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1 Introduction

In this paper, our focus lies on examining the nonlinear subelliptic systems denoted as

2n
— Y XiA{ (&, u, Xu) - Tu = B*(§,u,Xu), inQa=12,..,N, (1.1)

i=1

with the drift term Tu in the Heisenberg group, subject to the superquadratic controllable
growth condition, where @ C H” = R?**! is a bounded domain, A%(&,u, Xu) : @ x RN x
RN s R2N and B*(&, u, Xu) : Q@ x RN x R¥>*N 5 RN,

In the case of subelliptic systems with Hélder continuous coefficients, Wang and Niu
[1] demonstrated the optimal local Holder exponents for horizontal gradients of weak
solutions to systems under the superquadratic (m > 2) structure condition. Additionally,
Wang and Liao [2] derived the subquadratic condition (1 < m < 2) and established par-
tial regularity for weak solutions to nonlinear subelliptic systems under natural growth
condition in Carnot groups. For coefficients in the VMO class, refer to [3—5]. Recently,

we also note that several interesting results for subelliptic problems in the Heisenberg
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groups have been obtained. These include critical Choquard—Kirchhoff problems [6], crit-
ical Kirchhoff equations involving p-sub-Laplacians operators [7], and reverse weighted
Hardy-Littlewood—Sobolev inequalities [8].

The objective of this paper is to relax the requirements on coefficients AY, which are
typically assumed to have Holder continuity in the variables (&, u) to the less restrictive
condition of Dini continuity. Moreover, we aim to establish a partial regularity outcome
with optimal estimates for the modulus of continuity concerning the horizontal derivative
Xu. Specifically, we assume the continuity of A} with respect to the variables (&, ) such
that

A5 & up) - A7 (Ep)| = A+ 1phEe(uip (d (6,8) + 1u-al)

for all £, £ € Q and p € R¥N, where « : (0,+00) — [0, +00) is nondecreasing and pu :
(0, +00) — [0, +00) is nondecreasing and concave with ©«(0,) = 0. We also require that
r — r~" u(r) is nonincreasing for some y € (0, 1) and that

M(r):/ Maf,o<oo for some r > 0. (1.2)
o P

Also we know that several regularity results have been established for weak solutions
with Dini continuous coefficients, see [9] for the subelliptic case of superquadratic growth
and [10] for the subquadratic case. For additional regularity results concerning elliptic sys-
tems and degenerate parabolic systems, readers can consult [11, 12] and the cited refer-
ences therein.

However, it is worth noting the aforementioned results without any drift term. It would
be intriguing to investigate whether these regularity results extend to nonlinear subel-
liptic systems with the drift term in the Heisenberg group. Such systems are of signifi-
cant interest due to the presence of operators with drift terms, such as the Kolmogorov—
Fokker—Planck operator (refer to [13]), which finds applications in physics, natural sci-
ences, and statistical models of transmission diffusion equations.

Regarding subelliptic systems with the drift term, advancements have been made in en-
hancing the regularity results for weak solutions. For instance, Bramanti and Zhu [14]
established L estimates and Schauder estimates for the nondivergent linear degenerate
elliptic operator

q
L= Zaij(x)XiY/ + ﬂo(x)X()
ij=1

constructed by Hormander’s vector fields, highlighting differences between equations
with and without X,. When X, represents the drift vector field on homogeneous groups,
Hou and Niu [15] obtained weighted Sobolev—Morrey estimates for hypoelliptic opera-
tor L. Furthermore, Du, Han, and Niu [16] provided the interior Morrey estimates and
demonstrated Holder continuity for the operator £ with VMO coefficient. In a different
approach, Austin and Tyson [17] achieved C*-smoothness for the operator
1
L=-7 > (X4 v?) £ V3T

i=1
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using geometric analysis method in H". Recently, Zhang and Niu [18] concluded the
Holder regularity of horizontal gradients of weak solutions for quasilinear degenerate el-
liptic equation with a drift term in H"”. Then Zhang and Wang considered a discontinuous
subelliptic system with drift term [19] and established the partial C®* Holder regularity
of weak solutions and the partial Morrey regularity of horizontal gradients for weak solu-
tions.

So we investigate how to achieve C'-regularity of weak solutions to nonlinear subel-
liptic systems with the drift term Tu in the Heisenberg group when the assumption of
Holder continuity of A} is relaxed to Dini continuity. The main new aspect of this paper
is the fact that we are able to deal with the general nonlinear subelliptic systems with Dini
continuous coefficients with the drift 7u and the superquadratic growth 2 < m < co with
respect to horizontal gradients Xu. The drift term Tu will bring us new challenges due to
the lack of the prior assumption for the vertical derivative Tu. As usual, when we consider
the regularity of subelliptic equations with the drift, we shall require the integrability of
Tu, Xu, and X?u, such as [18]. However, this integrability cannot be obtained by differ-
ence quotient in our situation. In this paper, we adopt a new clever method to avoid the
requirement of the integrability. In fact, we employ the relationship of T = X; X,,,; — X1, X;
to establish suitable estimates for Tu in subtle ways. So the processing of drift terms is
different from that of the processing of other terms in the system. Actually, we are going
to employ a generalization of the .A-harmonic approximation technique introduced by
Duzaar and Steffen [20].

Subsequently, we introduce the following precise structural assumptions for the coeffi-
cients AY and B* that are essential for our analysis throughout the paper.

(H1). The term A{ (£, u, p) exhibits differentiability with respect to p, and a constant L
exists such that

m=2

<L(1+Ip’) %, Eup)eQQxRY xRN, m>2,

Ar Emp)

. dAY (E.up)
as specified by A ; (§,u,p) = ———.
p ) & up)=— i
(H2). The term AY (€, u, p) satisfies the following ellipticity condition:

m=2
A Euwpriin) = (Le1pl’) = 1P, vy e RN,
it

where A is a positive constant.
(H3). There exist a modulus of continuity u : (0, +00) — [0, +00) and a nondecreasing

function « : [0, +00) — [1, +00) such that

A2 up) - A7 (Ep)| =+ o) B i (a (6.8) + u-a). (13)

Without loss of generality, we can assume « > 1 and that
(1) p is nondecreasing with ¢£(0,) =0, u(1) = 1;
. . . . )
(12) p is concave, in the proof of the regularity result we have to require that r — =2
is nonincreasing for some exponent y € (0, 1);

(u3) Dini’s condition M(r) = for %”)d,o < 00 for some r > 0.
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(HC) (Controllable growth condition). The term B*(§, i, p) conforms to the following

superquadratic controllable growth condition:

