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1 Introduction

In recent years, fractional differential equations have received increasing attention and are
suitable for many complex practical problem models. Compared with integer-order oper-
ators, fractional-order operators can provide more realistic and informative mathematical
modeling for many real-world phenomena, as well as their applications in various disci-
plines of physics and technical science [1-6]. For example, in rheology, materials science,
biophysics, blood flow phenomena, control theory, wave propagation, signal and image
processing, permeation, identification and fitting of experimental data [7-9], etc.

In this field, nonlinear coupled fractional differential systems have also received wide-
spread attention [10—17]. The study of the equations involves theoretical analysis and nu-
merical solution methods [18]. To study the well-posedness, suitable boundary conditions
are essential. Common boundary conditions may lead to the ill-posedness of the problem
due to the global characteristic of the fractional derivative [19-23]. To overcome these
difficulties Ahmad et al. [24, 25] proposed the concept of slit-strips condition, which was
applied to strip-type detectors and acoustic imaging; the integral boundary condition de-
scribes the value of an unknown function at a nonlocal point in the aperture (i.e., the
boundary region outside the strip) and a finite strip of any length occupying a position on
the interval [0, 1]. Examples of such boundary conditions include scattering from narrow
slits [26], silicon strip detectors for scanning multislit X-ray imaging, acoustic impedance
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of baffle heat sinks, diffraction of adjacent elastic blades, sound field of infinitely long
strips, multiple dielectric welds on conductive planes, and thermal conduction in finite
regions.

Ahmad et al. [27], investigated the following slit-strips problem:

DPu(t) = fi(t,u®)),n-1<p <n,t€[0,1],
u(0)=0, #(0)=0,u"(0)=0,...,u"%0) =0,

1
u(ﬁ;’):al/nu(s)ds+a2/ u(s)ds,0<n<&<& <1,
0 &1

where ©D? denote the Caputo fractional derivative of order p, f; : [0, 1] x R — R is a given
continuous function, and a,, a, are real positive constants. Then in [28], Ahmad et al.

studied a coupled system of nonlinear fractional differential equations

CDY[u(t) - i (t, u(t), v(t))] = 01t u(t), (1)), t € [0,1], 1 < y <2,
CD’[W(t) — ha(t, u(t), (1)) = Or(t, u(t), (1)), t € [0,1],1 < § <2,

&1 1
u(0) =0, u(n) = wy / v(s)ds + wZ/ v(s)ds,0< & <n<é& <1,
0 &
&1 i
v(0) =0,v(n) = w, / u(s)ds + a)2/ u(s)ds,0< & <n<é& <1,
0

&

where “D” and “D? denote the Caputo fractional derivatives of orders y and 8, respec-
tively, 0;,5; : [0,1] x R x R — R are given continuous functions with /;(0, #(0), v(0)) = 0,
i=1,2,and w;, wy are real constants.

Motivated by the work presented in [28, 29], we considered the following coupled system
of mixed fractional differential system containing Caputo fractional derivatives of different

orders, supplemented with slit-strips-type integral boundary conditions:

g {€Df,1(®) = (&, u), O} = 016, (@), W), 0 < p < 1,1 < <2,
CD]_{€D§, [v(t) — ha(t, v(t), u(0)]} = 62(8, v(8), u(t)),0< g < 1,1 < p <2,

&
u(0)=u(1) =0,u(n) = w1 /

1
v(s)ds + a)2/ v(s)ds,0< & <n<é<l, 1)
0

&

&1 t

v(0) =v(1) =0,v(n) = w, / u(s)ds + wzf u(s)ds,0<& <n<é& <1,
0 &

where ¢D%, ¢Df, ¢DP, D7 denote the Caputo fractional derivative of order «, B, p,
q, respectively, 01,0,,h1,hy : [0,1] x R x R — R are given continuous functions with
h1(0,u(0), v(0)) = 0, h,(0,v(0), u(0)) = 0, ¢ € [0,1], and w1, w; are real positive constants.
The rest of the paper is organized as follows. The definitions and an auxiliary result are
presented in Sect. 2. The major results for system (1) are proved in Sect. 3. The examples

are presented in Sect. 4 to verify the conclusions.

2 Preliminaries

For convenience, we give a few relevant definitions [30] and a lemma.
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Definition 1 The left and right Riemann-Liouville fractional integrals of order o for
a continuous function g are respectively defined as

t 1

g(s)
L) /)i (-t

g(s)
Fo)Jo Et-9'7

I5.g(6) = ds, 17 g(t)= )

where o >0, I'(0) is the gamma function, provided that the right-hand side is pointwise
defined on R*.

