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Abstract
This paper aims to obtain solutions in terms of the complex potential structure for the
plain strain problem of an elastic micropolar and isotropic body with pores. The
constitutive equations on which the method is applied and is useful are the
well-known equations of the elasticity theory for the above-mentioned body. We
intend to solve the Kirch problem using the procedure of complex variables.
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1 Introduction
The Cosserat brothers laid the foundations of a theory of the mechanics of continuous
media in which, for each material point, we have the freedom degree of a rigid. Later,
the theory of micropolar media was introduced and studied by Eringen [1–3] for mate-
rial studies. Unlike the generalized continuous media theory (Cosserat brothers’ theory)
[4], which contains a conservation law for the microrotational inertia tensor, this theory
considers three deformation directors. In this framework, the forces acting on the surface
element are represented by the classic stress tensor and an additional couple tensor.

In this paper, we investigate plane strain within the equilibrium theory of micropolar,
homogeneous, isotropic, and porous bodies. Using the constitutive equations (1)–(3), the
geometric equations (4), and the equilibrium equations without body forces (5)–(7) from
[5], we focus on addressing the fundamental boundary value problems of plane strain the-
ory. Subsequently, we derive a depiction of the displacement of microrotations and pores
using complex analytical functions and two real functions based on the homogeneous
Helmholtz equations as described in [6]. In the fifth section, the structure of the poten-
tial functions for several domains of interest is studied, and in the sixth section, we apply
the method of complex variables without introducing stress functions to solve the Kirch
problem. The last section is dedicated to the numerical study, where we obtained the cor-
responding complex potential plots and stress and displacement distributions in a porous
micropolar isotropic material. More studies on complex potentials can be found in [7, 8].
There also were countless studies aimed at the theory of micropolar media, among which
we highlight [9–20].
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2 Basic equations
We consider B a bounded domain from the three-dimensional Euclidean space, with ∂B
as its boundary and n as the outer normal of the ∂B boundary. Assuming that we have a
porous micropolar elastic medium occupying B, we associate the body with an orthogonal
axis system Oxi(i = 1, 2, 3).

The basic equations describing the evolution of an isotropic Cosserat medium with
voids are as follows.

The constitutive equations:

tij = λuk,kδij + μ(ui,j + uj,i) + k(ui,j + εijkφk) + ξϕδij, (1)

mij = αφk,kδij + γφj,i + ψφi,j + ζεsjiϕ,s, (2)

hi = dϕ,i. (3)

The geometrical relations:

eij = ui,j + εijkφk , ψij = φi,j. (4)

Equilibrium equations (body loads are absent):

tji,j = 0, (5)

mji,j + εirstrs = 0, (6)

hi,i + g = 0. (7)

We consider:

ti = tjinj; mi = mjinj; Ni = hjinj, (8)

in which Ni is the generalized surface force at a regular point on ∂B, ti is the surface force,
and mi is the surface moment.

We will further presume a positive quadratic form for the internal energy density from
where we have

κ > 0, κ + 2μ > 0, κ + 2μ + 3λ > 0, d > 0,

γ – β > 0, γ + β > 0, γ + β + 3α > 0. (9)

3 Plane strain problem
In this part of the paper, we will consider B to be the interior of a right cylinder whose
cross-section is � and whose lateral boundary is �. This setup is related to an orthogonal
coordinate system so that its generators are parallel to the x3 axis. We denote by L the
boundary corresponding to the cross-section. The plane strain is considered to be parallel
to the x1, x2-plane. Therefore,

uα = uα(x1, x2), u3 = 0, φα = 0; φ3 = φ(x1, x2),

ϕ = ϕ(x1, x2), (x1, x2) ∈ �. (10)
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Taking these restrictions into account, from the constitutive equations and the geomet-
ric equations, we deduce that eij, ψij, tij, mij, hi are independent of x3. So, taking into ac-
count that tαβ , mα3, t33, m3α and hα are nonzero, the constitutive equations become:

tαβ = λuρ,ρδαβ + μ(uα,β + uβ ,α) + κ(uα,β + ε3αβφκ ) + ξϕδαβ , (11)

mα3 = ψφ,α + ζε3βαϕ, (12)

hi = dϕ,α . (13)

From (4) and (10) it follows that the nonzero measures of plane deformation are:

eαβ = uβ ,α + εβα3φ, ψα3 = φ,α . (14)

Moreover, the equilibrium equations take the following form:

tβα,β = 0, (15)

mα3,α + ε3αβtαβ = 0, (16)

hα,α + g = 0 on �. (17)