1
|B*(§,u,p)| < (l|p|m(l_7) Pl v e

where a, b, and c are positive constants, also, r takes the value Q”i—?n if m < Q; or falls within

therange Q <r<+ooif m=Q.
Furthermore, condition (H1) implies

m=2
2

|AF (&, p) — A7 (5, u,p)| < CL) (1 + p* +1P1%) 7 1P~ B,

and there exists a continuously nonnegative and bounded function w(s,?) : [0,00) X
[0, 00) — [0, 00), satisfying w(s,0) = 0 for all s. Additionally, w(s,t) is monotonously non-
decreasing in s for fixed ¢, is concave and monotonously nondecreasing in ¢ for fixed s,
such that for all (£, u,p), (é,a,p) € Q x RN x R¥N,

m2 8
A% Euwp) - AT Eup)| <C(L+IpP+1pI°) * o(lpl Ip-BI%). (1.4)
7y :

7 it

Further, (H2) enables us to infer the following inequality:
(A7 G wp) - A7 wp) 0 -p) =¥ (Ip-pI" +lp-pI"), (1.5)

with a positive constant A’. Refer to [1] for detailed explanations.

In this paper, we adapt the method of .A-harmonic approximation to the subelliptic
systems (1.1) in H", aiming to establish partial regularity for weak solutions. The cru-
cial aspect lies in establishing a certain excess decay estimate for the excess functional
D (&, p, XI). In the case m > 2, this functional is defined by

S, p, X = £ [1Xu— X + | Xue — X1 dt,
By (§0)

here we write

f w(E)ds = B, (Eo)| / u(E)de.
By (o) B, (o)

It is demonstrated that if ® (Eo, 0, (Xu)go,p) is sufficiently small on a ball B,,(&), then for

some fixed 0 € (0, i], there exists an excess improvement

P (60,00, (Xt ) < 0% (60,0, X1t ) + K (11t 1| (X2 1) 1 (97T ).

The iteration of this result leads to the excess decay estimate, which in turn implies the
regularity results.

Under the set of assumptions, we are prepared to present the main regularity results.
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Theorem 1 Assume that coefficients A} and B* satisfy (H1-H3), (HC), and (u1)—(u3).
Let u € HW"" (Q,RN) be a weak solution to system (1.1), i.e.,

/A?[@,u,xu)xﬂﬂadg—/Xiu'xmz'(ﬂadg+/Xn+iM'Xi¢ad§
Q Q Q
:/B"‘(E,u,Xu)w"‘dS, Vg € C° (,RY).

Q

Then there exists a relatively closed set Qy C Q2 such thatu € C' (Q\Qo, RN). What is more,
Qo C 1 U Xy and Haar measure (2\$2) = 0, where

¥ = {go € Q:su([)) (\ugo,r\ + ‘(Xu)éo,r‘) = 00}’
>

r—>0%

= {go €eQ: lim inf][ | Xt — (Xu)g,., | dE > 0} .
Br(é0)

In addition, for T € [y, 1) and & € Q\, the horizontal derivative Xu has the modulus of
continuity r — r* + M(r) in a neighborhood of &.

Remark 1 Itis worth noting that our situation includes the subelliptic m-Laplacian system
with the drift term Tu

2n )
SSx (A%E) (1 + 1Xu?) T Xou® ) = Tu = BYE, u, Xu),
PR AEHO

i=1

where & € Q, 2 < m < 00. As previously mentioned, introducing a drift term adds com-
plexity, notably in deriving appropriate estimates for second-order derivatives X;X;u of a
test function. The challenge arises due to the necessity of establishing technical results
allowing for exchange. Specifically, we must leverage the relationship between the hori-
zontal vector field X; and the vertical vector field T ingeniously to estimate the drift term
Tu accurately.

The paper’s content unfolds as follows. In Sect. 2, we gather fundamental concepts and
facts relevant to the Heisenberg group, encompassing horizontal Sobolev space, Poincaré-
type inequalities, Jensen’s inequality, properties associated with Dini continuity, and an
A-harmonic approximation lemma. Section 3 delves into demonstrating a Caccioppoli-
type inequality for weak solutions under conditions (H1-H3), (HC), and (£1)—(13). Mov-
ing to Sect. 4, we establish partial C!-regularity results through a series of steps. Firstly,
we need to present an approximate linearization strategy outlined in Lemma 6, to ap-
ply A-harmonic approximation technique. Subsequently, by employing the A-harmonic
approximation lemma in Sect. 2, we derive an excess improvement estimate for the func-
tional ® (“g‘o, 0p, (Xu)go,@,,) under three smallness condition assumptions. Finally, the proof
of Theorem 1 is provided by iteration.

2 Preliminaries
This section will offer an introduction to the Heisenberg group H”, define function spaces,
and present some elementary estimates essential for subsequent discussions.
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2.1 Introduction of the Heisenberg group H"
The Heisenberg group H” is defined as R?**! endowed with the following group multipli-

cation:

((El,t) , <§1,2)> — (gl +ELE+T+ 1 i (xiyi —J?iyi)) )

i=1

N

forall £ = (£1,2) = (01, %2+ % Y1, Y25 -, Vs ), € = (él,f) = (X1, %2+ ey Ky V1, Y25+ 2 Vs ).
This multiplication corresponds to addition in Euclidean R?**!, its neutral element is 0,
and its inverse to (é L t) is given by (—5 L —t). Particularly, the mapping (é & ) > £ &1
is smooth, therefore (H", ) is a Lie group.

The basic vector fields corresponding to its Lie algebra can be explicitly calculated and

are given by

d y; 0 Rl x; 0 ,
Xi=X&) = — -2 X =X®) = —+ 5 12 n 2.1
©)= 0 20 e ¥ T " @D

with T=T() = %, and note the special structure of the commutators:

T = [Xi, Xusil = = [ Xosis Xi] = XiXisi — Xii X, else

[XXj1=0, and [T,T]=[T,Xi]=0,

that is, (H”, -) is a nilpotent Lie group of step 2. For the horizontal gradient X =
(X1, X, ...,X9,), we call X1,Xs,...,Xs, horizontal vector fields and T the vertical vector
field.

The homogeneous norm is defined by

1/4
1E = (') +e)
and the metric induced by this homogeneous norm is given by
2(5.6) =l

The measure used on H" is Haar measure (Lebesgue measure in R?**1), and the volume

of the homogeneous ball

Br(§o) = {§ € H" :d(£0,5) <R}
is given by

|Br(§o)| = R*"*? | By(£0)| = @R,
where the number

Q=2n+2

is termed the homogeneous dimension of H", while w,, represents the volume of the ho-
mogeneous ball with radius 1.
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2.2 Some definitions and lemmas
Our discussion will introduce the function space and inequalities that are essential for our
results. Initially, we define the horizontal Sobolev space.