Definition 2 The left and the right Caputo fractional derivatives of order o of a function g
are, respectively,

‘gm0

T(n-0) Jo (t_s)m_nds=16“I"g(")(t), DY g(t) = (1" [} g (),

“Dg.g(t) =

where n=[0]+1,£>0,n—1<0 <n, o] denotes the integer part of a real number o.
Definition 3 For o >0, let g,“Dg, g(¢), “D_g(¢t) € L'[0,1]. Then

I(‘)’+CDg+g(t) =g(t)+co+cit+ ot + -+ t™

I2°DS gt)=g(t)+eo+e1(1—t) + &1 = )2 + - - + Epa (1 — 1),
wherec¢;,¢; €R,i=0,1,..., u-1(n=[c]+1).

Lemmal Let H;,®; € C([0,1],R) and H;(0) = 0, i = 1, 2. Then the solution of the nonlinear
system

DD, 1wty - 1] =010, 1€ 10,11, 0< f< 1,1 < <2

“Di_{“D§, (1) - Hy(0)]} =g@2(t)r te[0,11,0<g<1,1<p<2,

1
u(0)=u(1)=0, u(n) = w; / 1 v(s)ds + wgf v(s)ds, 0<& <n<é&<l, )
0 &

2
1

&1
v(0) =1(1) =0, v(n) = w; / u(s)ds + a)Z/ u(s)ds, 0<& <n<é<l,
0 &

2

is given by
u(t) =/1(8) + g1(®r /(1)

&1 1
+&(1) {—Kz]z(l) + k3 [—h(n) + w1 J2(8)ds + o / ]2(S)d8} 3)
0 &

&1 1
+K4 [—/2(77) +wp J1(s)ds + / ]1(S)dS] } +g3(tks/1(1)
0 &

and

v(t) =fa(t) + z1(B)y1)2(1)

& 1
+25(2) {—Vzh(l) + V3 |:—]1(77) + w1 Jo(8)ds + wo ]2(S)d5] @)
0 &

& 1
+Va [—/2(77) +wp J1(s)ds + /1(s)ds] } +z3(8)ys/2(1),

0 &
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where

J(®) =I5 I ©1(8) + Hy(8), Jo(t) = I§,IL_O(t) + Ha(t),

~ th P leit—ex(B+1)] P!
8O rEy YT At YT AT
= i [ea(g + 1) — e3t] !
zi1(t) = m, z(t) = AT(7+2) , z3(t) = m,

k1 = &3 (86812 — €8€10) + €4 (67810 — €6811) 5 K2 = £7€12 — E8€11,

K3 = 84811 — €312, K4 = £388 — £487, K5 = £3 (65812 — £8€9) + €4 (€789 — E5€11) 5

y1 = &1 (88810 — €6€12) + €2 (5812 — £889) , Y2 = €510 — £6E9, V3 = £289 — £1€10,

Va = €186 — €285, V5 = €1 (67810 — €6€11) + €2 (65811 — €789),

and
1 1 1 1
&1 = y &2 = ; €3 = y &4 = ’
rg+1) (g +2) I'(g+1) I'(g+2)
77/3 n5+1 1q+1 1 _$2q+1
&5 = » €6 = y E7=—1W1 + w; ’
rg+1) g +2) (g +2) I'(g+2)

q+2 q+2 B+1 p+1
_ 1 1-§ _ 1 1-§)
Eg=—1W1 + w3 » €9 =— W1 + w3 ’
F(g+3) 'T(q+3) FB+2) T(+2)

{S+2 1— Ef+2 T’]q nq+1
€10 =—1®1 L) y €11 = = €12 = =~y
I'(B+3) ' +3) F'(g+1) I'(g +2)

with the following assumption:

A =¢1[e3 (63810 — €6€12) + €4 (86811 — €7€10) ]

+ &3 [e3 (65612 — €889) + €4 (8789 — £5€11)] # 0.
Proof From ©; € C([0,1],R?), i = 1,2, we get

wt) =1, (I ©1(8) + €1 + cat) + c3 + Hy(2)
P b [ (5)
=1 Ia @ t H t »
WA 1()+F(ﬁ+1)cl+f‘(ﬂ+2)02+cg+ 1(®)

v(t) = I3, (I}_O©a(t) + ca + c5t) + 6 + Ha(t)