For the vector ti for the surface force, the vector mi for the surface force couple, and the
vector Ni for the void evolution at an ordinary point on L, we have:

tα = tβαnβ , m = mρ3nρ , N = hαnα . (18)

We will add the boundary conditions to the basic equations so that the first boundary
problem is characterized by

uα = ũα , φ = φ̃, ϕ = ϕ̃ on L (19)

and the second by

tβαnβ = t̃α , mα3nα = m̃, hαnα = Ñ on L, (20)

where ũα , φ̃, ϕ̃ are prescribed functions, and t̃α , m̃, Ñ are given.
From (11)–(17), we get the system below, in terms of displacement, microrotation and

pores. (� is the Laplacian)

(λ + μ)uρ,ρα + (μ + κ)�uα + ξϕ,α + κε3αβφ,beta = 0,

ψ�ϕ + κε3αβuβ ,α – 2kφ = 0, (21)

d�ϕ – ξuρ,ρ – aϕ = 0.

More detailed steps to obtain the system can be found in [7].
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4 Complex potentials
In this section, we will work in system (21) whose relations will be written in complex
coordinates and integrated directly. In other words, we will determine the displacement
using a pair of complex analytical functions, the microrotation, and the change in volume
fraction in real functions verifying the homogeneous Helmholtz equations [6]. First, we
introduce the complex coordinates

z = x1 + ix2, z = x1 – ix2, (22)

and complex displacement

U = u1 + iu2. (23)

So, we get

� = 4
∂2

∂z∂z
; uρ,ρ =

∂U
∂z

+
∂U
∂z

; ε3αβuβ ,α = i
(∂U

∂z
–

∂U
∂z

)
. (24)

Taking into account (24), we will rewrite the relations of system (21) in the following
form:

2(κ + μ)
∂2U
∂z∂z

+ (μ + λ)
∂

∂z

(∂U
∂z

+
∂U
∂z

)
+ ξ

∂ϕ

∂z
– iκ

∂φ

∂z
= 0,

4ψ
∂2φ

∂z∂z
– iκ

(∂U
∂z

–
∂U
∂z

)
– 2κφ = 0, (25)

4d
∂2ϕ

∂z∂z
– ξ

(∂U
∂z

+
∂U
∂z

)
– aϕ = 0.

We integrate the first relation of this system to obtain

2(μ + κ)
∂U
∂z

+ (λ + μ)
(∂U

∂z
+

∂U
∂z

)
+ ξϕ – iκφ = �′(z), (26)

where � is a complex analytic function on z, and d�′(z) = d�(z)
dz .

By conjugation of relation (26), we get

2(μ + κ)
∂U
∂z

+ (λ + μ)
(∂U

∂z
+

∂U
∂z

)
+ ξϕ + iκφ = �

′
(z). (27)

Next, using the relations (26) and (27), we get by summing the relation

∂U
∂z

+
∂U
∂z

=
1

2(2μ + κ + λ)
[�′(z) + �

′
(z) – 2ξϕ], (28)

and by subtraction the relation

∂U
∂z

–
∂U
∂z

=
1

2(μ + κ)
[�′(z) – �

′
(z) + 2iκφ(z, z)]. (29)
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From the third relation of system (25) and from (28), we deduce that

(
4

∂2

∂z∂z
– m2

)
ϕ =

ξ

2d(2μ + κ + λ)
[�(z) + �

′
(z)], (30)

where

m =
a(2μ + κ + λ) – ξ 2

d(2μ + κ + λ)
,

with m2 > 0, according to (9). Therefore, we deduce that the function ϕ can be written in
the form

ϕ = M –
ξ

2dm2(2μ + κ + λ)
[�(z) + �

′
(z)], (31)

where M is a real function that satisfies

(
4

∂2

∂z∂z
– m2

)
M = 0. (32)

Taking into account (28) and (31), we find:

∂U
∂z

+
∂U
∂z

= R[�′(z) + �
′
(z)] –

ξ

2μ + κ + λ
M, (33)

where

R =
ξ + dm2(2μ + κ + λ)

2dm2(2μ + κ + λ)
.

Next, considering the second equation of system (25) and relation (29), we obtain

(
4

∂2

∂z∂z
– p2

)
φ =

iκ
2γ (μ + κ)

[�′(z) – �
′
(z)], (34)

where

p2 =
κ(2μ + κ)

ψ(μ + κ)
.