Definition 1 (Horizontal Sobolev space) Let 2 C H” be an open set, the horizontal
Sobolev space HW(Q)(1 < m < 00) is defined as

HWY(Q) = {u e L"(Q)|Xu e L"(Q),i=1,2,...,2n},

which is a Banach space under the norm

2n

el iy = ol lmeey + Y 1 Xittl |, (2.2)
i=1

and the space HWOI"”(Q) is the completion of C§°(€2) under the norm (2.2).

Lu [21] established a Poincaré-type inequality linked to Hérmander vector fields, natu-
rally applicable to the Heisenberg group H".

Lemma 1 (Poincaré-type inequality) Let 1 < g < Q with Q being the homogeneous dimen-
sion. For every u € HW4 (B 0 (50)), there exists a positive constant C,, the following holds:

» i
(f (&) — sy |Pds) <Cpo (][ |Xu|qu> , 2.3)
By (§0) By (é0)

where &y € Qand1 <p < g—?q. And that (2.3) is valid for p = q = m(> 2).

Lemma 2 (Lyapunov’s inequality) Assume 0 < m,q < 0o, and f € L™(2) N L1(R2), then for
any r with m <r < g, we have f € L"(2) and

1—
Hf”L’(Q) = Hf”LmDéQ)HfH%q(Q)’

where O <o <1 with L =122
r m q

In fact, the conclusion can be obtained by Hélder’s inequality with the exponent pair
(&)

Following [22], for technical convenience, by letting n(¢) = u? (v/£), we have the corre-
sponding properties for n:

(n1) n is continuous, nondecreasing and 1(0) = 0;

(n2) n is concave, and r — r~Y5(r) is nonincreasing for some exponent y € (0, 1);

(n3) For some r < 0,

H(r) = 4M” (V) = [ /0 r plmdpf < 0.

Changing « by a constant, but keeping ¥ > 1, we can assume that
(n4) n(1) = 1, implying n(¢) > ¢ for ¢ € [0, 1].
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We deduce from the nondecreasing nature of n that sn(¢) < tn(s) forall0 <t < s. Lever-
aging the nonincreasing property of r — @ and n(1) < 1, we address both cases to obtain

sn(t) <sn(s)+t, se[0,1],£>0. (2.4)

From (n2), we deduce for 6 € (0,1), £ >0, j € NU {0},

0% 02

2(/+1)t 921t) 7 92(/+1)t

which implies

Z / «/n(f 14 T,
2
(6%71) —2(1 m)/ T 2(1-67) H@).

It yields particularly that n(¢) < "—ZH (t) forallt <0,and ¢ — t™" H(¢) is also nonincreasing.
In the sequel, we let py(s,£) = (1 + s + ) k(s + 7! and Ky(s,£) = (1 + £)*"«k*(s + t) for
s,t > 0. Note that p; <1 and that s — p;(s,£), t — p1(s, £) are nonincreasing functions.

Specifically, we can get the following .A-harmonic approximation lemma in H” similarly
to [23], serving as the primary tool for establishing C!-continuity outcomes.

Lemma 3 (A-harmonic approximation lemma) Suppose that A and L are fixed positive
constants and n, N € N; for every € > 0, there is a constant § = 8(n,N, A, ¢) € (0, 1] such that
the following hold:
(I) Assume that A € Bil (R*N) with the properties
Aw,v) = Av)®> and AW, v) <LW||v|, v,veR¥™¥N, (2.5)

(IT) For any w € HW"? (B, (&), RN) and that
][ Xw|*dE <1 (2.6)
By (§0)
and

AQXw, Xp)dé
J B, (§0)

<68 sup |Xo|, Ve e Cy(B,y(%)RY), (2.7)
Bp(0)

there exists an A-harmonic function h such that

f XhPdE <1
B,(%0)

and
p2 7[ |h—w|?dE <e. (2.8)
By (o)

Now, we briefly introduce a prior estimate for weak solution .

Page 8 of 25
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Lemma 4 (Prior estimate) Let h € HW™" (Bp(éo), RN ) be any A-harmonic function de-
fined in B,(&y). Then there exists Cy > 1 such that

sup (luf+ p? X+ p* X = Cop? f X, 29)
Bpa(é0) By (&0)

Lemma 5 (Jensen’s inequality) Letw:R — R bea concave function and f(x) € LY(Q), then
the inequality

]é o(f(x)dx < w < ]{2 f (x)dx)

holds. For the proof of this lemma, one can refer to [24].

Throughout our exposition, we claim that C is a constant, which may vary from line to
line, and the dependence of C on the associated coefficients is specified within parentheses
following each constant, if necessary.

3 Caccioppoli type inequality
This section is dedicated to proving a Caccioppoli-type inequality featuring a drift term
under the superquadratic controllable growth condition.

Lemma 6 (Caccioppoli type inequality) Let u € HW'" (Q,RN) represent a weak solution
to system (1.1), satisfying (H1-H3), (HC), and (1)—(u3). For any & = (x(l),xg, 29,99,
Vs t%) € Q, up € RN, X1 € R*™N, and for every p such that 0 <2p < pl%(|u0|, 1XI) <
1 and B,,(&§0) CC R, the inequality

][ [1Xu - XI1* + | Xu - X1 d&
B, (%0)

scc[p”][ u-tPds + o f |u—l|’"ds+1<1<|uo|,|Xl|)n(4p2)]
Bop (o) By (§0)

m(r-1)

r(m-1)
+C, ][ (|Xu|m+ |u|’+1)d§
By (§0)

holds, where C. is constant, | = ug + XI (' — &), uo = ug,p = pr(So) u()dE, and £ =
X1y > X, Y15+ - ., Yn) are the horizontal components of € = (X1,..., %5, Y1, .., Yn, t) € H".