1 1+l (6)
Cy + C5 + cg + Hy(2).
(g+1) I'(g +2)

=1L 0+ T

Using the conditions #(0) = v(0) = 0, we find that c3 = ¢¢ = 0, and thus (5) and (6) take

the form
5 B B+
t) =1 IV O(t Hi(¢),
u(t) = I, Iy_ 1()+F(ﬁ+1)cl+r(ﬁ+2)62+ 1(®)
5 1 Ifq+1
) =1 1% Oyt Hy(¢).
v(t) =1y I7_ 2()+F(q+1)C4+F(q+2)CS+ »(£)
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Using the boundary conditions (1) = v(1) = 0, we obtain

€1€1 + €262 = Dy, (7)
€3Ca + €4C5 = Dy, 8)
where Dy = —/1(1), Dy = —/»(1).
By the coupled slit-strips-type integral boundary conditions
§1 1 &1 1
u(n) = wy / v(s)ds + a)Z/ v(s)ds,v(n) = w; / u(s)ds + a)zf u(s)ds
0 &y 0 &
we obtain
nﬁ B+1

c +
rg+1 r'g+2)

&
=w f [13+1§’_®2(s)+
0

II¢01(n) + ¢s + Hi(1)

q Sq+1

s Cq +
Fg+1) ~ T(g+2)
1
+ wy / |:Ig+1{_®2(5) +
&

ne
Cq

(g+1)

&1
= / |:I(’)3+1f_®1(s)+
0

c5 + Hz(S)] ds

q Sq+1
Cq t+
Fg+1) (g +2)
q+1
+
I'(g+2)
Sﬂ Sﬁ+1
c1 +
rpg+1) rg+2)
s sPHl
c1 +
rp+1) (B +2)

Cs + Hz(S)j| ds,

I8 O,(n) + T ¢s + Ha(n)

Cy+ Hl(s)] ds

1
+ / [1&1;“@1(5) + o+ Hl(s):| ds.
&

Thus we get

£5C1 + €6Co + £7C4 + £3C5 = D3, 9)

£9C1 + €10C2 + €11C4 + £12C5 = Dy, (10)

where

& 1
D3 =—-Ji(n) + o Ja(s)ds + 0)2/ Jo(8)ds,
0 &

&1 1
Dy=-h(n) + J1(8)ds + w Ji(8)ds.
0 &

Solving systems (7), (8), (9), and (10) for ¢; and c,, we get that
¢ = _X [Dik1 + Doygskcy + D3gsks + Dysoka],
-1
o = ~ [Diks + Dag1kg + D3g1ks + Dag1ka],
-1
Ca="r [D1&4y2 + Day1 + D3egys + Dyggyal,

-1
e = [D1&3y2 + Days + D3gsys + Dag3yal,
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where A is given by the assumption. Substituting the values of ¢;, ¢, ¢4, and ¢5 together
with the above notations, we get solution (3)—(4).
The proof is finished. g

3 Existence and uniqueness for mixed fractional differential system
Let X = {u(t) | u(t) € C([0,1],R)} be the space equipped with the norm ||| = sup{|u(¢)|, ¢t €
[0,1]}. Then (X, || - ||) is a Banach space. Then the product space (X x X, ||(»,v)|)) is also a
Banach space equipped with the norm ||(x, v)| = [lu]| + |||

In view of Lemma 1, we transform the results of system (1) into a fixed point problem.
We define the operator K: X x X — X x X by

_ [ K@, v)(@®)
K(u,v)(t) = ( Ky (u, V)(t)> ’
where
Ki(u,v)(2)

16,0, V) + 1 (01 (L, (1), WD) + €a8) { —sealo (L, (D), (1)

N &1, 1,
+ K3 [—]1(27, u(m),vim) + w1 | Ja(s,v(s), u(s))ds + wy | Ja(s, v(s), u(S))dS]
0 &

&1

1
+Ky [—72(77, v, u(m) + w1 | Ji(s,u(s), v(s)ds + o | Ji(s, u(s), V(S))dS] }

0 &
+ g3(t)ks)1 (1, u(1), w(1)),

Ky (u, v)(®)
~Ta(t, V(0 u(0) + 21Oy Ja(L, VD, 4(D) + 22(8) {22 (1, (D), ¥(1)

. &1, 1
+ V3 [—h(n, u(n),vim) + w1 | Ja(s, v(s), u(s))ds + w; f J2(s, v(s), u(S))dS}
0 &

&1, L
]1 (Sv M(S)) V(S))ds + w3 ]1 (S: M(S), V(S))dsi| }

+Va [—E(n, v(n), u(n)) + o1
0 &

+ z3()ysha(1, (1), u(1)),
and

Jut, ue), () = I, I 01(, u(£), v(£)) + Iy (&, u(t), v(t)),

To(t, v(t), u(t)) = IE I 6(t, v(£), u(t)) + ha(t, v(t), u(2)).

