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Abstract
We investigate the interior regularity to nonlinear subelliptic systems in divergence
form with drift term for the case of superquadratic controllable structure conditions in
the Heisenberg group. On the basis of a generalization of theA-harmonic
approximation technique, C1-regularity is established for horizontal gradients of
vector-valued solutions to the subelliptic systems with drift term. Specially, our result
is optimal in the sense that in the case of Hölder continuous coefficients we directly
attain the optimal Hölder exponent for the horizontal gradients of weak solutions on
the regular set.
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1 Introduction
In this paper, our focus lies on examining the nonlinear subelliptic systems denoted as

–
2n∑

i=1

XiAα
i (ξ , u, Xu) – Tu = Bα(ξ , u, Xu), in �,α = 1, 2, . . . , N , (1.1)

with the drift term Tu in the Heisenberg group, subject to the superquadratic controllable
growth condition, where � ⊂ H

n = R
2n+1 is a bounded domain, Aα

i (ξ , u, Xu) : � × R
N ×

R
2n×N →R

2n×N , and Bα(ξ , u, Xu) : � ×R
N ×R

2n×N → R
N .

In the case of subelliptic systems with Hölder continuous coefficients, Wang and Niu
[1] demonstrated the optimal local Hölder exponents for horizontal gradients of weak
solutions to systems under the superquadratic (m > 2) structure condition. Additionally,
Wang and Liao [2] derived the subquadratic condition (1 < m < 2) and established par-
tial regularity for weak solutions to nonlinear subelliptic systems under natural growth
condition in Carnot groups. For coefficients in the VMO class, refer to [3–5]. Recently,
we also note that several interesting results for subelliptic problems in the Heisenberg
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groups have been obtained. These include critical Choquard–Kirchhoff problems [6], crit-
ical Kirchhoff equations involving p-sub-Laplacians operators [7], and reverse weighted
Hardy–Littlewood–Sobolev inequalities [8].

The objective of this paper is to relax the requirements on coefficients Aα
i , which are

typically assumed to have Hölder continuity in the variables (ξ , u) to the less restrictive
condition of Dini continuity. Moreover, we aim to establish a partial regularity outcome
with optimal estimates for the modulus of continuity concerning the horizontal derivative
Xu. Specifically, we assume the continuity of Aα

i with respect to the variables (ξ , u) such
that

∣∣∣Aα
i (ξ , u, p) – Aα

i

(
ξ̃ , ũ, p

)∣∣∣ ≤ (1 + |p|) m
2 κ(|u|)μ

(
d

(
ξ , ξ̃

)
+ |u – ũ|

)

for all ξ , ξ̃ ∈ � and p ∈ R
2n×N , where κ : (0, +∞) → [0, +∞) is nondecreasing and μ :

(0, +∞) → [0, +∞) is nondecreasing and concave with μ(0+) = 0. We also require that
r → r–γ μ(r) is nonincreasing for some γ ∈ (0, 1) and that

M(r) =
ˆ r

0

μ(ρ)

ρ
dρ < ∞ for some r > 0. (1.2)

Also we know that several regularity results have been established for weak solutions
with Dini continuous coefficients, see [9] for the subelliptic case of superquadratic growth
and [10] for the subquadratic case. For additional regularity results concerning elliptic sys-
tems and degenerate parabolic systems, readers can consult [11, 12] and the cited refer-
ences therein.

However, it is worth noting the aforementioned results without any drift term. It would
be intriguing to investigate whether these regularity results extend to nonlinear subel-
liptic systems with the drift term in the Heisenberg group. Such systems are of signifi-
cant interest due to the presence of operators with drift terms, such as the Kolmogorov–
Fokker–Planck operator (refer to [13]), which finds applications in physics, natural sci-
ences, and statistical models of transmission diffusion equations.

Regarding subelliptic systems with the drift term, advancements have been made in en-
hancing the regularity results for weak solutions. For instance, Bramanti and Zhu [14]
established Lp estimates and Schauder estimates for the nondivergent linear degenerate
elliptic operator

L =
q∑

i,j=1

aij(x)XiYj + a0(x)X0

constructed by Hörmander’s vector fields, highlighting differences between equations
with and without X0. When X0 represents the drift vector field on homogeneous groups,
Hou and Niu [15] obtained weighted Sobolev–Morrey estimates for hypoelliptic opera-
tor L. Furthermore, Du, Han, and Niu [16] provided the interior Morrey estimates and
demonstrated Hölder continuity for the operator L with VMO coefficient. In a different
approach, Austin and Tyson [17] achieved C∞-smoothness for the operator

L = –
1
4

n∑

i=1

(
X2

i + Y 2
j

)
± √

3T
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using geometric analysis method in H
n. Recently, Zhang and Niu [18] concluded the

Hölder regularity of horizontal gradients of weak solutions for quasilinear degenerate el-
liptic equation with a drift term in H

n. Then Zhang and Wang considered a discontinuous
subelliptic system with drift term [19] and established the partial C0,α Hölder regularity
of weak solutions and the partial Morrey regularity of horizontal gradients for weak solu-
tions.

So we investigate how to achieve C1-regularity of weak solutions to nonlinear subel-
liptic systems with the drift term Tu in the Heisenberg group when the assumption of
Hölder continuity of Aα

i is relaxed to Dini continuity. The main new aspect of this paper
is the fact that we are able to deal with the general nonlinear subelliptic systems with Dini
continuous coefficients with the drift Tu and the superquadratic growth 2 < m < ∞ with
respect to horizontal gradients Xu. The drift term Tu will bring us new challenges due to
the lack of the prior assumption for the vertical derivative Tu. As usual, when we consider
the regularity of subelliptic equations with the drift, we shall require the integrability of
Tu, Xu, and X2u, such as [18]. However, this integrability cannot be obtained by differ-
ence quotient in our situation. In this paper, we adopt a new clever method to avoid the
requirement of the integrability. In fact, we employ the relationship of T = XiXn+i – Xn+iXi

to establish suitable estimates for Tu in subtle ways. So the processing of drift terms is
different from that of the processing of other terms in the system. Actually, we are going
to employ a generalization of the A-harmonic approximation technique introduced by
Duzaar and Steffen [20].

Subsequently, we introduce the following precise structural assumptions for the coeffi-
cients Aα

i and Bα that are essential for our analysis throughout the paper.
(H1). The term Aα

i (ξ , u, p) exhibits differentiability with respect to p, and a constant L
exists such that

∣∣∣∣A
α

i,pj
β

(ξ , u, p)

∣∣∣∣ ≤ L
(
1 + |p|2) m–2

2 , (ξ , u, p) ∈ � ×R
N ×R

2n×N , m ≥ 2,

as specified by Aα

i,pj
β

(ξ , u, p) = ∂Aα
i (ξ ,u,p)

∂pj
β

.

(H2). The term Aα
i (ξ , u, p) satisfies the following ellipticity condition:

Aα

i,pj
β

(ξ , u, p)ηα
i η

β

j ≥ λ
(
1 + |p|2) m–2

2 |η|2, ∀η ∈R
2n×N ,

where λ is a positive constant.
(H3). There exist a modulus of continuity μ : (0, +∞) → [0, +∞) and a nondecreasing

function κ : [0, +∞) → [1, +∞) such that

∣∣∣Aα
i (ξ , u, p) – Aα

i

(
ξ̃ , ũ, p

)∣∣∣ ≤ (1 + |p|) m
2 κ(|u|)μ

(
d

(
ξ , ξ̃

)
+ |u – ũ|

)
. (1.3)

Without loss of generality, we can assume κ ≥ 1 and that
(μ1) μ is nondecreasing with μ(0+) = 0, μ(1) = 1;
(μ2) μ is concave, in the proof of the regularity result we have to require that r → μ(r)

rγ

is nonincreasing for some exponent γ ∈ (0, 1);
(μ3) Dini’s condition M(r) =

´ r
0

μ(ρ)
ρ

dρ < ∞ for some r > 0.
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(HC) (Controllable growth condition). The term Bα(ξ , u, p) conforms to the following
superquadratic controllable growth condition:

|Bα(ξ , u, p)| ≤ a|p|m
(

1– 1
r

)

+ b|u|r–1 + c,

where a, b, and c are positive constants, also, r takes the value mQ
Q–m if m < Q; or falls within

the range Q ≤ r < +∞ if m = Q.
Furthermore, condition (H1) implies

∣∣Aα
i (ξ , u, p) – Aα

i (ξ , u, p̃)
∣∣ ≤ C(L)

(
1 + |p|2 + |p̃|2) m–2

2 |p – p̃|,

and there exists a continuously nonnegative and bounded function ω(s, t) : [0,∞) ×
[0,∞) → [0,∞), satisfying ω(s, 0) = 0 for all s. Additionally, ω(s, t) is monotonously non-
decreasing in s for fixed t, is concave and monotonously nondecreasing in t for fixed s,
such that for all (ξ , u, p) ,