Proof We test the subelliptic system (1.1) with the testing function ¢* = ¢2v with v =u -1,
where ¢ € C3° (sz(&))) serves as a cut-off functionwith0 < ¢ <1, |X¢| < C/p,and¢p =1
on B,(&). From (2.1), we find Xv = Xu — Xl and X¢® = ¢*(Xu — XI) + 2¢(u — [)X ¢, which
leads to

][ AE, u, Xu)p>(Xu — XD)dE
Byp (o)

= 2][ OXPAT (&, u, Xu)(u - DdE + ][ BY(&, u, Xu)p“dE
By (0) By (o)

+ ][ Xiu - X i dE — Xypvith - Xjp dE .
By (80) By (§0)
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From a testing function ¢ = ¢*(u — ), we have
- ][ A&, u, X)¢*(Xu — XI)dE
BZp(EO)

=2][ DXPA® (&, u, XI)(u — D)dE — A% (&, u, X)X @ dE.
By (80) By (§0)

Note that A{ (&o, uo, XI) is a constant, an integration by parts infers that
][ A‘ix(go, M(),XZ)X(padE =0. (31)
Bsp(50)
We can obtain
][ [A%(E, u, Xu) - A (&, u, XD)| $*(Xu — XDdE
Bsp(60)
AT XD - A7 Xa0)] pu— DX
By (§0)
+ ][ [A?(E’LXZ) _All’x(é:r M;Xl)] Xﬁl)adg
Bap(§0)

o Ao X - AELXD] X+ f B X
By (§0) By (§0)

+ ][ Xiu - Xpi®dt — Xyvith - Xip® d&
By (80) By (80)

m=2
2

<2C(L) (L+1Xul® + [XU*) 7 | Xu—XI||¢||u—1||Xp|dE

By (§0)

m , o (3.2)
+ (L+1XI) %k (|uol +201X1) n2 (lu—II*) ¢ | Xu — XI|dE
Bsp(50)

+ 2][ L+ XU E ke (luol +2p1X1) 0% (Ju—11%) 18] s — 11| Xpld
B2p(€0)

+][ (1+ XD e (Juol + 201X n? (40° (1 + X1I2))
32/)(50)
x [¢%1Xu - XI| + 21| |u - || X¢|] d&
+][ <a|Xu|m(l%) +blu) ™ + c> @ dE
BZp(éO)
o X X (- D)de - X X (- D) de.
By (80) By (§0)
=h+h++Ja+]s5+ s
The left-hand side in (3.2) can be estimated by using version (1.5), leading to

F A7 X0 - 45 . XD] - X1
Bap(60)

>) f [1Xu - XI°$* + | Xu - XI|"$*]| dE (3.3)
Bap(§0)

Page 10 of 25
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.Y |Bo(50)|mm

> ][ [1 X — XI1* + | Xu — X1 d&
[Bap(§o)lmm JB, (&)

:x/z—Q][ [1Xu = XIP* + | Xu — XI|™] dE.
By (&0)

Now, let us estimate each term of the right-hand side in (3.2) individually.
To estimate /, for a sufficiently small positive &, employing Young’s inequality and | X¢| <

Cp~1, we obtain

J1 <Ce ][ | Xu — XI1*|p|*dE + Ce™' p~> ][ |u—1°dg
By (§0) By (0)

+ Csj[ [|Xu —X1|’"|¢|%] dt + Csl-mp-mf lu— | dE.
By (§0) Byp(0)

Next, we estimate J,. Utilizing Jensen’s inequality, (2.4), and n(ts) < tn(s) for t > 1, we

get

(L + X" (] + |Xl|>f 0 (lu—17) de

J Byp(0)

<) [ + X"k *(|uol + IXI)(20)*] 1 (ﬁ :
Zp( 0)

(Iu—llz)dé)

1
<Ly ][ - 1dE (3.5)
4 By (E0)

+ (L + XU (uol + IXIN2pY*n [40 (1 + X1« (|uo] + IXll)])

1
Szp_zj[ lu = 112dE + (1 + | XID>"k*(|luol + 1XI)n (4p7) .
By (§0)

Note that (2.4) in the second-to-last inequality is applied with the assumption 2p <
pi” (Juol, 1X1)) < 1.
Using Dini’s continuity condition (H3), Young’s inequality, and (3.5) in /5, we find

)y <e / ¢* | Xu - XIPd
Bop (o)

+ &7 (L + XD (o] +1X1)) n (Ju—-1%)dg
Bap(§0) (3.6)

1
58][ &% Xu — XI|*d + —E’lp_zf lu—1de
By (&0) 4 By (ko)

+e 11+ X" e (uo| + 1XIDn (40%) .

Page 11 of 25
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Similarly, we can obtain
J3 sc][ |u 11?1 Xp *dt
Bap(60)

+ (1 + |XI) ™k (uo| + |X1)) n(lu—1P) g ds (3.7)
By (§0)

scﬂ][ o~ 1Pdg + (L + XU (o] + |XT))1 (40%)
B2p(§0)

and
Ja <(1+ |XI) % ke (Juo| + 201 X1))

« ][ n? (40 (1+ |XU2)) [@%1Xu — XI| + 21| lu ~ 1|| Xp|]
By (50)

58][ | Xu — X129 2dE + c»s][ lu — 1% Xp|*de
By (§0) By (§0)

+267 10 + |1 XI) "2 (|luo| + | XIDn (7[ 4p* (1 +|X1)%) dg)
B

20 (60)
55][ | Xu — XI|*p*dE + ce;p*][ lu—I*de
Bop (o) Byp (o)
+ 2671 (1 + XU 2k (|uol + IXI))n (40%),

where we have used the fact « > 1 in the last inequality.
The term J5 can be estimated by using the controllable growth condition (HC) and
Holder’s inequality, which yields

m(r-1)
O (1™ ) e
Byp (o)

-1

§C’<][ |<o|’ds) (][ [|Xu|’”+|u|’+1]ds> 39)
By (%0) By (§0)

m(r-1)

r(m-1)

<C' ][ [1Xu|™ + |ul” + 1] d& ,
BZP(SO)

where C’ = max{a, b, c}, and we have used the facts |¢| < p? < 1 and % < :’(’Z:B

Lastly, noticing / is independent of ¢ in the last term and thus 7/ =0, i.e.,
XiXnsil = XiXil = 0,
and using | T¢| < L—llclp’z, we conclude that
Jo :][ Xitt - Xori (9w — D) dt - ][ Xovite - X (9> (u — 1)) d&
Bap(60) Bap(60)

=][ XiCu=1) - Xpsi (97w — D) dt + ][ Xil - Xonai (§*(u - 1)) dE
Bsp(50)

Bsp(0)
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_ ][ Kot = 1) - X, (62 - D)) s ][ Kol - X; (6% - D) d
Bop(0)

Bap(60)

= f &> Xi(u — 1) - Xpoi(u — D + ][ ¢Xri0X; (u - 1)?) dt
BZp(EO)