The φ function can be rewritten as follows:

φ = P –
iκ

2γ p2(μ + κ)
[�′(z) – �

′
(z)], (35)

where the real function P satisfies

(
4

∂2

∂z∂z
– p2

)
P = 0. (36)

From (27), (31)–(33), and (36), we deduce that

∂U
∂z

= η1�
′(z) – η2�

′
(z) + 4iq1

∂2P
∂z∂z

– 4q2
∂2M
∂z∂z

, (37)
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where we denoted by η1, η2, q1 and q2 the following:

η1 =
3μ + λ + 2κ

4(μ + k)(2μ + λ + κ)
+

κ

4(2μ + κ)(μ + κ)
+

ξ 2

4dm2(2μ + λ + κ)2 ,

η2 =
μ + λ

4(μ + k)(2μ + λ + κ)
+

κ

4(2μ + κ)(μ + κ)
–

ξ 2

4dm2(2μ + λ + κ)2 ,

q1 =
κ

2p2(μ + κ)
, q2 =

ξ

2m2(2μ + λ + κ)
.

Let ω be a complex analytic function on z. By integrating equation (37), we get

U = η1�(z) – η2�(z)z – ω(z) + 4iq1
∂P
∂z

– 4q2
∂M
∂z

. (38)

Previously, we were able to obtain in relations (31), (35), and (38) a representation of
the functions ϕ, φ and U in terms of the analytic complex functions �, ω and the real
functions M and P.

Next, following some simple calculations, we deduce the equalities below:

t11 + t22 = 2ξϕ + (2λ + 2μ + κ)uρ,ρ ,

t11 + it12 – t22 + it21 = (κ + 2μ)[u1,1 + iu1,2 – u2,2 + iu2,1] = 2(2μ + κ)
∂U
∂z

,

t21 – t12 = (u2,1 – u1,2 – 2φ)κ , (39)

m13 – im23 = 2ψ
∂φ

∂z
– iζ

∂ϕ

∂z
,

h1 – ih2 = 2d
∂ϕ

∂z
.

Using (24), (34), (36), and (39), we obtain the following form of the relations presented
in the previous system:

t11 + t22 =
a(2μ + 2λ + κ) – 2ξ 2

2dm2(2μ + κ + λ)
[�′(x) + �

′
(z)] +

ξ (2μ + κ)

2μ + κ + λ
M,

t11 + it12 – t22 + it21 = –2(2μ + k)
[
η2�

′′
(z)z + ω(z) – 4iq1

∂2P
∂z2 + 4q2

∂2M
∂z2

]
,

t21 – t12 = γ p2P, (40)

m13 – im23 = 2γ
∂P
∂z

+ 2iζ
∂M
∂z

– i
[ κ

p2(μ + κ)
+

ζ ξ

dm2(2μ + λ + κ)

]
�′′(z),

h1 – ih2 = 2d
∂M
∂z

–
ξ

m2(2μ + λ + κ)
�′′(z).

Next, we will use the following relations:

n1 = –
1
2

i
(dz

ds
–

dz
ds

)
, n2 = –

1
2

(dz
ds

+
dz
ds

)
,
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considering that L is a smooth piecewise arclength-parameterized curve. From (20), we
have

t1 + it2 =
1
2

[t12 – it11 – t21 – it22]
dz
ds

+ i
1
2

[t11 + it12 – t22 + it21]
dz
ds

,

m = Im{(m13 – im23
dz
ds

}, (41)

h = Im{(h1 – ih2)
dz
ds

},

where Im{} represents the imaginary part of {}. We note that

t11 + t22 = 2(2μ + k){η2[�′(z) + �
′
(z)] + q2m2M}. (42)

Using (40)–(42), we get

t1 + it2 = –(2μ + κ)i
d
ds

{η2[�(z) + z�′
(z)] + ω(z) – 4iq1

∂P
∂z

+ 4q2
∂M
∂z

},

m = Im{2γ
∂P
∂z

+ 2iζ
∂M
∂z

– iw1�
′′(z)]

dz
ds

}, (43)

h = Im{[2d
∂M
∂z

– w2�
′′(z)]

dz
ds

},

where we used the following notations:

w1 =
κ

p2(μ + κ)
+

ζ ξ

dm2(2μ + λ + κ)
; w2 =

ξ

m2(2μ + λ + κ)
.

