 \\ \\
é N é 10 S :
£ 10 N £ N
£ N £ ~
E 5 \\ é ‘m.ﬁ \\\
107 N AN
\\ 6 \\
0L N o N
\
AN
10 ! 0 I1 2 10 ! 0 I1 2
10 10 10 10 10 10
M N
Figure 1 The spatial convergence rates (loglog) when a = 0.4, N=100 at T = 1 and the temporal
convergence rates (loglog) when a =04, M=64at T = 1 for Example 1

order in recent years for the numerical solutions of fractional diffusion equations. These
numerical solutions agree with the theoretical results. Figure 1 shows the convergence
rates in space when a = 0.4, A¢ = 1/100 at T = 1, and the convergence rates in time at
T =1, when a = 0.4, M = 64.

Example2 The second example is chosen f = —3£3x71/2 + ﬁt@‘“)(xy 2 _x),and u(x,0) =
0, 0 < x < 1 so that the exact solution is u(x, ) = (x3'* — x)3. In this example, it is easy to
geta=f=1land h= ﬁ, when we choose M =N, and d = 7 /2.

Table 3 shows the errors for |le||2(M, N), |elloo(M,N) and the convergence order about
the |le||2(M, N) errors in space when fixing N = 100. Table 4 lists the temporal errors and
convergence rates at the time 7 = 1 when a = 0.4,0.7. These data show the convergence
rates are exponentially convergent in space and O(3 — a) in time. Figure 2 presents the
convergence rates in space when a = 0.4, At = 1/100 at T' = 1 and the convergence rates in
time at 7 = 1 when a = 0.4, M = 64.
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Table 3 Errors for |le]|2(M, N), ||le]loo (M, N) when a =04, a=0.7, At =1/100 for Example 2

a=04 a=07
N M llell oo (M, N) llell>(M,N) order” llelloo (M, N) llell2(M,N) order*
100 4 4.02973e-03 8.89992e-03 - 4.02358e-03 8.70924e-03 -
100 8 9.12983e-04 2.78249e-03 1.67741 9.12806e-04 2.7375%9e-03 1.66964
100 16 8.47609e-05 3.65120e-04 2.92994 8.47599e-05 3.60610e-04 2.92439
100 32 2.47960e-06 1.51728e-05 4.58881 2.47960e-06 1.47264e-05 461397
100 64 2.33175e-08 1.34180e-07 6.82118 3.80952e-07 1.12810e-06 3.70644

Table 4 Errors and orders at a =04 and a = 0.7 for Example 2

a=04 a=07
M N llell> (M, N) order! N llell> (M, N) order!
64 4 5.01679e-04 - 4 1.97068e-03 -
64 8 7.83275e-05 267917 8 3.95131e-04 231829
64 16 1.23227e-05 266820 16 7.96516e-05 2.31055
64 32 1.92689e-06 267697 32 1.60694e-05 2.30939
64 64 2.97064e-07 269743 64 3.22208e-06 231825
107 10°
10° \\\ o S
N N
N ~N
o0 N o AN
g \ §10 AN
£ 10° \\ e AN
£ N g AN
g \ g 10’ AN
10° N N
\ N
7 A 107 AN
10
\\
\
103 0 ‘| 2 103 0 ‘| 2
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M N
Figure 2 The spatial convergence rates (loglog) when a = 0.4, N=100 at T = 1 and the temporal
convergence rates (loglog) when a =04, M=64 at T = 1 for Example 2

5.2 Numerical results for 2D problem
and v = d)l’(y) to get the
symmetric matrixes. For every problem, we choose M, = N, M, = N,. In this part, we

In the case of two dimensional problem, we choose w =

;

also take d = /2.

Example 3 We consider the following 2D nonhomogeneous problem with f(x,y,t) =

=33 [(=x? = 3x)y(1 — ) + x(1 — x)(=y* - 3p)] + 1w(}ﬁu)t(S“”e’”J’xy(l —x)(1 - y) and

u(x,9,0)) =0, (x,y) € [0,1] x [0,1]. The data are chosen so that the exact solution is

u(x,y,t) = 3¢"Vxy(1 — x)(1 - y)£3.

Herein, similar to the previous analysis, we have o, = 8 = a, = B, = 1/2, which yields &, =

i andhy = .