(
ξ̃ , ũ, p̃

)
∈ � ×R

N ×R
2n×N ,

∣∣∣∣A
α

i,pj
β

(ξ , u, p) – Aα

i,pj
β

(ξ , u, p̃)

∣∣∣∣ ≤ C
(
1 + |p|2 + |p̃|2) m–2

2 ω
(|p|, |p – p̃|2) . (1.4)

Further, (H2) enables us to infer the following inequality:

(
Aα

i (ξ , u, p) – Aα
i (ξ , u, p̃)

)
(p – p̃) ≥ λ′ (|p – p̃|2 + |p – p̃|m)

, (1.5)

with a positive constant λ′. Refer to [1] for detailed explanations.
In this paper, we adapt the method of A-harmonic approximation to the subelliptic

systems (1.1) in H
n, aiming to establish partial regularity for weak solutions. The cru-

cial aspect lies in establishing a certain excess decay estimate for the excess functional
(ξ0,ρ, Xl). In the case m > 2, this functional is defined by

(ξ0,ρ, Xl) =
 

Bρ (ξ0)

[|Xu – Xl|2 + |Xu – Xl|m]
dξ ,

here we write

 
Bρ (ξ0)

u(ξ )dξ =
∣∣Bρ(ξ0)

∣∣–1
Hn

ˆ
Bρ (ξ0)

u(ξ )dξ .

It is demonstrated that if 
(
ξ0,ρ, (Xu)ξ0,ρ

)
is sufficiently small on a ball Bρ(ξ0), then for

some fixed θ ∈ (0, 1
4 ], there exists an excess improvement


(
ξ0, θρ, (Xu)ξ0,θρ

) ≤ θ2τ
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ K∗ (|uξ0,ρ |, |(Xu)ξ0,ρ |

)
η

(
ρ

m
m–1

)
.

The iteration of this result leads to the excess decay estimate, which in turn implies the
regularity results.

Under the set of assumptions, we are prepared to present the main regularity results.
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Theorem 1 Assume that coefficients Aα
i and Bα satisfy (H1–H3), (HC), and (μ1)–(μ3).

Let u ∈ HW 1,m (
�,RN)

be a weak solution to system (1.1), i.e.,

ˆ
�

Aα
i (ξ , u, Xu)Xiϕ

αdξ –
ˆ

�

Xiu · Xn+iϕ
αdξ +

ˆ
�

Xn+iu · Xiϕ
αdξ

=
ˆ

�

Bα(ξ , u, Xu)ϕαdξ , ∀ϕ ∈ C∞
0

(
�,RN)

.
(1.6)

Then there exists a relatively closed set �0 ⊂ � such that u ∈ C1 (
�\�0,RN)

. What is more,
�0 ⊂ �1 ∪ �2 and Haar measure (�\�0) = 0, where

�1 =
{
ξ0 ∈ � : sup

r>0

(∣∣uξ0,r
∣∣ +

∣∣(Xu)ξ0,r
∣∣) = ∞

}
,

�2 =
{
ξ0 ∈ � : lim

r→0+
inf

 
Br(ξ0)

∣∣Xu – (Xu)ξ0,r
∣∣2 dξ > 0

}
.

In addition, for τ ∈ [γ , 1) and ξ0 ∈ �\�0, the horizontal derivative Xu has the modulus of
continuity r → rτ + M(r) in a neighborhood of ξ0.

Remark 1 It is worth noting that our situation includes the subelliptic m-Laplacian system
with the drift term Tu

–
2n∑

i=1

Xi

(
Aα

i (ξ )
(
1 + |Xu|2) m–2

2 Xiuα

)
– Tu = Bα(ξ , u, Xu),

where ξ ∈ �, 2 < m < ∞. As previously mentioned, introducing a drift term adds com-
plexity, notably in deriving appropriate estimates for second-order derivatives XiXju of a
test function. The challenge arises due to the necessity of establishing technical results
allowing for exchange. Specifically, we must leverage the relationship between the hori-
zontal vector field Xi and the vertical vector field T ingeniously to estimate the drift term
Tu accurately.

The paper’s content unfolds as follows. In Sect. 2, we gather fundamental concepts and
facts relevant to the Heisenberg group, encompassing horizontal Sobolev space, Poincaré-
type inequalities, Jensen’s inequality, properties associated with Dini continuity, and an
A-harmonic approximation lemma. Section 3 delves into demonstrating a Caccioppoli-
type inequality for weak solutions under conditions (H1–H3), (HC), and (μ1)–(μ3). Mov-
ing to Sect. 4, we establish partial C1-regularity results through a series of steps. Firstly,
we need to present an approximate linearization strategy outlined in Lemma 6, to ap-
ply A-harmonic approximation technique. Subsequently, by employing the A-harmonic
approximation lemma in Sect. 2, we derive an excess improvement estimate for the func-
tional 

(
ξ0, θρ, (Xu)ξ0,θρ

)
under three smallness condition assumptions. Finally, the proof

of Theorem 1 is provided by iteration.

2 Preliminaries
This section will offer an introduction to the Heisenberg group H

n, define function spaces,
and present some elementary estimates essential for subsequent discussions.
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2.1 Introduction of the Heisenberg group H
n

The Heisenberg group H
n is defined as R2n+1 endowed with the following group multipli-

cation:

((
ξ 1, t

)
,
(
ξ̃ 1, t̃

))
→

(
ξ 1 + ξ̃ 1, t + t̃ +

1
2

n∑

i=1

(
xiỹi – x̃iyi

)
)

,

for all ξ =
(
ξ 1, t

)
= (x1, x2, . . . , xn, y1, y2, . . . , yn, t), ξ̃ =

(
ξ̃ 1, t̃

)
= (x̃1, x̃2, . . . , x̃n, ỹ1, ỹ2, . . . , ỹn, t̃).

This multiplication corresponds to addition in Euclidean R
2n+1, its neutral element is 0,

and its inverse to
(
ξ̃ 1, t

)
is given by

(
–ξ̃ 1, –t

)
. Particularly, the mapping

(
ξ , ξ̃

)
→ ξ · ξ̃–1

is smooth, therefore (Hn, ·) is a Lie group.
The basic vector fields corresponding to its Lie algebra can be explicitly calculated and

are given by

Xi ≡ Xi(ξ ) =
∂

∂xi
–

yi

2
∂

∂t
, Xn+i ≡ Xn+i(ξ ) =

∂

∂yi
+

xi

2
∂

∂t
, i = 1, 2, . . . , n, (2.1)

with T ≡ T(ξ ) = ∂
∂t , and note the special structure of the commutators:

T = [Xi, Xn+i] = – [Xn+i, Xi] = XiXn+i – Xn+iXi, else

[Xi, Xj] = 0, and [T , T] = [T , Xi] = 0,

that is, (Hn, ·) is a nilpotent Lie group of step 2. For the horizontal gradient X =
(X1, X2, . . . , X2n), we call X1, X2, . . . , X2n horizontal vector fields and T the vertical vector
field.

The homogeneous norm is defined by

∣∣∣∣(ξ 1, t
)∣∣∣∣ =

(∣∣ξ 1∣∣4 + t2
)1/4

,

and the metric induced by this homogeneous norm is given by

d
(
ξ̃ , ξ

)
=

∣∣∣
∣∣∣ξ–1 · ξ̃

∣∣∣
∣∣∣ .

The measure used on H
n is Haar measure (Lebesgue measure in R

2n+1), and the volume
of the homogeneous ball

BR(ξ0) =
{
ξ ∈ H

n : d(ξ0, ξ ) < R
}

is given by

|BR(ξ0)| = R2n+2 |B1(ξ0)|� ωnRQ,

where the number

Q = 2n + 2

is termed the homogeneous dimension of Hn, while ωn represents the volume of the ho-
mogeneous ball with radius 1.
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2.2 Some definitions and lemmas
Our discussion will introduce the function space and inequalities that are essential for our
results. Initially, we define the horizontal Sobolev space.

Definition 1 (Horizontal Sobolev space) Let � ⊂ H
n be an open set, the horizontal

Sobolev space HW 1,m(�)(1 ≤ m < ∞) is defined as

HW 1,m(�) =
{

u ∈ Lm(�)
∣∣Xiu ∈ Lm(�), i = 1, 2, . . . , 2n

}
,

which is a Banach space under the norm

||u||HW 1,m(�) = ||u||Lm(�) +
2n∑

i=1

||Xiu||Lm(�), (2.2)

and the space HW 1,m
0 (�) is the completion of C∞

0 (�) under the norm (2.2).

Lu [21] established a Poincaré-type inequality linked to Hörmander vector fields, natu-
rally applicable to the Heisenberg group H

n.