Note that

t(+_ \B-1 1 _ -1 B
LI )= / =) / k) Y S —
o ' J Tl Fla+ DI+ 1)

where we have used the fact that (1 -s)* <1lforl<a <2.
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For convenience, we introduce the notation

1 1

Ei=—————F;, Bb=———————Fy,
Fae+DHI'B+1) F'p+DI'(g+1)
Es =1+g |1l + @ [lxs] + |kal lo1| &1 + |wa] (1= &2)] + &5 |Ks],

Es =@ [lka| + |k3| lw1] &1 + |k3] |wa| (1 —&2) + [kal],
1 1
=——  F;,, Eg=————Fg,
Fae+DI'B+1) F'p+DDl(g+1)

(11)
Es

E7 =z {lyol + ly3l + Iyl [lo1] 61 + |w2] (1 = &2)1},

Eg=1+zi|yil + z2 {lysl [lwi| &1 + |2l (1= &)1 + |yal} + z3 |5,

where

&= sup |@(®], &= sup |@®)], g = sup |g:®)|,
tel0,1] t€[0,1] tel0,1]

z1= sup |z1(D)l, zo = sup |z2(?)|, z3 = sup |z3(¢)].
te[0,1] te[0,1] te[0,1]

Now we are ready to present our main results, that is, we prove the existence and unique-
ness of system (1) via the Banach contraction mapping principle.

Theorem 1 Let 6;,65, k1,4, : [0,1] x R2 — R be continuous functions, and assume that
the following conditions hold:
(A1) There exist A1, Ay > 0 such that

|01(8, %1, ¥1) — 01(E, %2, y2)| < A1(|x1 —x2| + |y1 = ¥21);
|02(2, %1, y1) — O2(t, %2, y2)| < Ao(|x1 — %2 + |y1 — y2])

forallte[0,1]and x;,y;,€R,i=1, 2;
(A2) There exist 111,15 > 0 such that for all t € [0,1] and x;,y; € R, i=1,2,

|7 (8, 201, 91) — I (8,0, 2) | < TIi(Jx1 — 2| + |31 = 320),
|72 (8,21, 91) — B (8, 0, y2)| < Ta(Jx1 — 2| + |31 — ¥2)).

(A?)) = Al(El + E5) + AQ(EQ + E6) + Hl(Eg + E7) + HZ(E4 + Eg) <1.
Then the boundary value problem (1) has a unique solution on [0,1].

Proof Let

s (E1+Es)o1 + (B2 +Es) 02+ (B3 +E7) 1+ (B4 + Eg) &2
1-12 ’

where 01, 02, 61, ¢» are constants defined as

Q1 = Sup |01(t:070)|1 02 = Sup |92(t!0r0)|1
tel0,1] te[0,1]

¢1= sup (0,0, Ga = sup |hy(t,0,0)].
te[0,1] te[0,1]

Consider the closed ball B, = {(i,v) € X x X : ||(u,v)|| < r}.

Page 7 of 17
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Step 1. We first prove that KB, C B,. By assumption (A1) we get
|01(t7 u, V)| = |01(t1 u, V) - Gl(tr 0’ O) + Ql(tr O; 0)|
<161t u,v) — 61(£,0,0)| +161(¢,0,0)|

=A(|x@O] + YD + 01

<Ar(Jlxll + llylD) + o1 < Arr +o1.
Similarly,

102(t, 1, V)| < Aot + 0o, |11(t,u, V)| < TIhir + 61, 1ha(E, 1, v)| < Tlar + 6.