In Table 5, fixing N = 100, the maximum absolute errors, L, errors, and the spatial con-
vergence orders are displayed at a = 0.4 and a = 0.7. In Table 6, fixing M, = M, = 32, the
lell2(M, N) errors and the temporal convergence orders are displayed at a = 0.4and a = 0.7.
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Table 5 Errors for |le]l2(M, N), [|le]loo (M, N) when a =04, a=0.7, At =1/100 for Example 3

a=04 a=07
N My =M, llelloo (M, N) llell2(M, N) order” llelloo (M, N) llell2(M, N) order*
100 4 1.42156e-02 9.39627e-03 - 1.40344e-02 9.26449e-03 -
100 8 2.37926e-03 1.25342e-03 2.90622 2.35250e-03 1.24432e-03 2.89635
100 16 1.46364e-04 6.72258e-05 422071 142362e-04 6.63491e-05 422914
100 32 1.80024e-06 7.32964e-07 6.51913 5.75006e-06 3.14056e-06 440098

Table 6 Errorsand orders at a =04 and a =0.7 for Example 3

a=04 a=07
My =M, N llell2 M, N) order! N llell> (M, N) order
32 4 1.42320e-03 - 4 5.50617e-03 -
32 8 2.22004e-04 2.68049 8 1.10567e-03 231613
32 16 3.48450e-05 267156 16 2.22796e-04 231113
32 32 5.41255e-06 268657 32 4.48793e-05 231160
10’ 10°
2 N J N
" AN 10° N E
AN N
3 AN AN
2 10 N E @ N
5 N 5 N
£ AN g 10 AN 3
g 10 E E g AN
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Figure 3 The spatial convergence rates (loglog) when a = 0.4, N=100 at T = 1 and the temporal
convergence rates (loglog) when a =04, M=32 at T =1 for Example 3

We can also see the convergence orders are exponential in space and O(3 — a) in time. Fig-
ure 3 presents the convergence rates in space when a = 0.4, At =1/100 at T = 1 and the
convergence rates in time at 7 = 1 when a = 0.4, M = 32.

Example 4 We consider the following 2D nonhomogeneous problem for a sequence of
M, = 4,8,16,32 M, = 4,8,16,32, with f(x,y,1) = =32[y2(x*? — x) + x7 2% - y)] +
F(f_u) B3 — x)(y32 — ) and u(x, y,0)) = 0, (x,¥) € [0,1] x [0,1]. The data are chosen
so that the exact solution is

M(x,y, t) — (x3/2 _x)(ys/Z _y)t3‘
It is easy to see that a, = 8, = a, = B, = 1/2, which yields %, = JLM7 and &, = ﬁ

Maximum absolute errors and |le||2(M, N) errors and the related convergence orders
are displayed in Table 7 for different M, and M, at different a with At = 1/100. Table 8
presents the errors in time. Figure 4 presents the convergence rates in space when a = 0.4,
At =1/100 and the convergence rates in time when a = 0.4, M = 32. These data show that
they agree with the theoretical results.
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Table 7 Errors for |le||2(M, N), ||e]loo (M, N) when a =04, a=0.7, At =1/100 for Example 4

Page 30 of 32

a=04 a=07
N My =M, llelloo (M, N) llell2 (M, N) order* llelloo (M, N) llell2(M, N) order*
100 4 3.82411e-04 2.7753%e-04 - 3.79602e-04 2.76254e-04 -
100 8 8.80720e-05 5.15086e-05 242980 8.73038e-05 5.12589e-05 243012
100 16 5.99460e-06 2.93473e-06 413352 5.82776e-06 2.89592e-06 414571
100 32 7.60582e-08 3.20636e-08 6.51615 2.42048e-07 1.30324e-07 447384
Table 8 Errors and orders at a =04 and a = 0.7 for Example 4
a=04 a=07
My =M, N lell2 (M, N) order llell2 (M, N) order
32 4 5.93100e-05 - 4 2.29490e-04 -
32 8 9.25090e-06 2.68061 8 4.60821e-05 231615
32 16 1.45118e-06 267237 16 9.28488e-06 231125
32 32 2.24792e-07 2.69056 32 1.86956e-06 231218
10° 0t
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Figure 4 The spatial convergence rates (loglog) when a =0.4, N=100 at T = 1 and the temporal
convergence rates (loglog) when a =04, M=32at T =1 for Example 4

6 Conclusion

In this work, we have introduced a Sinc-Galerkin scheme for solving a 1D and 2D time-
fractional diffusion equation. The discrete scheme is based on a higher-order method in
time and a Sinc-Galerkin method in space to get high convergence rates. The conver-

~VmadM i space. This is the first paper describing the

gence order is O(3 — a) in time and e
exponentially discrete scheme order for 2D partial differential problems using the Sinc-
Galerkin method. It is shown that we did not need a large mesh. Our next work is to use
the Sinc-Galerkin method to study the temporal and spatial fractional equation in both

time and space for 2D fractional-order problems.
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