Lemma 1 (Poincaré-type inequality) Let 1 < q < Q with Q being the homogeneous dimen-
sion. For every u ∈ HW 1,q (

Bρ(ξ0)
)
, there exists a positive constant Cp, the following holds:

( 
Bρ (ξ0)

|u(ξ ) – uξ0,ρ |pdξ

) 1
p

≤ Cpρ

( 
Bρ (ξ0)

|Xu|qdξ

) 1
q

, (2.3)

where ξ0 ∈ � and 1 ≤ p ≤ qQ
Q–q . And that (2.3) is valid for p = q = m(≥ 2).

Lemma 2 (Lyapunov’s inequality) Assume 0 < m, q < ∞, and f ∈ Lm(�) ∩ Lq(�), then for
any r with m < r < q, we have f ∈ Lr(�) and

||f ||Lr(�) ≤ ||f ||1–α
Lm(�)||f ||αLq(�),

where 0 < α < 1 with 1
r = 1–α

m + α
q .

In fact, the conclusion can be obtained by Hölder’s inequality with the exponent pair(
m

(1–α)r , q
αr

)
.

Following [22], for technical convenience, by letting η(t) = μ2 (√
t
)
, we have the corre-

sponding properties for η:
(η1) η is continuous, nondecreasing and η(0) = 0;
(η2) η is concave, and r → r–γ η(r) is nonincreasing for some exponent γ ∈ (0, 1);
(η3) For some r < 0,

H(r) := 4M2 (√
r
)

=
[ˆ r

0
ρ–1

√
η(ρ)dρ

]2

< ∞.

Changing κ by a constant, but keeping κ ≥ 1, we can assume that
(η4) η(1) = 1, implying η(t) ≥ t for t ∈ [0, 1].
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We deduce from the nondecreasing nature of η that sη(t) ≤ tη(s) for all 0 ≤ t ≤ s. Lever-
aging the nonincreasing property of r → η(r)

r and η(1) ≤ 1, we address both cases to obtain

sη(t) ≤ sη(s) + t, s ∈ [0, 1], t > 0. (2.4)

From (η2), we deduce for θ ∈ (0, 1), t > 0, j ∈N∪ {0},

2
γ

(1 – θγ )
√

η
(
θ2jt

)
=
ˆ θ2jt

θ2(j+1)t
τ

γ
2 –1

√
η(θ2jt)

(θ2jt)
γ
2

dτ ≤
ˆ θ2jt

θ2(j+1)t

√
η(τ )

τ
dτ ,

which implies

∞∑

j=0

√
η

(
θ2jt

) ≤ γ

2(1 – θγ )

ˆ t

0

√
η(τ )

τ
dτ =

γ

2(1 – θγ )

√
H(t).

It yields particularly that η(t) ≤ γ 2

4 H(t) for all t ≤ 0, and t → t–γ H(t) is also nonincreasing.
In the sequel, we let ρ1(s, t) = (1 + s + t)–1κ(s + t)–1 and K1(s, t) = (1 + t)2mκ4(s + t) for

s, t ≥ 0. Note that ρ1 ≤ 1 and that s → ρ1(s, t), t → ρ1(s, t) are nonincreasing functions.
Specifically, we can get the following A-harmonic approximation lemma in H

n similarly
to [23], serving as the primary tool for establishing C1-continuity outcomes.

Lemma 3 (A-harmonic approximation lemma) Suppose that λ and L are fixed positive
constants and n, N ∈ N; for every ε > 0, there is a constant δ = δ(n, N ,λ, ε) ∈ (0, 1] such that
the following hold:

(I) Assume that A ∈ Bil
(
R

2n×N)
with the properties

A(v, v) ≥ λ|v|2 and A(v, v̄) ≤ L|v||v̄|, v, v̄ ∈R
2n×N . (2.5)

(II) For any w ∈ HW 1,2 (
Bρ(ξ0),RN)

and that

 
Bρ (ξ0)

|Xw|2dξ ≤ 1 (2.6)

and
∣∣∣∣∣

 
Bρ (ξ0)

A(Xw, Xϕ)dξ

∣∣∣∣∣ ≤ δ sup
Bρ (ξ0)

|Xϕ|, ∀ϕ ∈ C1
0
(
Bρ(ξ0),RN)

, (2.7)

there exists an A-harmonic function h such that

 
Bρ (ξ0)

|Xh|2dξ ≤ 1

and

ρ–2
 

Bρ (ξ0)
|h – w|2dξ ≤ ε. (2.8)

Now, we briefly introduce a prior estimate for weak solution u.
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Lemma 4 (Prior estimate) Let h ∈ HW 1,m (
Bρ(ξ0),RN)

be any A-harmonic function de-
fined in Bρ(ξ0). Then there exists C0 ≥ 1 such that

sup
Bρ/2(ξ0)

(
|u|2 + ρ2 |Xu|2 + ρ4 ∣∣X2u

∣∣2
)

≤ C0ρ
2
 

Bρ (ξ0)
|Xu|2dξ . (2.9)

Lemma 5 (Jensen’s inequality) Let ω : R →R be a concave function and f (x) ∈ L1(�), then
the inequality

 
�

ω(f (x))dx ≤ ω

( 
�

f (x)dx
)

holds. For the proof of this lemma, one can refer to [24].

Throughout our exposition, we claim that C is a constant, which may vary from line to
line, and the dependence of C on the associated coefficients is specified within parentheses
following each constant, if necessary.

3 Caccioppoli type inequality
This section is dedicated to proving a Caccioppoli-type inequality featuring a drift term
under the superquadratic controllable growth condition.

Lemma 6 (Caccioppoli type inequality) Let u ∈ HW 1,m (
�,RN)

represent a weak solution
to system (1.1), satisfying (H1–H3), (HC), and (μ1)–(μ3). For any ξ0 =

(
x0

1, x0
2, . . . , x0

n, y0
1,

y0
2, . . . , y0

n, t0) ∈ �, u0 ∈R
N , Xl ∈R

2n×N , and for every ρ such that 0 < 2ρ < ρ
m
2

1 (|u0|, |Xl|) ≤
1 and B2ρ(ξ0) ⊂⊂ �, the inequality

 
Bρ (ξ0)

[|Xu – Xl|2 + |Xu – Xl|m]
dξ

≤Cc

[
ρ–2

 
B2ρ (ξ0)

|u – l|2dξ + ρ–m
 

B2ρ (ξ0)
|u – l|mdξ + K1(|u0|, |Xl|)η (

4ρ2)
]

+ Cc

[ 
B2ρ (ξ0)

(|Xu|m + |u|r + 1
)

dξ

] m(r–1)
r(m–1)

holds, where Cc is constant, l = u0 + Xl
(
ξ 1 – ξ 1

0
)
, u0 = uξ0,ρ =

ffl
Bρ (ξ0) u(ξ )dξ , and ξ 1 =

(x1, . . . , xn, y1, . . . , yn) are the horizontal components of ξ = (x1, . . . , xn, y1, . . . , yn, t) ∈ H
n.

Proof We test the subelliptic system (1.1) with the testing function ϕα = φ2v with v = u – l,
where φ ∈ C∞

0
(
B2ρ(ξ0)

)
serves as a cut-off function with 0 ≤ φ ≤ 1, |Xφ| ≤ C/ρ , and φ ≡ 1

on Bρ(ξ0). From (2.1), we find Xv = Xu – Xl and Xϕα = φ2(Xu – Xl) + 2φ(u – l)Xφ, which
leads to

 
B2ρ (ξ0)

Aα
i (ξ , u, Xu)φ2(Xu – Xl)dξ

= – 2
 

B2ρ (ξ0)
φXφAα

i (ξ , u, Xu)(u – l)dξ +
 

B2ρ (ξ0)
Bα(ξ , u, Xu)ϕαdξ

+
 

B2ρ (ξ0)
Xiu · Xn+iϕ

αdξ –
 

B2ρ (ξ0)
Xn+iu · Xiϕ

αdξ .
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From a testing function ϕα = φ2(u – l), we have

–
 

B2ρ (ξ0)
Aα

i (ξ , u, Xl)φ2(Xu – Xl)dξ

=2
 

B2ρ (ξ0)
φXφAα

i (ξ , u, Xl)(u – l)dξ –
 

B2ρ (ξ0)
Aα

i (ξ , u, Xl)Xϕαdξ .