Bap(§0)

XXl @u-D)de - f G- XDz (310
Bsp(50)

Bsp(50)
- ][ XX, (1= 1?) dE + ][ XXyl - (#°(u— D)) di
By, (80) By, (80)
= f X i X; ((u = )?) dt - ][ OXipXnsi (u = 1)?) dE
By (0) By (§0)
=- ][ XX - (u—1)*dE + f ¢Xsi X - (u— )°dt
By (§0)

Byp(0)
1
s—cm‘zf |lu— 1)2dE.
4 Bap(&0)

Joining the estimates (3.3)—(3.4), (3.6)—(3.10) with (3.2), we arrive at

A ][ [1Xu - XI1* + | Xu - X1 d&
By (&0)

1 1
S(C(€_1+1+€)+—8_1+—61) p‘2][ lu—1*ds
4 4 Bay(€0)
+ Cel‘m,o"”][ lu—1|"de
BZp(EO)

+ (37 + 1) (1 + |XI)*"kc*(|uol + |XI1)n (40%)

m(r-1)

r(m-1)
+C ][ [1Xu|™ + |ul” + 1] dé ,
By (§0)

here, C' = max{a,b,c}, A =22 (X' - (2+ C)¢). By choosing a suitable ¢ such that A >0,
we have thus shown the desired Caccioppoli-type estimates. This proves the claim. O

Remark 2 'We emphasize that the function v employed in the proof significantly differs
from that in [25]. Specifically, the horizontal vector fields {X;,X5,...,X>,} in the Heisen-
berg group H"” are more intricate compared to the vector fields { %, %, e ﬁ} in the
Euclidean space. Here,

0 x50 a x; 0

= —, Xpwi=—+——, i=12,...,n
8xi 2 0t 8_)/, 2 0t

i
Thus, the function v chosen here incorporates the horizontal affine function.

4 Optimal partial Holder continuity for subelliptic systems
To utilize the A-harmonic approximation lemma, our focus is directed towards a lemma

that outlines a linearization strategy applicable to nonlinear subelliptic systems such as
(1.1).
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4.1 Linearization strategy
Lemma 7 Assume u € HW"" (Q,RN) with m > 2 is a weak solution to (1.1) under as-

sumptions of (H1-H3), (HC), and (1)—(u3). Let B,(&) CC Q with p < pl%(|uo|, | X))

and for all ¢ € C° (B,(&), RN) with sup |X¢| <1and |¢| < p? <1, it follows that
B, (&0)

f Aa j (%—0: Uop, Xl)(XM - Xl)X@adi:
Iy

<Cy sup |Xgl [w% (X1, (o, p, XL)) D2 (5o, p, XI) + D(Eo, p, X1)
By (0)

+ ©2 (£, p, XI) + F(|uto|, [XI))0? (%) }

where Cy = 2"5* (C(L) +2C" +5+ 2Cp) > 1 and denote
F(s,t) = Ky(s,6) + (1 +s+1)".

Here, we define v = u — | is an approximately A-harmonic map and [ representing a hori-

zontal affine function.

Proof A straightforward computation leads to

1
d
|AY (&0, tho, Xus) — A (8o, 1o, XD)| = / == GA?(so,uo,GXu+(1—9)Xl)d9
0

1
=/ Af"pi (&o, o, 0 Xu + (1 — 0)XI)(Xu — X1)do,
0 “Pg

where we used (3.1) over the ball B,(&) and (1.6).
Noting that pr(So) A% (o, uo, X)) X¢*dE =0, one has

][ A, (Eon oy XD)(Xtt — XD X dE
B, (§0) ”1//3

1
s][ [ / (A‘% | Gt XD~ A% (10, 0Xu + (1 —9>Xz>>
By(&) LJo LPg LPg

X (Xu—Xl)d9:| sup | Xo|dé
Bp(fO)

. ][ A (€0, o, X16) — A%(E, 1, X)| sup |X|dE
By (%) By (£0) (4.1)

+][ |A?‘(§,I,Xu) —Af‘(%’,u,Xu)| sup |Xo|dé
By(%0) By (%0)

+ ][ B*(&, u, Xu)p*d&
32/)(50)

+ ][ Xt - Xi90” dE — Xpvitd - Xjp* d&
By (§0) By (§0)

=+ + s+ T+

Page 14 of 25
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with the obvious meaning of J; — J;. Now, we estimate the term J;. Using (1.2) and (1.4),

we compute

1, m-1
mt

AY (o, u0, X1) = AY ; (&0, o, 0Xu + (1 - 0)X1)
7 7

3=

-

< |:C(1 + XU + |0 (Xu - XI) +Xz|2)‘2_2 w (1X1],16(Xu —Xl)|2)i|
m-1

m=2 | m
+L (1 +10(Xu — XI) + XI|*) 2}

m=2

x [L (1+1X11%)

N

m=2
2

< [C (L+31X11% +21Xu - XI*) % o (1XI], 10(Xu —Xl)|2)}

m=1
m

m=2

x [L (1+20X0% +20Xu - XI?) =

<C@)(1+ |X1|2)’"T_2 (1+|Xu —Xl|2)mT_2 W (1X21, 1 Xu - X11%)
<C@)(1+ |Xl|2)mT_2 | Xu — X120 (1X21, 1 Xu - XI|%).

Through the utilization of (4.2), Holder’s inequality, and leveraging the concavity of t —
w?(s, t) along with Jensen’s inequality, we ultimately reach the following expression:

J, <C(L) wm (XU, 1 Xu - XI%) | Xu - XU™ " sup | Xol|dé
B, (%0) B, (§0)

1
<C(L) sup |Xo¢| ][ a)(|Xl|,|Xu—Xl|2) ][ | Xu — X1 dE
By(§0) Bp(&0) By (§0)

<C(L) sup |Xglom (|Xl|, ][ |Xu—Xl|2d$) @3 (&, p, XI)
By (é0)

m=1

By (60)

<C(L) sup |[Xglon (IX], ®(Eo, p, XD)) D (£, p, XI),
B, (%0)

where we have used the fact % < ’”7‘1 <1 and the assumption ®(&, p, X]) < 1.
The integral J; can be bounded by employing the Dini continuity condition (1.3) and the
inequality 7(¢s) < tn(s) for t > 1, leading to

Jy = sup |Xolk(luol + 1XIDw (p(1 + |XI1) (1+ | Xu))? dt
Bp(&0) Bp(%0)

< sup [ Xgl(luol + IXI)(L + |XI))n? (,02)][ (1+ |XI| + | Xu— XI|)? dé
By (Eo) By(&0)

m=2 m 1
<27 sup |X<P|[K(|uo| + IXID(L +1XID™ 202 (p) (4.4)
Bp(éo)

+ 1> (|uol + XU + IXI))*n (p?) +][

| Xu - Xllmd$:|
By (&o0)

m=2 m 1
<27 sup |Xyl [ ©G60, XD + 23 (o] + XU+ XU 5 (7)),
,u( 0

Page 15 of 25
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where we utilized n (pz) < n% (,02), which is deduced from the nondecreasing nature of
function 7(¢), (n4), and considering the assumption p < p; < 1.