Using the above assumptions, we obtain

|Ki(u,v)| < sup {m u(@®), v()| + g @)l lien |1 (L, (1), v(1)))|

te[0,1]

+18a(0) { o a1, (L), L) + sl o, ), )
&1 L
ol [ s oD+ al [Vt vts) uolds]
0 )
. b
+ ksl Vo, v, uo)| + o] / (s, 14(5), v(s))lds
0

1
#lenl | e u(s),v(s)>|ds]} +1gs(O)l ks |1 (L, u(D), v<1)>|}
2

< sup :[I&I;Y_mlr + o)+ M+ 60| + @bl 15,15 (Arr
te[0,1]

+01) + (I + §1)] S AGIEY [IgJ’f_(Azr +02) + (Tor + gz)]
5 &1
+ Jics| |:[10+1f‘(A1r +o1) +(Thr+ gl)] + oy / [IngIff(Azr +02)
0
1
+ (Myr + §2):|dS + o] / [Ing_(Agr +02) + (ITyr + gg)]ds]
&
&1 P
Ik [[I&I’f_mzr ron+ (Marv g +lanl [ [ (Bar 0
0
1
+(ITyr + gl)]ds + |ws| f [I&I;”_(AM +01) + (ITyr + gl)]ds] }
&
B ja
+lgs(Ollesl [ 16,17 (Arr + 1) + (Mar+ ) | :

Straightforward calculation gives

1
|Ki(u,v)| < [(A17+ Q1)m +(ITyr + 51)] {1 + g1k

1

&
+g2[|:<3|+|x4||w1|/ 1ds + |an) 1ds]+g3|x5|}
0

&

Page 8 of 17



Yu et al. Boundary Value Problems (2024) 2024:128 Page9of 17

+[Aar+o0) +(Mar + 63)] {§2[|K2|

1

1
F'p+1I'(g+1)

&1
Hleallonl [ 1ds+ eallon 1ds+|x4|]}
0

&
< (A7 +01)E1 + (Agr + 02)Ey + (IT1r + 61)E3 + (Tlor + 62)Ey,

so we get
1Ky (2, v)|| < (A1EL + AgEy + I E3 + TIhE4) ¥ + 01E1 + 02Es + 61E3 + 624,
Analogously, we find that
1K (u, v)I| < (A1Es + AyEg + IT1E7 + T13Eg) 7 + 01E5 + 02E6 + 61E7 + 62 Es.
From the foregoing estimates for K; and K, we obtain
IK(u,v)|| < 3er+ (E1 +Es) 01 + (B2 + Eg) 02+ (E3 + E7) 61 + (Ea + Eg) o <7
for (u,v) € B,, K(u,v) € B,. Then K(u,v) C B,.
Step 2. We show that the operator K is compact.
Lett e€[0,1], (u/, 1/) , (u”, v”) € X x X. By (Al) and (A2) it follows that
K (o)~ s o)
<(|u =+ |v" =V]) sup { (Boar+ ) + g
tel0,1]
i (1§+1;',A1 + nl) + |g20)] { lica| (I8, 1Az + TT,)
&1
+ Jics| |:<I§+If‘A1 + nl) + |w1|/ (I I Ay + T,) ds
0
1
+ |w2|/ (12 1Ay + Hz)ds:l + |l [(ngffAz +1I,)
&
§1 1
¥ Ia)ll/ (Iéﬂlf_m ¥ nl) ds + |a)2|/ b 1o A
0 3

+ Hl)ds]} + ’gg(t)‘ |5 (I&a‘f_Al + I"Il) }

<R T (o =]+ |- ]) sup {1

& 1
+ g )| Il + 20| [|K3| + lal o] f 1ds + || 1ds]
0 &

+ g5 les } LT Ay T~ |

+ v =) sup { &) {2l
tel0,1]



Yu et al. Boundary Value Problems (2024) 2024:128 Page 10 of 17

&1 1
+ |k3] [Iwﬂ/ 1ds + |w,| 1dS:| + K4l }
0 &

<(A1E1 + Aoy + TEs + TLES) (|u” =o' || + v/ = V),
which implies that
K (", v") = Ky (V)| < (ALEq + AgEp + TIHEs + TLE) (| /|| + v/ = V).
Likewise, we have
|5 (V") = Ko (V') | < (A1Es + AgEg + TE7 + TLEg) (o — /|| + v =)
From these estimates we deduce that

R S [ vt P e

)

which shows that K is a contraction by assumption (A3), and hence it has a unique fixed
point by Banach’s fixed point theorem.
The proof is complete. O

Under relaxed conditions for 6;,i = 1,2, and 4;,i = 1,2, we can also prove the well-
posedness of system (1). First, let us revisit Schaefer’s fixed point theorem [31].

Lemma 2 (Schaefer's fixed point theorem). Let X be a Banach space. Assume that T :
X — X is a completely continuous operator and the set V = {u € X|lu =vTu;0<v <1} is
bounded. Then T has a fixed point in X.