Note that Aα
i (ξ0, u0, Xl) is a constant, an integration by parts infers that

 
B2ρ (ξ0)

Aα
i (ξ0, u0, Xl)Xϕαdξ = 0. (3.1)

We can obtain
 

B2ρ (ξ0)

[
Aα

i (ξ , u, Xu) – Aα
i (ξ , u, Xl)

]
φ2(Xu – Xl)dξ

=2
 

B2ρ (ξ0)

[
Aα

i (ξ , u, Xl) – Aα
i (ξ , u, Xu)

]
φ(u – l)Xφdξ

+
 

B2ρ (ξ0)

[
Aα

i (ξ , l, Xl) – Aα
i (ξ , u, Xl)

]
Xϕαdξ

+
 

B2ρ (ξ0)

[
Aα

i (ξ0, u0, Xl) – Aα
i (ξ , l, Xl)

]
Xϕαdξ +

 
B2ρ (ξ0)

Bα(ξ , u, Xu)ϕαdξ

+
 

B2ρ (ξ0)
Xiu · Xn+iϕ

αdξ –
 

B2ρ (ξ0)
Xn+iu · Xiϕ

αdξ

≤2C(L)
 

B2ρ (ξ0)

(
1 + |Xu|2 + |Xl|2) m–2

2 |Xu – Xl||φ||u – l||Xφ|dξ

+
 

B2ρ (ξ0)
(1 + |Xl|) m

2 κ (|u0| + 2ρ|Xl|) η
1
2
(|u – l|2)φ2|Xu – Xl|dξ

+ 2
 

B2ρ (ξ0)
(1 + |Xl|) m

2 κ (|u0| + 2ρ|Xl|) η
1
2
(|u – l|2) |φ||u – l||Xφ|dξ

+
 

B2ρ (ξ0)
(1 + |Xl|) m

2 κ (|u0| + 2ρ|Xl|) η
1
2
(
4ρ2 (

1 + |Xl|2))

× [
φ2|Xu – Xl| + 2|φ||u – l||Xφ|]dξ

+
 

B2ρ (ξ0)

(
a|Xu|m

(
1– 1

r

)

+ b|u|r–1 + c
)

ϕαdξ

+
 

B2ρ (ξ0)
Xiu · Xn+i

(
φ2(u – l)

)
dξ –

 
B2ρ (ξ0)

Xn+iu · Xi
(
φ2(u – l)

)
dξ .

:=J1 + J2 + J3 + J4 + J5 + J6.

(3.2)

The left-hand side in (3.2) can be estimated by using version (1.5), leading to

 
B2ρ (ξ0)

[
Aα

i (ξ , u, Xu) – Aα
i (ξ , u, Xl)

]
(Xu – Xl)φ2dξ

≥λ′
 

B2ρ (ξ0)

[|Xu – Xl|2φ2 + |Xu – Xl|mφ2]dξ (3.3)
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≥λ′ |Bρ(ξ0)|Hn

|B2ρ(ξ0)|Hn

 
Bρ (ξ0)

[|Xu – Xl|2 + |Xu – Xl|m]
dξ

=λ′2–Q
 

Bρ (ξ0)

[|Xu – Xl|2 + |Xu – Xl|m]
dξ .

Now, let us estimate each term of the right-hand side in (3.2) individually.
To estimate J1, for a sufficiently small positive ε, employing Young’s inequality and |Xφ| <

Cρ–1, we obtain

J1 ≤Cε

 
B2ρ (ξ0)

|Xu – Xl|2|φ|2dξ + Cε–1ρ–2
 

B2ρ (ξ0)
|u – l|2dξ

+ Cε

 
B2ρ (ξ0)

[
|Xu – Xl|m|φ| m

m–1
]

dξ + Cε1–mρ–m
 

B2ρ (ξ0)
|u – l|mdξ .

(3.4)

Next, we estimate J2. Utilizing Jensen’s inequality, (2.4), and η(ts) ≤ tη(s) for t ≥ 1, we
get

(1 + |Xl|)mκ2(|u0| + |Xl|)
 

B2ρ (ξ0)
η

(|u – l|2)dξ

≤(2ρ)–2 [
(1 + |Xl|)mκ2(|u0| + |Xl|)(2ρ)2]η

( 
B2ρ (ξ0)

(|u – l|2)dξ

)

≤1
4
ρ–2

( 
B2ρ (ξ0)

|u – l|2dξ

+ (1 + |Xl|)mκ2(|u0| + |Xl|)(2ρ)2η
[
4ρ2(1 + |Xl|)mκ2(|u0| + |Xl|)]

)

≤1
4
ρ–2

 
B2ρ (ξ0)

|u – l|2dξ + (1 + |Xl|)2mκ4(|u0| + |Xl|)η (
4ρ2) .

(3.5)

Note that (2.4) in the second-to-last inequality is applied with the assumption 2ρ ≤
ρ

m
2

1 (|u0|, |Xl|) ≤ 1.
Using Dini’s continuity condition (H3), Young’s inequality, and (3.5) in J2, we find

J2 ≤ε

ˆ
B2ρ (ξ0)

φ4|Xu – Xl|2dξ

+ ε–1(1 + |Xl|)mκ2(|u0| + |Xl|)
 

B2ρ (ξ0)
η

(|u – l|2)dξ

≤ε

 
B2ρ (ξ0)

φ2|Xu – Xl|2dξ +
1
4
ε–1ρ–2

 
B2ρ (ξ0)

|u – l|2dξ

+ ε–1(1 + |Xl|)2mκ4(|u0| + |Xl|)η (
4ρ2) .

(3.6)
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Similarly, we can obtain

J3 ≤C
 

B2ρ (ξ0)
|u – l|2|Xφ|2dξ

+ (1 + |Xl|)mκ2(|u0| + |Xl|)
 

B2ρ (ξ0)
η

(|u – l|2) |φ|2dξ

≤Cρ–2
 

B2ρ (ξ0)
|u – l|2dξ + (1 + |Xl|)2mκ4(|u0| + |Xl|)η (

4ρ2)

(3.7)

and

J4 ≤(1 + |Xl|) m
2 κ(|u0| + 2ρ|Xl|)

×
 

B2ρ (ξ0)
η

1
2
(
4ρ2 (

1 + |Xl|2)) [
φ2|Xu – Xl| + 2|φ||u – l||Xφ|]dξ

≤ε

 
B2ρ (ξ0)

|Xu – Xl|2|φ|2dξ + Cε

 
B2ρ (ξ0)

|u – l|2|Xφ|2dξ

+ 2ε–1(1 + |Xl|)mκ2(|u0| + |Xl|)η
( 

B2ρ (ξ0)
4ρ2 (

1 + |Xl|2)dξ

)

≤ε

 
B2ρ (ξ0)

|Xu – Xl|2φ2dξ + Cερ–2
 

B2ρ (ξ0)
|u – l|2dξ

+ 2ε–1(1 + |Xl|)m+2κ4(|u0| + |Xl|)η (
4ρ2) ,

(3.8)

where we have used the fact κ ≥ 1 in the last inequality.
The term J5 can be estimated by using the controllable growth condition (HC) and

Hölder’s inequality, which yields

J5 ≤C′
 

B2ρ (ξ0)

(
|Xu| m(r–1)

r + |u|r–1 + 1
)

ϕαdξ

≤C′
( 

B2ρ (ξ0)
|ϕ|rdξ

) 1
r
( 

B2ρ (ξ0)

[|Xu|m + |u|r + 1
]

dξ

) r–1
r

≤C′
( 

B2ρ (ξ0)

[|Xu|m + |u|r + 1
]

dξ

) m(r–1)
r(m–1)

,

(3.9)

where C′ = max{a, b, c}, and we have used the facts |ϕ| ≤ ρ2 ≤ 1 and r–1
r ≤ m(r–1)

r(m–1) .
Lastly, noticing l is independent of t in the last term and thus Tl = 0, i.e.,

XiXn+il – Xn+iXil = 0,

and using |Tφ| ≤ 1
4 c1ρ

–2, we conclude that

J6 =
 

B2ρ (ξ0)
Xiu · Xn+i

(
φ2(u – l)

)
dξ –

 
B2ρ (ξ0)

Xn+iu · Xi
(
φ2(u – l)

)
dξ

=
 

B2ρ (ξ0)
Xi(u – l) · Xn+i

(
φ2(u – l)

)
dξ +

 
B2ρ (ξ0)

Xil · Xn+i
(
φ2(u – l)

)
dξ
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–
 

B2ρ (ξ0)
Xn+i(u – l) · Xi

(
φ2(u – l)

)
dξ –

 
B2ρ (ξ0)

Xn+il · Xi
(
φ2(u – l)

)
dξ

=
 

B2ρ (ξ0)
φ2Xi(u – l) · Xn+i(u – l)dξ +

 
B2ρ (ξ0)

φXn+iφXi
(
(u – l)2)dξ

–
 

B2ρ (ξ0)
Xn+iXil · (φ2(u – l)

)
dξ –

 
B2ρ (ξ0)

φ2Xn+i(u – l) · Xi(u – l)dξ (3.10)

–
 

B2ρ (ξ0)
φXiφXn+i

(
(u – l)2)dξ +

 
B2ρ (ξ0)

XiXn+il · (φ2(u – l)
)

dξ

=
 

B2ρ (ξ0)
φXn+iφXi

(
(u – l)2)dξ –

 
B2ρ (ξ0)

φXiφXn+i
(
(u – l)2)dξ

= –
 

B2ρ (ξ0)
φXiXn+iφ · (u – l)2dξ +

 
B2ρ (ξ0)

φXn+iXiφ · (u – l)2dξ

≤1
4

c1ρ
–2
 

B2ρ (ξ0)
|u – l|2dξ .