We use the notations S1 and S2 for the vector components resulting from the application
of external stresses to the contour L. Hence, we get

S1 + iS2 =
∫

L
(t1 + it2)ds = –(2μ+κ)i{η2[�(z)+z�′

(z)]+ω(z)–4iq1
∂P
∂z

+4q2
∂M
∂z

}A
A. (44)

A function F changes its value when moving around the contour L in the conventional
positive direction. For one round, we denote these changes by {F}A

A.
Now, we can express the boundary conditions (19) in the following form:

η1�(z) – η2x�
′
(z) – ω(z) + 4iq1

∂P
∂z

– 4q2
∂M
∂z

= ũ(s),

P(z, z) –
iκ

2γ p2(κ + μ)
[�′(z) – �

′
(z)] = φ(s), (45)

M(z, z) –
ξ

2dm2(2μ + λ + κ)
[�(z) + �

′
(z)] = ϕ(s), z ∈ L,

where ũ = ũ1 + iũ2. Moreover, from (43), the boundary conditions (20) can take the fol-
lowing form:

(2μ + κ)
d
ds

{η2[�(z) + z�′
(z)] + ω(z) – 4iq1

∂P
∂z

+ 4q2
∂M
∂z

} = t̃(s),
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Im{[2γ
∂P
∂z

+ 2iζ
∂M
∂z

– iw1�
′′(z)]

dz
ds

} = m̃(s), (46)

Im{[2d
∂M
∂z

– w2�
′′(z)]

dz
ds

} = Ñ(s), z ∈ L,

where t̃(s) = i(t̃1 + it̃2).

5 Construction of potentials
In this section, we aim to derive the structure of the potentials �, ω, P, and M and
to explore their arbitrariness across various domains of interest. We analyze the dif-
ferences between the configurations of the following sets of potentials (�,ω, P, M) and
(�∗,ω∗, P∗, M∗), corresponding to the same functions tαβ , mα3 and hα .

According to (40), it is required that

Re[�′(z)] = Re[�∗′
(z)], M = M∗, P = P∗,

η2z�′′
(z) + ω′(z) = η2z�∗′′

(z) + ω∗′
(z),

where Re[] denotes the real part of []. Therefore, we deduce that

�(z) = �∗(z) + iXz + ρ1,

ω(z) = ω∗(z) + ρ2, (47)

P = P∗,

M = M∗,

where X is a real constant, and ρ1, ρ2 are complex constants.
We can set the origin of the coordinates in � such that X, ρ1, ρ2 satisfy the conditions

�(0) = 0, Im{�′(0)} = 0,ω(0) = 0, (48)

which ensure the unique determination of � and ω.
We consider that (�,ω, P, M) and (�∗,ω∗, P∗, M∗) are correlated with uα , φα and ϕ, which

indicates that we cannot have a greater arbitrariness than in (46). Referring to relation (39),
the displacement imposes X = 0 and η1ρ1 = ρ2. Consequently, we can select ρ1 such that
�(0) = 0.

Given that � and ω are single-valued and analytic functions within a bounded, simply
connected region, we focus on the situation where the cross section is bounded and mul-
tiple connected. We will consider the boundary L as comprising (m + 1) simple and closed
Lj contours, ensuring Lm+1 encompasses all Lk contours (where (k = 1, 2, . . . , m)).

Assuming that uα , φα , ϕ and the stress functions tα,β , mα,β and hα have a unique value
and from (40), we deduce that M, P and their second-order derivatives must also be single-
valued. From this, we derive the following form of the complex potentials:

�(z) =
m∑

k=1

(zXk + Yk)log(z – zk) + �1(z),

ω(z) =
m∑

k=1

Zklog(z – zk) + ω1(z),

(49)
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where zk represents a point in the simply connected region �k bounded by Lk , �1, and ω1

are single-valued analytic functions on �, Yk and Zk are complex constants, and Ak are
real constants. Therefore, from (31), (35), (38), and (48), we deduce that

[U]Lk = 2π[(η1 + η2)zXk + η1Yk + Zk],

[φ]Lk = 2π(η1 + η2)zXk ,

[ϕ]Lk = 0.

Here, the notation []Lk represents the change in the value of the function when surround-
ing the contour Lk once in the conventional positive sense. Taking into account the fact
that uα and φα must have unique values, we deduce the following conditions:

Xk = 0, η1Yk + Zk = 0. (50)

We denote the resultant of the stress vector applied to the contour as S(k)
1 , S(k)

2 . Based on
equations (43), (44), and (48), we derive

S(k)
1 + iS(k)

2 = –2π(2μ + κ)(η2Yk – Zk). (51)

From (50) and (51), it follows that

Yk = –
1

2π
(S(k)

1 + iS(k)
2 ); Zk = –η1Y k . (52)

Therefore, from (49), we get

�(z) = –
1

2π

n∑
k=1

(S(k)
1 + iS(k)

2 )log(z – zk) + �1(z),

ω(z) =
1

2π
η1

m∑
k=1

(S(k)
1 – iS(k)

2 )log(z – zk) + ω1(z).