Similarity, by utilizing the Dini continuity condition (1.3), (3.5), and the Poincaré in-
equality (2.3) with p = g = 2, we can approximate as follows:

, 1 m
J3 < sup |X¢ i (Juo| + XU 2 (Ju—11%) (1 + | Xul)? d&
By (60) By (o)
<2"% sup Ile[][ | Xo — XU d& + 1c*(|uo| + |XI1) 0 (lu—1°)dé
B,O(EO) Bp(EO) Bp(EO)

+ ol + 1XID( + X1 ][

By (60)

1
nd (lu—1P) ds}
<2"7 sup |X<p|[<1><so,p,XZ>+2p2 ][ ju — 12dg
B, (%0) B, (%0) (4'5)

+ 1ol + X1 (e~ 11%) + (o] + 1XU(L + | X))’ (02)}

m=2

<2"7 sup |X<p|[q>(.§0,p,X1) + 2Cp][ \Xu — XI2dt
By (&0) By (&o0)

+ 2 (Juol + [XIN( + | XI)Y"n? (p"‘)]

<2"7" sup |Xo| [(1 +2C,) D (&, p, XI) + 2ic*(|o| + | XI))(1 + | XI)Y"n 2 (p2)] .
By (60)

Note the fact that sup |¢| < p? < 1 and (n4), this leads to
By (50)

B=Cf (o™ 1) s
Bp(fo)

m(r-1)

fC/j[ | Xu| 7 |<p|d$+C/][ | — 1) pldE
B,O(EO) Bp(EO)

+C'p*[1+ (luol + p1XIN™]

=1 1
- ]l X — X1 d 7[ ol de
B, (%0) J Bp(&0)
=1 1
+C (f |Xl|md$> (][ |¢|rd§) (4.6)
By (o) B, (0)

r-1

1
+C' ][ | Xu — XI|"dE ][ lpl"de | +C'p*[1+ (luol +1XI)"]
By (60) By (60)

r=1

r=1 1
<2C (][ |Xu—Xl|”’d$> (][ |go|’df;‘)
By (€0) By (£0)

) r-1 m(r-1)
+Cp [1+(|u0|+|Xl|) - 1x1™ ]

<2C'D (60, p, X1) +2C"n 2 () [1+ (lutol + XU,

where we have used r — 1 > M and n(s) <1 for s € (0,1].

Page 16 of 25
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Now, we estimate the last term J. Noting T = X;X,,.; — X,,+:X;, it implies

]é = Xiu . Xn+i¢d§ - Xn+iu . X,Ql)dé
By (§0) By (60)

= ][ Xi(u-1) 'Xn+i(pd£: + Xil - Xyipdé
By (o) By (&0)

- ][ Xn+z'(u - l) : XZQOdE - Xn+il : qu)dé
By (§0) By (§0)

- ][ Xit=)- Xpnipds — f Xyt = 1) - Xopdi
B, (o) By (0)

- ][ Xn+iXil : Wi’? + XanH'l ! (pdg
By(%0) By (£0) (4.7)

= Xi(u—=1) - X, i0dE — Xurilu =) - Xipd&
By (%0) By (%0)

< sup |Xo| ][ (Xt — X1|d&
Bp(EO) Bp(éo)

2
< sup |Xg| ][ (Xt — XIPde
Bp(éo) Bp(éo)

1
< sup |Xo|P2 (o, p, XD).
By (o)

Now, we substitute (4.3)—(4.7) into (4.1) and yield the claim with C; = 2"5* (C (L)+2C" +
5+2C,). O

4.2 Excess improvement
The proof strategy involves approximating the given solution with .A-harmonic functions,
for which decay estimates are available from classical theory. This allows us to establish
the improvement in excess.

Lemma 8 Assuming the conditions of Theorem 1 are met and given a fixed y € (0, 1),
positive constants Cy, C3, and § satisfy the conditions in the A-harmonic approximation
lemma. Letting 6 € (0, 1) be arbitrary, we impose the following smallness conditions on the

excess:
1 1 8
W (|u$0,,0| + |(Xu)§o,p , @ (SO? 12 (Xu)éo,p)) + @2 (SO; 05 (Xu)‘g”o,p) = Er (48)
C2F2 (|MEO,P| ’ (Xu)%‘oﬁ |) n (pz) = 82’ (4.9)

where C, = 8C?C, is a positive constant, together with the radius condition

m
2

p<p” (1+|ug,

1+ |(Xugy,p

), (4.10)

then for T € [y, 1) there holds the excess improvement estimate

D (0,00, (X0)go ) < 07 D (§0, 0, Xta)gy, ) + K* (|t | » | Xty ] ) 1 (pml) ,

where K*(s,t) = C;F2(1 + 5,1 + £).
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Proof We define w = [u — ug, , — Xu)g,,, (§* — §})] 01, where

1

ol)m (92)}E (4.11)

s -2
o1 =Cy' [(Z) D (&, 0, (Xu)gy, ) + 4872F (

with C; > 1 in Lemma 7. Thus we have Xw = o1 (Xu — (Xu)g,,). Now we consider

B, (&) CC Q2 such that p < ,01% ( »|) < L. Ityields

8\* @ (60,0, (X)) 1
Xwl|*d , 0, (Xu)g, (—) W< — < 1. (412
]ip@o)' wids =oi® (o0, Mi0g,) = 3 C3@ (€0, p, (Xu)gy p) ~ CF 12

Applying Lemma 7 on B, (&) to u, for any ¢ € C§° (Bp(?;‘o),RN),

][ A?p/ (%0, o, Xu)gy, 0 ) XwX " dE
By (%0) WP

@ (0, 0, Xtz ) D2 (£, 0, (Xit)ey )

<Ci01 sup |X§0||:60'”(

Bp( 0)

+ @ (£, p, (Xit)ey ) + P (E0, pr (Xtt)ey ) + Fliol, IXID)y (pz)]