Joining the estimates (3.3)–(3.4), (3.6)–(3.10) with (3.2), we arrive at

�

( 
Bρ (ξ0)

[|Xu – Xl|2 + |Xu – Xl|m]
dξ

)

≤
(

C
(
ε–1 + 1 + ε

)
+

1
4
ε–1 +

1
4

c1

)
ρ–2

 
B2ρ (ξ0)

|u – l|2dξ

+ Cε1–mρ–m
 

B2ρ (ξ0)
|u – l|mdξ

+
(
3ε–1 + 1

)
(1 + |Xl|)2mκ4(|u0| + |Xl|)η (

4ρ2)

+ C′
( 

B2ρ (ξ0)

[|Xu|m + |u|r + 1
]

dξ

) m(r–1)
r(m–1)

,

here, C′ = max{a, b, c}, � = 2–Q (
λ′ – (2 + C)ε

)
. By choosing a suitable ε such that � > 0,

we have thus shown the desired Caccioppoli-type estimates. This proves the claim. �

Remark 2 We emphasize that the function v employed in the proof significantly differs
from that in [25]. Specifically, the horizontal vector fields {X1, X2, . . . , X2n} in the Heisen-
berg group H

n are more intricate compared to the vector fields
{

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂x2n

}
in the

Euclidean space. Here,

Xi =
∂

∂xi
–

yi

2
∂

∂t
, Xn+i =

∂

∂yi
+

xi

2
∂

∂t
, i = 1, 2, . . . , n.

Thus, the function v chosen here incorporates the horizontal affine function.

4 Optimal partial Hölder continuity for subelliptic systems
To utilize the A-harmonic approximation lemma, our focus is directed towards a lemma
that outlines a linearization strategy applicable to nonlinear subelliptic systems such as
(1.1).
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4.1 Linearization strategy
Lemma 7 Assume u ∈ HW 1,m (

�,RN)
with m > 2 is a weak solution to (1.1) under as-

sumptions of (H1–H3), (HC), and (μ1)–(μ3). Let Bρ(ξ0) ⊂⊂ � with ρ ≤ ρ
m
2

1 (|u0|, |Xl|)
and for all ϕ ∈ C∞

0
(
Bρ(ξ0),RN)

with sup
Bρ (ξ0)

|Xϕ| ≤ 1 and |ϕ| ≤ ρ2 ≤ 1, it follows that

 
Bρ (ξ0)

Aα

i,pj
β

(ξ0, u0, Xl)(Xu – Xl)Xϕαdξ

≤C1 sup
Bρ (ξ0)

|Xϕ|
[
ω

1
m (|Xl|,(ξ0,ρ, Xl))

1
2 (ξ0,ρ, Xl) + (ξ0,ρ, Xl)

+ 
1
2 (ξ0,ρ, Xl) + F(|u0|, |Xl|)η 1

2
(
ρ2)

]
,

where C1 = 2 m–2
2

(
C(L) + 2C′ + 5 + 2Cp

)
> 1 and denote

F(s, t) = K1(s, t) + (1 + s + t)r–1.

Here, we define v = u – l is an approximately A-harmonic map and l representing a hori-
zontal affine function.

Proof A straightforward computation leads to

∣∣Aα
i (ξ0, u0, Xu) – Aα

i (ξ0, u0, Xl)
∣∣ =

ˆ 1

0

d
dθ

Aα
i (ξ0, u0, θXu + (1 – θ )Xl)dθ

=
ˆ 1

0
Aα

i,pj
β

(ξ0, u0, θXu + (1 – θ )Xl)(Xu – Xl)dθ ,

where we used (3.1) over the ball Bρ(ξ0) and (1.6).
Noting that

ffl
Bρ (ξ0) Aα

i (ξ0, u0, Xl)Xϕαdξ = 0, one has

 
Bρ (ξ0)

Aα

i,pj
β

(ξ0, u0, Xl)(Xu – Xl)Xϕαdξ

≤
 

Bρ (ξ0)

[ˆ 1

0

(
Aα

i,pj
β

(ξ0, u0, Xl) – Aα

i,pj
β

(ξ0, u0, θXu + (1 – θ )Xl)
)

× (Xu – Xl)dθ

]
sup

Bρ (ξ0)
|Xϕ|dξ

+
 

Bρ (ξ0)

∣∣Aα
i (ξ0, u0, Xu) – Aα

i (ξ , l, Xu)
∣∣ sup

Bρ (ξ0)
|Xϕ|dξ

+
 

Bρ (ξ0)

∣∣Aα
i (ξ , l, Xu) – Aα

i (ξ , u, Xu)
∣∣ sup

Bρ (ξ0)
|Xϕ|dξ

+
 

B2ρ (ξ0)
Bα(ξ , u, Xu)ϕαdξ

+
 

Bρ (ξ0)
Xiu · Xn+iϕ

αdξ –
 

Bρ (ξ0)
Xn+iu · Xiϕ

αdξ

:=J ′
1 + J ′

2 + J ′
3 + J ′

4 + J ′
5,

(4.1)
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with the obvious meaning of J ′
1 – J ′

5. Now, we estimate the term J ′
1. Using (1.2) and (1.4),

we compute

∣∣∣∣A
α

i,pj
β

(ξ0, u0, Xl) – Aα

i,pj
β

(ξ0, u0, θXu + (1 – θ )Xl)
∣∣∣∣

1
m + m–1

m

≤
[

C
(
1 + |Xl|2 + |θ (Xu – Xl) + Xl|2) m–2

2 ω
(|Xl|, |θ (Xu – Xl)|2)

] 1
m

×
[

L
(
1 + |Xl|2) m–2

2 + L
(
1 + |θ (Xu – Xl) + Xl|2) m–2

2

] m–1
m

≤
[

C
(
1 + 3|Xl|2 + 2|Xu – Xl|2) m–2

2 ω
(|Xl|, |θ (Xu – Xl)|2)

] 1
m

×
[

L
(
1 + 2|Xl|2 + 2|Xu – Xl|2) m–2

2

] m–1
m

≤C(L)
(
1 + |Xl|2) m–2

2
(
1 + |Xu – Xl|2) m–2

2 ω
1
m

(|Xl|, |Xu – Xl|2)

≤C(L)
(
1 + |Xl|2) m–2

2 |Xu – Xl|m–2ω
1
m

(|Xl|, |Xu – Xl|2) .

(4.2)

Through the utilization of (4.2), Hölder’s inequality, and leveraging the concavity of t →
ω2(s, t) along with Jensen’s inequality, we ultimately reach the following expression:

J ′
1 ≤C(L)

 
Bρ (ξ0)

ω
1
m

(|Xl|, |Xu – Xl|2) |Xu – Xl|m–1 sup
Bρ (ξ0)

|Xϕ|dξ

≤C(L) sup
Bρ (ξ0)

|Xϕ|
[ 

Bρ (ξ0)
ω

(|Xl|, |Xu – Xl|2)
] 1

m
[ 

Bρ (ξ0)
|Xu – Xl|mdξ

] m–1
m

≤C(L) sup
Bρ (ξ0)

|Xϕ|ω 1
m

(
|Xl|,

 
Bρ (ξ0)

|Xu – Xl|2dξ

)


1
2 (ξ0,ρ, Xl)

≤C(L) sup
Bρ (ξ0)

|Xϕ|ω 1
m (|Xl|,(ξ0,ρ, Xl))

1
2 (ξ0,ρ, Xl),

(4.3)

where we have used the fact 1
2 ≤ m–1

m ≤ 1 and the assumption (ξ0,ρ, Xl) ≤ 1.
The integral J ′

2 can be bounded by employing the Dini continuity condition (1.3) and the
inequality η(ts) ≤ tη(s) for t ≥ 1, leading to

J ′
2 ≤ sup

Bρ (ξ0)
|Xϕ|κ(|u0| + |Xl|)μ(ρ(1 + |Xl|))

 
Bρ (ξ0)

(1 + |Xu|) m
2 dξ

≤ sup
Bρ (ξ0)

|Xϕ|κ(|u0| + |Xl|)(1 + |Xl|)η 1
2
(
ρ2)

 
Bρ (ξ0)

(1 + |Xl| + |Xu – Xl|) m
2 dξ

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[
κ(|u0| + |Xl|)(1 + |Xl|)1+ m

2 η
1
2
(
ρ2)

+ κ2(|u0| + |Xl|)(1 + |Xl|)2η
(
ρ2) +

 
Bρ (ξ0)

|Xu – Xl|mdξ

]

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[
(ξ0,ρ, Xl) + 2κ2(|u0| + |Xl|)(1 + |Xl|)1+ m