Now we prove the following result.

Theorem 2 Let 01,05,h1,h3 : [0,1] x R x R — R be continuous functions satisfying the
condition

(A4) There exist real constants bj,dj,ej,n; > 0, j = 0,1,2, and by, do, ey, no # 0 such that
forallx e R, k=1,2,

|61(t,%1,%2)| < bo + bylx1] + balxal, 02(t, %1, %2)| < do + di|x1] + da|x2],

[t x1,%2)] < €0 + ex|x1] + ealaal, [ha(E,x1,%2)| < 1o + mlx1| + M2 %2
Then system (1) has at least one solution on [0, 1] if

(E1 + Es)by + (Ex + Eg)dy + (Es + E7)er + (E4 + Eg)ny < 1
and

(E1+ Es)by + (Ey + Eg)dy + (E3 + E7)ey + (Eq + Eg)np < 1,

where E;,i=1,2,...,8, are given by (11).
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Proof Observe that the continuity of the functions 6y, 8,, 11, hy implies that the operator
K is continuous.

Step 1. We show that the operator K is uniformly bounded.

Let Q C X x X be a bounded set. Then for all (z,v) € Q, there exist constants M; > 0,
i=1,2,3,4, such that

161(2, u(2), V()| < My, 1022, v(8), u(t))| < My,

[ (2, u(®), V()| < M3, [ha(t, v(2), u(?))| < Ma.

For any (&, v) € Q, we have

1K)l < sup { (18,151 + M) + |0 1l (15,1501 + M5 )
tel0,1]

+ g0 { ko | (I8, 1My + My) + i3 |[(I5, 1% M, + M)

&1 1
+ || / IE 1 My + My)ds + |ws| | LI My + My)ds]
0 &
& p
+ lica] [ (8.1 My + My) + o | / (Imlf‘_Ml + Mg) ds
0

1
+lea| [ I8 M, +M3)dS]} + lgs ()l lies| (L, 1My +M3)}
&

&1
5(1§+IT‘_M1 +M3)tSE)Ii] {1 +1g1Ollre1| + |g@@I[k3] + |M||M|f0 1ds
€0,

1
+ |a)2|/ lds:| + |g3(0)] lxes | } + (I{, M + My) sup { g2t { k2]
& te[0,1]

&1 1
+ |k3] |:|a)1|/ 1ds + |ws| lds:| + |kl }
0 &

<M E1 + MyEy + M3E3 + M4E,.

Analogously, we find that
|1Ka(u, v)|| < MiEs + MyEg + M3E; + M4Es.
From the foregoing inequalities it follows that
1K (u, V)|| < My (Ey + Es) + M (Ez + Eg) + M3 (E3 + E7) + My (E4 + Eg).

Thus the operator K is uniformly bounded.

Step 2. We show that K is equicontinuous.
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For 0 <t <t <1, we have

| Ky (u(t2),v(f2) — Ky (u(t1),v(0)) |

<ft1 — (-9 — (-9 UM ds+/t2 (tz_s)ﬁ_ll" Mds
=J T b S A V) N

B-1
+ [ (u(te), v(t2)) — i (u(tr), vi)| + g1 (E2) — gl(t1)||K1|(/ a F(;) IT Myds

- )"‘

+Ms) + |g(t2) — g(t)] { |/<2|(/ 1Y Mods + My)

n _ \B-1 £1 s _ q-1
+|K3|[( / =S 1o pyds + M) + o / ( / (s T) P_Msdt + My)ds
0

')
1 pS (e 1 _ 1
vlonl [ ([ S22 Made + Moyds) + s f Ry ),, 17 Mayds + M)
& JO F(Q)
& (s—7)f 1 (s—r)ﬁ‘1 N
+ |a)1|/0 ( | ) I Mydt + M3)ds + |ws| gz( | T B) I Mydr
+M)ds:| +lgs(t) — g3(t)| |k |[/1ﬂ1“Mds+M]

3 g3(l2 gSISOF(’B) 1Vl 3
<L[2(t =)+ [0 — ] 4 1 @ ), () — I ), v (1)
“T@+DrB+1 L7 2" 2T ’

)tz —tl‘ M

iy | [ +M3j|
IAIF(,B 1) Fl@+DI(B+1)
P téhl _t{i+1

+

+52(/3+1)‘tf—tf‘ M,
| e tren
IAIT(B +2) Fe+DHl(g+1)