(53)

In the study of complex analysis and potential theory, unbounded domains and the be-
havior of functions at infinity play a crucial role. Theorem 1, stated below, provides sig-
nificant insights into the behavior of functions defined on such domains, particularly in
terms of their integral representations and asymptotic properties.

Theorem 1 Let � be an unbounded domain with the outlines δ1, δ2, ..., δm as internal
bounded regions. Assuming the origin z = 0 is exterior to � and hα , tαβ , and mαβ are de-
limited in the vicinity of the limit point and for |z| = χ sufficiently large, we have

�(z) = –
1

2π
(R1 + iR2)logz + (a1 + ia2)z + �0(z),

ω(z) =
1

2π
η1(R1 – iR2)logz + (b1 + ib2)z + ω0(z), (54)

P(z, z) =
∞∑

n=0

(Pneinθ + Pne–inθ )Kn(τχ),
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M(z, z) =
∞∑

n=0

(Mneinθ + Mne–nθ )Kn(wχ).

In the previous theorem, �0 and ω0 represent single-valued analytic functions on �

including the limit at infinity, and we used the notations aα and bα for real constants, Pn

and Mn for complex constants, Kn for modified Bessel functions of order n and

Rα =
m∑

k=1

S(k)
α ; z = reiθ . (55)

For sufficiently large |z|, we can express the functions �0 and ω0 in the following form:

�0 =
∞∑

n=0

Dnz–n, ω0(z) =
∞∑

n=0

Enz–n. (56)

We consider that

lim
P→∞ tαβ(P) = t∗

αβ .

From (40), (42), and (53), it follows that

t∗
11 = (2μ + κ)(2η2a1 – b1), (57)

t∗
22 = (2μ + κ)(2η2a1 + b1),

t∗
12 = t∗

21 = (2μ + κ)b2.

The constant b2 depends on the rigid rotation at infinity ε via

a2 = (2μ + κ)ε. (58)

6 The stress that occurs around the hole
In this part of the paper, we will use the results obtained in the previous sections. Using
boundary conditions and complex potentials, the following theorem allows the analysis
of stress and deformation of materials with circular inclusions under external load condi-
tions.

Theorem 2 Let �1 = {(x1, x2) ∈R
2, x2

1 + x2
2 > χ2} be an unbounded domain with a circular

hole centered at the origin and with radius χ . Assuming that an axial uniform stress acts
on the body in the x1 direction, at infinity, we have:

t∗
11 = Q, t∗

12 = t∗
21 = t∗

22 = 0, m∗
α3 = 0, h∗

α = 0, (59)

where Q is a given constant.
At the boundary of the hole, we have

η2[�(z) + z�′
(z)] + ω(z) – 4iq1

∂P
∂z

+ 4q2
∂M
∂z

= 0,
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Im{[2γ
∂P
∂z

– iw1�
′′(z)]

dz
ds

} = 0, (60)

Im{[2d
∂M
∂z

– w2�
′′(z)]

dz
ds

} = 0, for |z| = χ ,

where the components of the complex potentials are as follows:

�(z) =
1

4η2(2μ + κ)
Qz +

1
z

D1,

ω(z) = –
1

2(2μ + κ)
Qz +

1
z

E1 +
1
z3 E3, (61)

P(z, z) = iH1

(z
z

–
z
z

)
K2(τχ),

M(z, z) = H2

(z
z

+
z
z

)
K2(wχ), χ = (zz)1/2,

where

D1 =
1

2(2μ + κ)F
Qξ 2, E1 = –

1
2(2μ + κ)

Qχ2,

E3 =
1

2(2μ + κ)F
[η2 + 1q1χτTK3(τχ) + 2q2χmHK3(mχ),

H1 = TD1, H2 = HD1, F = η2 + 2q1τa2TK1(τχ) + 2q2mχK3(mχ), (62)

T =
4

2χ4ω
{8dK2(mχ) + 2mχξ [K1(mχ) + K3(τχ)]},

H =
4

3χ4ω
{8γ K2(τχ) – 2τχξ [K1(τχ) + K3(τχ)]},

� =
16dγ

χ2 K2(τχ)K2(mχ) + 4mτξ 2[K1(mχ) + K3(mχ)][K1(τχ) + K3(τχ)].