2 η
1
2
(
ρ2)] ,

(4.4)
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where we utilized η
(
ρ2) ≤ η

1
2
(
ρ2), which is deduced from the nondecreasing nature of

function η(t), (η4), and considering the assumption ρ ≤ ρ1 ≤ 1.
Similarity, by utilizing the Dini continuity condition (1.3), (3.5), and the Poincaré in-

equality (2.3) with p = q = 2, we can approximate as follows:

J ′
3 ≤ sup

Bρ (ξ0)
|Xϕ|

 
Bρ (ξ0)

κ(|u0| + |Xl|)η 1
2
(|u – l|2) (1 + |Xu|) m

2 dξ

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[ 

Bρ (ξ0)
|Xu – Xl|mdξ + κ2(|u0| + |Xl|)

 
Bρ (ξ0)

η
(|u – l|2)dξ

+ κ(|u0| + |Xl|)(1 + |Xl|) m
2

 
Bρ (ξ0)

η
1
2
(|u – l|2)dξ

]

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[
(ξ0,ρ, Xl) + 2ρ–2

 
Bρ (ξ0)

|u – l|2dξ

+ κ4(|u0| + |Xl|)η (|u – l|2) + κ2(|u0| + |Xl|)(1 + |Xu|)mη
1
2
(
ρ2)

]

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[
(ξ0,ρ, Xl) + 2Cp

 
Bρ (ξ0)

|Xu – Xl|2dξ

+ 2κ4(|u0| + |Xl|)(1 + |Xl|)mη
1
2
(
ρ2)

]

≤2
m–2

2 sup
Bρ (ξ0)

|Xϕ|
[
(1 + 2Cp)(ξ0,ρ, Xl) + 2κ4(|u0| + |Xl|)(1 + |Xl|)mη

1
2
(
ρ2)] .

(4.5)

Note the fact that sup
Bρ (ξ0)

|ϕ| ≤ ρ2 ≤ 1 and (η4), this leads to

J ′
4 ≤C′

 
Bρ (ξ0)

(
|Xu| m(r–1)

r + |u|r–1 + 1
)

|ϕ|dξ

≤C′
 

Bρ (ξ0)
|Xu| m(r–1)

r |ϕ|dξ + C′
 

Bρ (ξ0)
|u – l|r–1|ϕ|dξ

+ C′ρ2 [
1 + (|u0| + ρ|Xl|)r–1]

≤C′
( 

Bρ (ξ0)
|Xu – Xl|mdξ

) r–1
r

( 
Bρ (ξ0)

|ϕ|rdξ

) 1
r

+ C′
( 

Bρ (ξ0)
|Xl|mdξ

) r–1
r

( 
Bρ (ξ0)

|ϕ|rdξ

) 1
r

+ C′
( 

Bρ (ξ0)
|Xu – Xl|mdξ

) r–1
m

( 
Bρ (ξ0)

|ϕ|rdξ

) 1
r

+ C′ρ2 [
1 + (|u0| + |Xl|)r–1]

≤2C′
( 

Bρ (ξ0)
|Xu – Xl|mdξ

) r–1
r

( 
Bρ (ξ0)

|ϕ|rdξ

) 1
r

+ C′ρ2
[
1 + (|u0| + |Xl|)r–1 + |Xl| m(r–1)

r
]

≤2C′(ξ0,ρ, Xl) + 2C′η
1
2
(
ρ2) [

1 + (|u0| + |Xl|)r–1] ,

(4.6)

where we have used r – 1 ≥ m(r–1)
r and η(s) ≤ 1 for s ∈ (0, 1].
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Now, we estimate the last term J ′
5. Noting T = XiXn+i – Xn+iXi, it implies

J ′
5 =

 
Bρ (ξ0)

Xiu · Xn+iϕdξ –
 

Bρ (ξ0)
Xn+iu · Xiϕdξ

=
 

Bρ (ξ0)
Xi(u – l) · Xn+iϕdξ +

 
Bρ (ξ0)

Xil · Xn+iϕdξ

–
 

Bρ (ξ0)
Xn+i(u – l) · Xiϕdξ –

 
Bρ (ξ0)

Xn+il · Xiϕdξ

=
 

Bρ (ξ0)
Xi(u – l) · Xn+iϕdξ –

 
Bρ (ξ0)

Xn+i(u – l) · Xiϕdξ

–
 

Bρ (ξ0)
Xn+iXil · ϕdξ +

 
Bρ (ξ0)

XiXn+il · ϕdξ

=
 

Bρ (ξ0)
Xi(u – l) · Xn+iϕdξ –

 
Bρ (ξ0)

Xn+i(u – l) · Xiϕdξ

≤ sup
Bρ (ξ0)

|Xϕ|
( 

Bρ (ξ0)
|Xu – Xl|dξ

)

≤ sup
Bρ (ξ0)

|Xϕ|
( 

Bρ (ξ0)
|Xu – Xl|2dξ

) 1
2

≤ sup
Bρ (ξ0)

|Xϕ| 1
2 (ξ0,ρ, Xl).

(4.7)

Now, we substitute (4.3)–(4.7) into (4.1) and yield the claim with C1 = 2 m–2
2

(
C(L) + 2C′ +

5 + 2Cp
)
. �

4.2 Excess improvement
The proof strategy involves approximating the given solution with A-harmonic functions,
for which decay estimates are available from classical theory. This allows us to establish
the improvement in excess.

Lemma 8 Assuming the conditions of Theorem 1 are met and given a fixed γ ∈ (0, 1),
positive constants C2, C3, and δ satisfy the conditions in the A-harmonic approximation
lemma. Letting θ ∈ (0, 1) be arbitrary, we impose the following smallness conditions on the
excess:

ω
1
m

(∣∣uξ0,ρ
∣∣ +

∣∣(Xu)ξ0,ρ
∣∣ ,

(
ξ0,ρ, (Xu)ξ0,ρ

))
+ 

1
2
(
ξ0,ρ, (Xu)ξ0,ρ

) ≤ δ

4
, (4.8)

C2F2 (∣∣uξ0,ρ
∣∣ ,

∣∣(Xu)ξ0,ρ
∣∣)η

(
ρ2) ≤ δ2, (4.9)

where C2 = 8C2
1C4 is a positive constant, together with the radius condition

ρ ≤ ρ
m
2

1
(
1 +

∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣) , (4.10)

then for τ ∈ [γ , 1) there holds the excess improvement estimate


(
ξ0, θρ, (Xu)ξ0,θρ

) ≤ θ2τ
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ K∗ (∣∣uξ0,ρ

∣∣ ,
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ

m
m–1

)
,

where K∗(s, t) = C7F2(1 + s, 1 + t).
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Proof We define w =
[
u – uξ0,ρ – (Xu)ξ0,ρ

(
ξ 1 – ξ 1

0
)]

σ1, where

σ1 = C–1
1

[(
δ

4

)–2


(
ξ0,ρ, (Xu)ξ0,ρ

)
+ 4δ–2F2 (∣∣uξ0,ρ

∣∣ ,
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ2)

]– 1
2

(4.11)

with C1 > 1 in Lemma 7. Thus we have Xw = σ1
(
Xu – (Xu)ξ0,ρ

)
. Now we consider

Bρ(ξ0) ⊂⊂ � such that ρ ≤ ρ
m
2

1
(∣∣uξ0,ρ

∣∣ ,
∣∣(Xu)ξ0,ρ

∣∣) ≤ 1. It yields

 
Bρ (ξ0)

|Xw|2dξ = σ 2
1 

(
ξ0,ρ, (Xu)ξ0,ρ

) ≤
(

δ

4

)2 
(
ξ0,ρ, (Xu)ξ0,ρ

)

C2
1

(
ξ0,ρ, (Xu)ξ0,ρ

) ≤ 1
C2

1
≤ 1. (4.12)

Applying Lemma 7 on Bρ(ξ0) to u, for any ϕ ∈ C∞
0

(
Bρ(ξ0),RN)

,

 
Bρ (ξ0)

Aα

i,pj
β

(
ξ0, u0, (Xu)ξ0,ρ

)
XwXϕαdξ

≤C1σ1 sup
Bρ (ξ0)

|Xϕ|
[
ω

1
m

(∣∣(Xu)ξ0,ρ
∣∣ ,

(
ξ0,ρ, (Xu)ξ0,ρ

))


1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)

+ 
1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ 

(
ξ0,ρ, (Xu)ξ0,ρ

)
+ F(|u0|, |Xl|)η 1

2
(
ρ2)

]

≤ sup
Bρ (ξ0)

|Xϕ|
{[(

δ

4

)
– 1

2
(
ξ0,ρ, (Xu)ξ0,ρ

)]

×
[
ω

1
m

(∣∣(Xu)ξ0,ρ
∣∣ ,

(
ξ0,ρ, (Xu)ξ0,ρ

))


1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)