) _1
=< sup |X<P|{ |:<4_1<> @72 (SO»IO’(XI")EO,P)}

By (60)

x [w%( ® (£, 0, (X)) 7 (Eo, 9, (Xt )

+ @3 (&, p, Xy ) + P (E0r 0, (Xt)ey ) ] (4.13)
[P @A) Fual Xt (62) )

8 L
< sup |Xpl| Som (
Bp(éo)

() (SO’ P> (XM)EO’P))

S

5§ 6.1 1)
ot Z<I>2 (50, ,O,(th)golp) + 5]

< sup |Xg| [wi«(
By (60)

1 36
D (&0, 0, (X10)gy ) + P2 (50, 0, Xut)gy, ) + Z]

<é sup |Xe¢|,
By (&0)

Considering the smallness condition (4.8), we observe that (4.12) and (4.13) imply con-
ditions (2.6) and (2.7) respectively in the A-harmonic approximation lemma. Also, note
that assumptions (H1) and (H2) with u = ug, , and p = (Xu)g, , imply condition (2.5). So
there exists an AZ pg (&0, Uz, p» (X1t)g,,»)- harmonic function 1 € H w2 (Bp (&),RN ) such
that

][ |Xh|2dE <1 (4.14)
By (50)
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and
-2 2
0 ][ |lw—h|"dé <e. (4.15)
By (§0)

Using Lemma 6 on the ball By, (£) with uo = 11,20, 0 € (0, 1] and replacing X/ by
(Xtt)gy,p + 07 (Xh)gy 205, we Obtain

/ (1 = (O + 07 OOz 20) |
Bﬁp(go)

+ ‘Xu - ((Xu)go,p + O'l_l(Xh)goyzgp) |m )d$
C.
©0)* JBay, (60
Ce
+ m
(0p) Bagp(é0)

=

|t = ttey.000 = (Xt + 07 XDy 200) (61 = &) ’2 d§

|t — gy 000 — ((Xtt)gy,p + 07 X)go20p) (1 — &9)|" dE (4.16)

+ Cewn(200)? [Ki (Jusgy 200

Xu)go,p + 07 ' (XP)go 200 |) 1 ((200)7) ]

m(r-1)

r(m-1)
+C, 7[ (|Xu|"‘ + |ul” + 1) |dE
J By (§0)

I T 4TS

’

We see that g(t) = f B (EO)(u — 7)%d¢ achieves its minimal value at T = u)59,, and
7

u— (Xu)gy,p + 07 XMy 00,) (81 = &5)

has the mean value 59, on the ball By, (). Applying the definition of w, the Poincaré
inequality, (4.15), (2.9), and (4.14), we derive the following estimate:

C

(00)% J By, 20) |t — sty 000 — (Xt + 07 XM 200) (51 = &) |2d‘§
260p (50

<4C.(20p) %07 f | = By 200 — (K)o 00, (61— 62)|* dE

Bagp(é0)

<8C20p o f [ lw i =g, — O (61 - )]

Bagp(§0)

<8C.oi” | (20)%2p™ f lw—h|*d& + cp][ Xk = Xy ) 417
By (€o) Bagp(0)

200 (0)

<8C.07> ((29)025 + C(26p)° ][ |X2h|* ds)
B
<4C,072 [Z_Q_IQ_Q_ZS 4 scjcoez]

<C.C3(Cro)) 2 [07 %% +607],

Page 19 of 25
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where C3 = 4C? <2‘Q‘1 + SCE C0> > 1, we have employed the definition of o in (4.11) with
Uo = Ug, 20, along with the fact that

][ |X?h| dg < sup [X*h| < CO,O_Z][ |Xh|2de < Cop2.
Bagp(§0) B, (&) By (o)

Then it follows
J{ = CeC30,(26p)%(Cron) 2 [67% 2 +67].

For 2 < m < Q, we find %‘—}Z’ = # < % < % Hence, there exists ¢ € [0, 1) such that

1 1 1
—==—(1-H+—t.
m 2 m*

Employing Lyapunov’s inequality, Young’s inequality, and (4.17), then

C.
(00)" JBo,e0)

|t = gy 200 — ((Xth)gy o + 07 (X)go 200) (€' = &5) | dE

a-n%
C. _
= " 7[ |"‘ — tgo20p = (Xt)gy,p + 07 I(Xh)éo,%?ﬂ) (51 - 501) iz d§
©p)" | /B2, 0)
tl%

g [f |t = 11y 29p — (Xt + 07" (XM)ey 20) (§ = &) |m* dg}
Bsgp(é0)

C. [Cs0p) (. o a-n%
=0y {<clal>2 [0 +92]}

t
x [(2cpep)m][ g |Xu — (Xu)gy,p + 07 Xy 200 )| dg]
Bagp(50)

m
2

=t Cs _o-
Sccgl—t {m[@ Q 28+92]}

+C(2Cy)"e 7[ |Xu — (Xu)gy,p + 07 XMy 20, )| dE

Bagp(&0)

<C.CE e (Cron) 2 [07% 2 +67]

+C.(2C,)"e1 ][ |Xu — (Xw)gy,p + 07 XDy 00,) | dE,
BQ/)(EO)

where

— £ fB29p(50) iXu - ((Xu)éo,ﬂ + Gfl(Xh)éo,zﬂp) |m d&
Taopieny [ X0t = (Xw)eg 0 + 077 (X)) ™ -~

€1

Then we conclude
J <C.CE w,(200)2% T (Cron) 2 [079 % + 67

+Ce(2C,)"e129 / | Xu — ((Xu)gy,p + 07 XMy 20, )| dE.
Bé?/)(éo)

Page 20 of 25
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Noting that the smallness conditions (4.8)—(4.9) imply
1
07°Cy = CyCu® (50, p, (Xut)gy ) + §C2F2178_2 <1,

with Cy = max {Co, (29)‘Q}, assuming %Cf C48? < 1 (which is not restrictive), we apply the
prior estimate (2.8) for the A-harmonic function %, then

2
lor ' (Xh)g 00| = 07" sup |Xh| <o7'/Co (7{3 ($)|Xhl2d5)
050

Bgp(60) (4.18)
<o;'C<1.
Furthermore, it follows by the Poincaré inequality
|t420,20 | < |1ago,0] + 140,200 — 50,0
g+ e g (67 - ) e
Bagp(§0)
1
) 2
< | + 2079 (£ =Gt (61 - &) - s
By(0) (4.19)

< |ugy,p| + (207229 C, @ (50, 0, Xty )
< |ug,p| + Clo7 1 Cp(20) Y2

<ugy,| +07'V/Ca

= |”Eo,p| +1,

where we have used the definition of o; in (4.11) and the fact C; > C,,.
Therefore, (4.18) and (4.19) yield

Ji <Cen(20p)° [Ky (1 + g,

L+ |(Xwg,p|) 1 ((2600)%) ]

<C.wn(20p)°F (1 + |ugy |, 1 + | Xty 0 |) 1 ((200)%) .