We note that R1 and R2 are 0, and in the case of stress analysis, we can consider that a2,
D0, E0. From (57) and (59), we find that

a1 =
1

4η2(2μ + κ)
Q, b1 = –

1
2(2μ + κ)

Q, b2 = 0. (63)

In this case, the solution has the forms (54) and (56). Using them and (60), we get

eiθ U = uχ + iuθ ,

where the components uχ and uθ are in polar coordinates. From (31), (35), (38), and (63),
it follows that

uχ + iuθ =
η1 – η2

4η2(2μ + κ)
Qχ –

1
χ

(E1 – η1D1) + ucos2θ + ivsin2θ ,

φ = –2[H1K2(τχ) –
κ

2γ τ 2(μ + κ)χ2 D1]sin2θ ,

ϕ = –
ξQ

4dm2η2(2μ + λ + κ)(2μ + κ)
+ 2[H2K2(mχ) +

ξ

2dm2(2μ + λ + κ)χ2 ]cos2θ ,
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where

u =
1
χ

η2D1 +
Qχ

2(2μ + κ)
–

1
χ3 E3 +

2
χ

q1H1K2(τχ) + 2mq2H2[K1(mχ) + K3(mχ)],

v =
1
χ

η2D1 –
Qχ

2(2μ + κ)
–

1
r3 E3 + 2q1H1[K1(τχ) + K3(τχ)] +

8
rq2

H2K2(mχ).

Similarly, using (40) and (62), we obtain the stresses.

7 Numerical simulation
The graphs below (Figs. 1–4) correspond to an isotropic magnesium crystal with pores
and are obtained using the “Wolfram Mathematica” computing system. The values used
can be found in [9]. The acquired plots represent the real and imaginary parts of the �(z)

and ω(z) potentials, which can be found in Sect. 5. These allow us to visualize the variation
of potentials in the complex. More precisely, these graphs help to understand the stress
and displacement fields in the material, identify critical regions, and predict the behavior
of the material under various conditions.

In the representation, Im(�(z)), a peak located in the center can be observed, which in-
dicates a region where the imaginary part has a significant value. This may be due to stress
concentration or a singularity in the material. In both representations, flat regions suggest
slow changes in those areas. There is a visible central valley in the Re(�(z)) representation,
which indicates a negative value and may suggest comprehensive stresses or regions of low
potential.

Regarding the corresponding plots of Re(ω(z)) and Im(ω(z)), peaks and valleys can also
be observed, indicating peaks of maximum and minimum displacement. Microrotations
affect the displacement and strain fields, leading to more complex patterns in the graphics.
Sharp peaks suggest the presence of singularities or displacement concentration points,
possibly near pores or defects in the material. These plots help to understand the displace-
ment and strain fields in the material, identify critical regions, and predict the behavior of
the material under various conditions.

The following four graphs correspond to the imaginary and real parts of the radial dis-
placement component “u” and the tangential displacement component “v” of Sect. 6. The

Figure 1 The behavior of Re(�(z)) and Im(�(z))
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Figure 2 The behavior of Re(ω(z)) and Im(ω(z))

Figure 3 The behavior of Re(u) and Im(u)

Figure 4 The behavior of Re(v) and Im(v)

axis corresponding to χ represents the radial distance from the center of the circular hole,
and the corresponding axis of θ represents the angular coordinates around the hole. The
plot of Re[u(χ , θ )] for a porous isotropic magnesium crystal helps visualize the material’s
response, highlighting areas of stress concentration and weakened stiffness due to poros-
ity, essential for informed material design and application. The imaginary part of the func-
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tion u(χ , θ ) is uniform, indicating consistent damping or phase effects throughout the ma-
terial. This uniformity can be crucial for applications where stable phase characteristics
are desired. The plot for the real part of v(χ , θ ) shows how the tangential displacement
varies with χ and θ , highlighting areas of stress concentration and informing material de-
sign strategies. The plot for the imaginary part of v(χ , θ ) is similar to Im(u(χ , θ )).

8 Conclusion
Graphs representing complex potentials and stress and displacement distributions in a
material have many practical applications in various fields of engineering and materials
science. They are powerful tools in the analysis and design of materials and structures.
They allow a deep understanding of the mechanical behavior of materials, identifying
critical points and optimizing the design for superior performance and safety. These tech-
niques are essential in a wide range of industries, from structural and aerospace engineer-
ing to bioengineering and scientific research.
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