+ 
1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ 

(
ξ0,ρ, (Xu)ξ0,ρ

)]

+
[
4δ–2F2 (∣∣uξ0,ρ

∣∣ ,
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ2)]– 1

2 F(|u0|, |Xl|)η 1
2
(
ρ2)

}

≤ sup
Bρ (ξ0)

|Xϕ|
[

δ

4
ω

1
m

(∣∣(Xu)ξ0,ρ
∣∣ ,

(
ξ0,ρ, (Xu)ξ0,ρ

))

+
δ

4
+

δ

4


1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)
+

δ

2

]

≤ sup
Bρ (ξ0)

|Xϕ|
[
ω

1
m

(∣∣(Xu)ξ0,ρ
∣∣ ,

(
ξ0,ρ, (Xu)ξ0,ρ

))
+ 

1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)
+

3δ

4

]

≤δ sup
Bρ (ξ0)

|Xϕ|,

(4.13)

Considering the smallness condition (4.8), we observe that (4.12) and (4.13) imply con-
ditions (2.6) and (2.7) respectively in the A-harmonic approximation lemma. Also, note
that assumptions (H1) and (H2) with u = uξ0,ρ and p = (Xu)ξ0,ρ imply condition (2.5). So
there exists an Aα

i,pj
β

(ξ0, uξ0,ρ , (Xu)ξ0,ρ)- harmonic function h ∈ HW 1,2 (
Bρ (ξ0) ,RN)

such

that
 

Bρ (ξ0)
|Xh|2dξ ≤ 1 (4.14)
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and

ρ–2
 

Bρ (ξ0)
|w – h|2dξ ≤ ε. (4.15)

Using Lemma 6 on the ball B2θρ(ξ0) with u0 = uξ0,2θρ , θ ∈ (0, 1
4 ] and replacing Xl by

(Xu)ξ0,ρ + σ –1
1 (Xh)ξ0,2θρ , we obtain

ˆ
Bθρ (ξ0)

( ∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣2

+
∣∣Xu –

(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m
)

dξ

≤ Cc

(θρ)2

ˆ
B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣2 dξ

+
Cc

(θρ)m

ˆ
B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣m dξ

+ Ccωn(2θρ)Q [
K1

(∣∣uξ0,2θρ

∣∣ ,
∣∣(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

∣∣)η
(
(2θρ)2)]

+ Cc

[ 
Bρ (ξ0)

(|Xu|m + |u|r + 1
) |dξ

] m(r–1)
r(m–1)

:=J ′′
1 + J ′′

2 + J ′′
3 + J ′′

4 .

(4.16)

We see that g(τ ) =
´

B2θρ (ξ0)(u – τ )2dξ achieves its minimal value at τ = uξ0,2θρ , and

u –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)

has the mean value uξ0,2θρ on the ball B2θρ(ξ0). Applying the definition of w, the Poincaré
inequality, (4.15), (2.9), and (4.14), we derive the following estimate:

Cc

(θρ)2

 
B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣2 dξ

≤4Cc(2θρ)–2σ –2
1

 
B2θρ (ξ0)

∣∣w – hξ0,2θρ – (Xh)ξ0,2θρ

(
ξ 1 – ξ 1

0
)∣∣2 dξ

≤8Cc(2θρ)–2σ –2
1

 
B2θρ (ξ0)

[
|w – h|2 +

∣∣h – hξ0,2θρ – (Xh)ξ0,2θρ

(
ξ 1 – ξ 1

0
)∣∣2

]
dξ

≤8Ccσ
–2
1

(
(2θ )–Q–2ρ–2

 
Bρ (ξ0)

|w – h|2 dξ + Cp

 
B2θρ (ξ0)

∣∣Xh – (Xh)ξ0,2θρ

∣∣2 dξ

)

≤8Ccσ
–2
1

(
(2θ )–Q–2ε + C2

p(2θρ)2
 

B2θρ (ξ0)

∣∣X2h
∣∣2 dξ

)

≤4Ccσ
–2
1

[
2–Q–1θ–Q–2ε + 8C2

pC0θ
2
]

≤CcC3(C1σ1)–2 [
θ–Q–2ε + θ2] ,

(4.17)
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where C3 = 4C2
1

(
2–Q–1 + 8C2

pC0

)
> 1, we have employed the definition of σ1 in (4.11) with

u0 = uξ0,2θρ along with the fact that

 
B2θρ (ξ0)

∣∣X2h
∣∣dξ ≤ sup

Bρ (ξ0)

∣∣X2h
∣∣ ≤ C0ρ

–2
 

Bρ (ξ0)
|Xh|2 dξ ≤ C0ρ

–2.

Then it follows

J ′′
1 ≤ CcC3ωn(2θρ)Q(C1σ1)–2 [

θ–Q–2ε + θ2] .

For 2 < m < Q, we find Q–m
Qm = 1

m∗ < 1
m < 1

2 . Hence, there exists t ∈ [0, 1) such that

1
m

=
1
2

(1 – t) +
1

m∗ t.

Employing Lyapunov’s inequality, Young’s inequality, and (4.17), then

Cc

(θρ)m

 
B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣m dξ

≤ Cc

(θρ)m

[ 
B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣2 dξ

](1–t) m
2

×
[ 

B2θρ (ξ0)

∣∣u – uξ0,2θρ –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

) (
ξ 1 – ξ 1

0
)∣∣m∗

dξ

]t m
m∗

≤ Cc

(θρ)m

{
C3(θρ)2

(C1σ1)2

[
θ–Q–2ε + θ2]

}(1–t) m
2

×
[

(2Cpθρ)m
 

B2θρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ

]t

≤Ccε
–t

1–t

{
C3

(C1σ1)2

[
θ–Q–2ε + θ2]

} m
2

+ Cc(2Cp)mε

 
B2θρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ

≤CcC
m
2

3 ε
–t

1–t (C1σ1)–2 [
θ–Q–2ε + θ2]

+ Cc(2Cp)mε1

 
Bθρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ ,

where

ε1 =
ε
ffl

B2θρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξffl
Bθρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ
.

Then we conclude

J ′′
2 ≤CcC

m
2

3 ωn(2θρ)Qε
–t

1–t (C1σ1)–2 [
θ–Q–2ε + θ2]

+ Cc(2Cp)mε12Q
ˆ

Bθρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ .
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Noting that the smallness conditions (4.8)–(4.9) imply

σ –2
1 C4 = C2

1C4
(
ξ0,ρ, (Xu)ξ0,ρ

)
+

1
2

C2F2ηδ–2 ≤ 1,

with C4 = max
{

C0, (2θ )–Q}
, assuming 1

2 C2
1C4δ

2 ≤ 1 (which is not restrictive), we apply the
prior estimate (2.8) for the A-harmonic function h, then

∣∣σ –1
1 (Xh)ξ0,2θρ

∣∣ = σ –1
1 sup

B2θρ (ξ0)
|Xh| ≤ σ –1

1

√
C0

( 
Bρ (ξ0)

|Xh|2dξ

) 1
2

≤ σ –1
1

√
C0 ≤ 1.

(4.18)

Furthermore, it follows by the Poincaré inequality

∣∣uξ0,2θρ

∣∣ ≤ ∣∣uξ0,ρ
∣∣ +

∣∣uξ0,2θρ – uξ0,ρ
∣∣

=
∣∣uξ0,ρ

∣∣ +

∣∣∣∣∣

 
B2θρ (ξ0)

u – (Xu)ξ0,ρ
(
ξ 1 – ξ 1

0
)

– uξ0,ρdξ

∣∣∣∣∣

≤ ∣∣uξ0,ρ
∣∣ + (2θ )–Q/2

( 
Bρ (ξ0)

∣∣u – (Xu)ξ0,ρ
(
ξ 1 – ξ 1

0
)

– uξ0,ρ
∣∣2 dξ

) 1
2

≤ ∣∣uξ0,ρ
∣∣ + (2θ )–Q/2ρCp

1
2
(
ξ0,ρ, (Xu)ξ0,ρ

)

≤ ∣∣uξ0,ρ
∣∣ + C–1

1 σ –1
1 Cp(2θ )–Q/2

≤ ∣∣uξ0,ρ
∣∣ + σ –1

1

√
C4

≤ ∣∣uξ0,ρ
∣∣ + 1,

(4.19)

where we have used the definition of σ1 in (4.11) and the fact C1 > Cp.
Therefore, (4.18) and (4.19) yield

J ′′
3 ≤Ccωn(2θρ)Q [

K1
(
1 +

∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
(2θρ)2)]

≤Ccωn(2θρ)QF
(
1 +

∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
(2θρ)2) .