&
+ k3| [L + M3 + |a)1|/ (L +M4> ds
Fae+DHI'B+1) 0 F'p+1I'(g+1)
1
+ o] (L +M4) ds]
5 \ '@+ DI'(g+1)
&1
il [ ettt [ ()
Fp+1I'(g+1) 0 Ma+DDI(B+1)

1
] (L M)d“
Mo+ DB +1)

t§+1 t{i+1

+ |5 +Ms|,
[A|T(8 +2) F+DI(B+1)

from which it follows that |K; (i (£),v (t2)) — K1 (1 (81),v(t1))| — 0 as t; — t,.
Analogously, we can obtain

Kz (4 (82) , v (£2)) — Ko (u (21),v (1)) |

151 1
< sup {/0 e )[(tz—s)q — (t = )T I}_Mds

tel0,1]
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2 (-5t ,

+/ ————L_Mds +|hy (v(t2) ,u (£2)) = ha (v (£1) , u (t1))
t1 F(Q)

+lz1 () —z1 ()| 1| (L1 Mo + My) + |25 () — 25 (1) { lyal (I, 1M, + M3)

&1 1
+|ysl [1511‘;1\/11 + M3 + 1] / (I&, M + My) ds + || / (IL,17_M; + My) ds]
0 &

&1 1
+ 1yl [IgJ’sz + M+ | 5 I My + M)ds + || / ab 1 vy + Mg)ds] }
0 &

+ |23 (82) — 23 (1) | lys| (g, 17_M> + Ms) }

M.
sm 2t -t)T+ |6 = t]|] + 1h (v (82) , u (82)) = 2 (v (11) , u (81))]
14— | M, ealg+ D |t —t]| + &3 \tg” -
IAIT(g+1) '”'(F(p+1>r<q+1> * 4) ’ IAIT(7+2)

M M M, M
bel (F(a TOMB+1) 3) * sl [(r(a TOrB+1) 3)

&1 M, 1 M,
+ |a)1|/ <— +M4> ds + |wy| (— +M4) ds]
0 F'p+DI(g+1) 6 \I'(p+DI(g+1)

1l M M) + ol f El M Ms ) ds + |l
+ _— 4+ + _— 4 s + .
Y\Ttp+yrg+n ")V ) \T@+prg+n 708 @2

’t;ﬁl _ tiﬁl

1 Ml M2
/ (—F( 1 +M3>ds”+ |V5|< +M4>,
5 \[(@+DI(B+1) |AIT(q +2) T(p+1I(g+1)

which tends to 0 as t; — t.

Thus the operator K is equicontinuous.
From the foregoing arguments we deduce that the operator K(u,v) is completely con-
tinuous.

Step 3. Finally, we show that the set

V=A(u,v)e X x X | (u,v) =1K(u,v),0<1 <1}

is bounded.
Let (u,v) € V be such that (i, v) = 1K (u,v), Vt € [0, 1]. Then we have

u(t) = 1Ky (u, v)(8), W(£) = 1K (1, v)(2).

By condition (A4) we find that

lu(t)] <E1 (bo + b1lu| + ba|v|) + E (do + d1|ul + da|v])

+E3 (e + e1]ul + ez|v]) + Eq (no + my|ul| + nma|v|)
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and

[v(£)] <Es (bo + by lul + by |v|) + E¢ (do + di|ul + da|v])

+E7 (eo + e1|u| + ez|v]) + Eg (o + m1|ul| + na|v|).
Hence we have

luell <E1bo + Eady + Ezeo + Eang
+ (E1by + Eady + Ezeq + Eamy) ||u|

+ (E1by + Eady + Ezes + Eamy) ||Vl
and

lvll <Esbo + Eedo + E7eo + Egng
+ (Esby + Eedy + Evey + Egny) ||ul|

+ (E5b2 + Eedz + E7€2 + Eg}’lz) ”V”
Consequently, we get

|G, V)II < (Eq + Es5) bo + (E2 + E¢) do + (E3 + E7) eg + (E4 + Eg) 1o
+[(E1 +E5) by + (Ey + E¢) dy + (E3 + E7) e + (E4 + Eg) m1] [l u]|

+[(E1 + E5) by + (Ex + E¢) do + (E3 + E7) e2 + (E4 + Eg) ma] |1V,

which leads to

(E1 +E5) bo + (Ex + E¢)do + (E3 + E7) eg + (E4 + Eg) 1
Wo ’

G vl <

where

Wo =min {1l - [(E; + E5) by + (Ex + E¢) dy + (Es + E7) e1 + (E4 + Eg) m1],

1-[(E1+Es) by + (Ey + E¢) dy + (E3 + E7) €3 + (E4 + Eg) m2]} .