Using the Poincaré inequality (2.3), we have

m(r-1)

r(m-1)
7[ (IXul™ + |ul” + 1) d
Bagp(&0)
m(r-1)

r(m-1)
sl o] o, )
Bapp (60)

m(r-1)

m(r-1)

r(m-1)
+ |:][ 21 <|u — Ugy,p — (Xu)éo,/) (‘51 - S(}) |’") d§:|
Bagp(60)

m(r-1)

+ [(1 421 |M50.p + (Xu)gy p (51 _ E01)|r>] oD
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m(r-1)

. r(m-1) m m(r-1)
sclanef (pu-om, ] @ ol
Bp(éo)

r(m-1)

—

r—

+C [(29)‘Q ][ (|Xu = Xuyg | ™) dt }
Bp(SO)

m(r-1)

[+ 2770 g, p + K |) |7

|

m(r=1) _m(r=1)
<C[20) % (&, p, X)gy,p) ] D + C (1 + |ugy | + | Xy, ])” 7D

m(r-1)
SC'(Z + ’MSO:P| + |(Xu)§0,p|) mty

where we utilize the fact (20)~2d (&, p, (Xu)g,,p) < 1 in the last inequality, implied by the
assumption o7 2C, < 1 with Cy = max {Co, (26)~?}. Considering

m(r—1) mz(r—1)<2m(r—1)
m-1 rm-1) — m-1"

we have

)

Ji < Ca,(260p)°F D (1+ |ug,,

(X)) 1 ((200)77)

where we have used Qrzfn(r_’ﬁ) <Q+ ;"% and (20p)m-1 < n ((29,0)%).
Combining J{, 7, J, Ji with (4.16), we obtain

/B o | Xut — (X, + 07 (X 9,) |
6p 50

+(1-(2C)"Cee129) / | X1 — (Xu)gy,p + 07 XM 20,) | dE
By, (§0)

<CeCf 0n(200)%(Cro) 2 [T + 1] [672 % + 6]

+ Cewn(20p)°F (|ugy

1+ [ (Xgo ) 1 (260)7)

28 2ETHT (1 [ty | |00 ) 1 (20777
=Cs0,(200)? [0~ 26 + 67 (C101)~”

’

+ Cawu(20p)°F* (1 + |ug,,p

Lt | Xe ) 1 (077)
where C5 = C.C? [81;—3 + 1] > 1.

Selecting a suitable small &; > 0 such that 1 - (2C,,)”’C6812Q > 0 and considering the
smallness condition (4.10) implies

o =<p1 (|M50,20p|,

(Xh)eo,p + 07 (Xh)z4,20p

),
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as seen in (4.18) and (4.19), we conclude

@ (&0,0p, (Xu)go,ep)

- ][ [|Xu — (Xu)ey 0p |2 + | Xu — Xu)gy 6, |’”] dt
Byp(§0)

S][B &) |:|XM - ((Xu)éo,p + U{l(Xh)go,ng) |2 + |Xlxl - ((XM)SO,P + Gfl(Xh)goyzgp) |m] d%‘
00 (80

20(9-22¢ 4 92) 8\ 72
=S -eg)Cend) [ (1> © (600 )
572 () F* (1t 1 X0, |

+ CF? (|u$0,p

L+ | Xy p|) 1 (p%)
S 2
<Ge[07% e +07] [<I> (0,0, (Xin)ey ) + (1) 4570 (0°) F* (I, |(Xu>go,p|)}

+ C6F2 (|M§0,p

ot | Qe (7)),

_ C52Q s -2
where Cy = [Caccad] (3) ">1

Given 1 € [y, 1), we choose 6 € (0, i] sufficiently small to guarantee 2Cs0% < 6%, and
set ¢ = 92+, Consequently,

% (507 9,0’ (XM)&’(),@,O)
1 m
<67 ® (&, p, (Xt)gy ) + (5C692 + C6> F2 (1 + |ugyp |1+ |[X)gy,p|) 1 (pm)

<0* @ (&0, p, X)gy,p) + CrE> (1 + |ugy

L+ (X, |) (p%)

’

=07 d (50: 05 (Xu)éo,p) +K* (‘”504’

(Xu)éo,p‘) n (P%) )

where C; = (3C66” + Cg) > 1 and K*(s,£) = C;F2(1 +5,1 + £). Thus we conclude Lemma 8.

O
4.3 Iteration and Proof of Theorem 1
For T > 0, there exists ®(T) > 0 (depending on Q, N, 1, L, T and w) such that
1 1 8
w0 2T, 200(1) + 205 (1) < (4.20)
and
2(1 +,/C,,) JOo(T) <622 (1-67)T, 4.21)

with ®o(T) from (4.20) and (4.21), we choose po(T) € (0,1] (depending on Q, N, A, L, 7,
w, n and «) such that

po(T) < p? (1+2T,1+27), (4.22)
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CF*(2T,2T)n (po(T)?) < 8%, (4.23)

Ko(T)n (po(T)*) < (0% - 6°7) @o(T), (4.24)
and

2(1 + Cp)Ko(T)H (po(T)?) <62 (1-67)* (6% - 6°7) T?, (4.25)

where Ko(T) := K*(2T,2T).
By applying the proof method of Lemma 5.1 in [22] and conditions (4.20)—(4.25),
Lemma 9 can be proven. It suffices to complete the proof of Theorem 1 once we obtain

Lemma 9.

Lemma 9 We assert that for some Ty > 0 and B,(&y, p) CC 2, we have
(1) lugg,pl + |(Xugy,p)| < Tos
(2) p < po(To);
(3) @ (0, 0, KXi)gy,) < D(T0).
Then conditions (4.8)—(4.10) hold for the balls B, (&) for j € N U {0}. Additionally, the

existence of lim Ag, = lim (Xu) ), is guaranteed, and the estimate
J—> 00

]i o = Dy Pl = s ()™ @6, p, (X)) + H (7))
P 0)

holds for 0 < r < p with a constant Cg = Cg(Q,N, A, L, T, Tp).

Proof The proof closely resembles that of Lemma 5.1 in [22]. We omit it here. O
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