Using the Poincaré inequality (2.3), we have

[ 
B2θρ (ξ0)

(|Xu|m + |u|r + 1
)

dξ

] m(r–1)
r(m–1)

≤
[

2m–1
 

B2θρ (ξ0)

(∣∣Xu – (Xu)ξ0,ρ
∣∣m)

dξ

] m(r–1)
r(m–1)

+
(
2m–1 ∣∣(Xu)ξ0,ρ

∣∣m) m(r–1)
r(m–1)

+

[ 
B2θρ (ξ0)

2r–1
(∣∣u – uξ0,ρ – (Xu)ξ0,ρ

(
ξ 1 – ξ 1

0
)∣∣r

)
dξ

] m(r–1)
r(m–1)

+
[(

1 + 2r–1 ∣∣uξ0,ρ + (Xu)ξ0,ρ
(
ξ 1 – ξ 1

0
)∣∣r

)] m(r–1)
r(m–1)
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≤C

[
(2θ )–Q

 
Bρ (ξ0)

(∣∣Xu – (Xu)ξ0,ρ
∣∣m)

dξ

] m(r–1)
r(m–1)

+
(
2m–1 ∣∣(Xu)ξ0,ρ

∣∣m) m(r–1)
r(m–1)

+ C

[
(2θ )–Q

 
Bρ (ξ0)

(∣∣Xu – (Xu)ξ0,ρ
∣∣m)

dξ

] r–1
m–1

+
[(

1 + 2r–1ρ
∣∣uξ0,ρ + (Xu)ξ0,ρ

∣∣r)] m(r–1)
r(m–1)

≤C
[
(2θ )–Q

(
ξ0,ρ, (Xu)ξ0,ρ

)] m(r–1)
r(m–1) + C

(
1 +

∣∣uξ0,ρ
∣∣ +

∣∣(Xu)ξ0,ρ
∣∣)r· m(r–1)

r(m–1)

≤C
(
2 +

∣∣uξ0,ρ
∣∣ +

∣∣(Xu)ξ0,ρ
∣∣) m(r–1)

m–1 ,

where we utilize the fact (2θ )–Q(ξ0,ρ, (Xu)ξ0,ρ) ≤ 1 in the last inequality, implied by the
assumption σ –2

1 C4 ≤ 1 with C4 = max
{

C0, (2θ )–Q}
. Considering

m(r – 1)

m – 1
+

m2(r – 1)

r(m – 1)
≤ 2m(r – 1)

m – 1
,

we have

J ′′
4 ≤ Cωn(2θρ)QF

m
r(m–1)

(
1 +

∣∣uξ0,ρ
∣∣ ,

∣∣(Xu)ξ0,ρ
∣∣)η

(
(2θρ)

m
m–1

)
,

where we have used Qm(r–1)
r(m–1) ≤ Q + m

m–1 and (2θρ)
m

m–1 ≤ η
(

(2θρ)
m

m–1
)

.
Combining J ′′

1 , J ′′
2 , J ′′

3 , J ′′
4 with (4.16), we obtain

ˆ
Bθρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣2 dξ

+
(
1 – (2Cp)mCcε12Q)ˆ

Bθρ (ξ0)

∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m dξ

≤CcC
m
2

3 ωn(2θρ)Q(C1σ1)–2
[
ε

–t
1–t + 1

] [
θ–Q–2ε + θ2]

+ Ccωn(2θρ)QF2 (∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
(2θρ)2)

+ Cωn(2θρ)QF
m

r(m–1)
(
1 +

∣∣uξ0,ρ
∣∣ ,

∣∣(Xu)ξ0,ρ
∣∣)η

(
(2θρ)

m
m–1

)

:=C5ωn(2θρ)Q [
θ–Q–2ε + θ2] (C1σ1)–2

+ Cωn(2θρ)QF2 (
1 +

∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
ρ

m
m–1

)
,

where C5 = CcC
m
2

3

[
ε

–t
1–t + 1

]
> 1.

Selecting a suitable small ε1 > 0 such that 1 – (2Cp)mCcε12Q > 0 and considering the
smallness condition (4.10) implies

ρ ≤ ρ1
(|uξ0,2θρ |,

∣∣(Xu)ξ0,ρ + σ –1
1 (Xh)ξ0,2θρ

∣∣) ,
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as seen in (4.18) and (4.19), we conclude


(
ξ0, θρ, (Xu)ξ0,θρ

)

=
 

Bθρ (ξ0)

[∣∣Xu – (Xu)ξ0,θρ
∣∣2 +

∣∣Xu – (Xu)ξ0,θρ
∣∣m

]
dξ

≤
 

Bθρ (ξ0)

[∣∣Xu –
(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣2 +
∣∣Xu –

(
(Xu)ξ0,ρ + σ –1

1 (Xh)ξ0,2θρ

)∣∣m
]

dξ

≤C5
2Q(θ–Q–2ε + θ2)(

1 – (2Cp)mCcε12Q
)
[(

δ

4

)–2


(
ξ0,ρ, (Xu)ξ0,ρ

)

+ 4δ–2η
(
ρ2)F2 (|uξ0,ρ |, |(Xu)ξ0,ρ |

)]

+ CF2 (∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
ρ

m
m–1

)

≤C6
[
θ–Q–2ε + θ2]

[


(
ξ0,ρ, (Xu)ξ0,ρ

)
+

(
δ

4

)2

4δ–2η
(
ρ2)F2 (|uξ0,ρ |, |(Xu)ξ0,ρ |

)
]

+ C6F2 (∣∣uξ0,ρ
∣∣ , 1 +

∣∣(Xu)ξ0,ρ
∣∣)η

(
ρ

m
m–1

)
,

where C6 = C52Q
[
1–(2Cp)mCcε12Q]

(
δ
4
)–2 > 1.

Given τ ∈ [γ , 1), we choose θ ∈ (0, 1
4 ] sufficiently small to guarantee 2C6θ

2 ≤ θ2τ , and
set ε = θQ+4. Consequently,


(
ξ0, θρ, (Xu)ξ0,θρ

)

≤θ2τ
(
ξ0,ρ, (Xu)ξ0,ρ

)
+

(
1
2

C6θ
2 + C6

)
F2 (

1 +
∣∣uξ0,ρ

∣∣ , 1 +
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ

m
m–1

)

≤θ2τ
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ C7F2 (

1 +
∣∣uξ0,ρ

∣∣ , 1 +
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ

m
m–1

)

:=θ2τ
(
ξ0,ρ, (Xu)ξ0,ρ

)
+ K∗ (∣∣uξ0,ρ

∣∣ ,
∣∣(Xu)ξ0,ρ

∣∣)η
(
ρ

m
m–1

)
,

where C7 =
( 1

2 C6θ
2 + C6

)
> 1 and K∗(s, t) = C7F2(1 + s, 1 + t). Thus we conclude Lemma 8.

�

4.3 Iteration and Proof of Theorem 1
For T > 0, there exists 0(T) > 0 (depending on Q, N , λ, L, τ and ω) such that

ω
1
m (2T , 20(T)) + 2

1
2
0 (T) ≤ δ

4
(4.20)

and

2
(

1 +
√

Cp

)√
0(T) ≤ θQ/2 (1 – θτ )T , (4.21)

with 0(T) from (4.20) and (4.21), we choose ρ0(T) ∈ (0, 1] (depending on Q, N , λ, L, τ ,
ω, η and κ) such that

ρ0(T) ≤ ρ
m
2

1 (1 + 2T , 1 + 2T), (4.22)
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C2F2(2T , 2T)η
(
ρ0(T)2) ≤ δ2, (4.23)

K0(T)η
(
ρ0(T)2) ≤ (

θ2γ – θ2τ
)
0(T), (4.24)

and

2(1 + Cp)K0(T)H
(
ρ0(T)2) ≤ θQ (1 – θγ )

2 (
θ2γ – θ2τ

)
T2, (4.25)

where K0(T) := K∗(2T , 2T).
By applying the proof method of Lemma 5.1 in [22] and conditions (4.20)–(4.25),

Lemma 9 can be proven. It suffices to complete the proof of Theorem 1 once we obtain
Lemma 9.

Lemma 9 We assert that for some T0 > 0 and Bρ(ξ0,ρ) ⊂⊂ �, we have
(1) |uξ0,ρ | + |(Xuξ0,ρ)| ≤ T0;
(2) ρ ≤ ρ0(T0);
(3) 

(
ξ0,ρ, (Xu)ξ0,ρ

) ≤ (T0).
Then conditions (4.8)–(4.10) hold for the balls Bθ jρ(ξ0) for j ∈ N ∪ {0}. Additionally, the

existence of lim�ξ0 = lim
j→∞(Xu)ξ0,θ jρ is guaranteed, and the estimate

 
Bρ (ξ0)

|Xu – �ξ0 |2dξ ≤ C8
(
(r/ρ)2τ (ξ0,ρ, (Xu)ξ0,ρ) + H

(
r2))

holds for 0 < r ≤ ρ with a constant C8 = C8(Q, N ,λ, L, τ , T0).

Proof The proof closely resembles that of Lemma 5.1 in [22]. We omit it here. �
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