Therefore the set V is bounded. Hence by Lemma 2 the operator K has at least one fixed
point.

The theorem is proved. d

4 Examples
In this part, we give two examples of mixed fractional differential systems with slit-strips-

type boundary conditions to illustrate the results in Sect. 3.

Page 14 of 17



Yu et al. Boundary Value Problems (2024) 2024:128

Specifically, the system under consideration is as follows:

5 1
D} 1°D2 [u(t) - hi(t,u, v)]} =6.(t,u,v), t €[0,1],

cp? DY v(t) - (e, v)]J — byt uv), t€[0,1],

1 1 1/5 1 (12)
u(0)=u(1) =0, u(i) = = / wv(s)ds + / wv(s)ds, h1(0,u(0),v(0)) =0,
0 4

/5
1

1/5
v(0)=v(1)=0, v(%) = é / u(s)ds + / u(s)ds, h»(0,v(0),(0)) = 0.
0 4

/5

5 4
Hereazi,ﬁ:%,p=%,q:;ﬁ,w1=é,wz=1,él=§,n=%,and§2=g.
Moreover,

21~ 3.0624013, g, ~ 3.0624013 x 107'%, g3 &~ 2.0416009,

Z1 & 2.9942355, 7z, ~ 8.9827066 x 10710, z3 ~ 2.3953884.
Using these values, we find that

|A| & 0.3684622, E; ~ 1.9918377, E; ~ 4.8970980 x 107!,
E; & 1.9999997, E4 A 5.9005988 x 107!}, E5 ~ 0.4167436,

E¢ ~ 1.7295857, E; ~ 0.4184514, Eg ~ 2.0840079.

Example 4.1 Let us take

int|u(t int|v(t
)= BHHOL = SO
252 + |u(t)|) 252 + |v(t)])
1 2 t 5 1 t 1 3
01(t,u,v) = —u(t) + = ) + =, O(t,v,u) = —Lu() + —sinv(t) + —.
56 71+v() 7 391+ |cosu(t)] 28 7
. . . . . 2 1
It is easy to verify that conditions (A1) and (A2) are satisfied with A; = - Ay = 28 I; =

1 1
2 IT, = —. In consequence, we have » = 0.930035377 < 1, which shows that condition
(A3) of Theorem 1 is satisfied. So it follows by Theorem 1 that problem (12)has a unique

solution on [0, 1].

Example 4.2 We consider problem (12) with

1 2 2 2 1 1
01(t,u,v) = 3 sint + 39 tan u(t) + Hv(t), O,(t,v,u) = s sint + 5 sin u(t) + ﬁv(t),
(13)

h(t,u,v) ! t L () > (), ha(t,v,u)) AL tan u(t) L ®). (14)
,Uu,vV) = —COS7 + — S ul + —V y W, u))=—+ —tanu + —V .

! 3 9 28 2 4 8 9

Observe that

|91(t1 u, V)l = bO + b1|u| + b2|V|, |92(t,1/, M)| = dO +d1|u| + d2|V|)

|1 (t,u, v)| < eg + erlul + ex|vl, |ha(t, v, )| < no + nylu| + nalvl,

Page 150f 17
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2 2 2 1 1 1
=@,b2=— d0=gyd1=§,d2:ﬁ,€o=§,€1=

1
with b() = 5, bl

Ny = %. Furthermore,

(E1 + E5)b1 + (E2 + E6)d1 + (Eg + E7)€1 + (E4 + Eg)l’ll ~ (0.8449101 < 1,

(El + E5)b2 + (E2 + E6)d2 + (Eg + E7)€2 + (E4, + Eg)l’lz 2 0.7099083 < 1.

Thus all the conditions of Theorem 2 are satisfied; and hence there exists at least one
solution for problem (12) with 6;(¢, u,v) and k;(¢, u,v),i = 1,2.

5 Conclusions

We give existence and uniqueness results for mixed fractional-order differential equation
coupled systems with slit-strips conditions. We use the fixed point theorem provided by
Banach and Schaefer to satisfy the criteria required. This model enriches the literature on
system solutions of fractional differential equations with paired integral boundary condi-
tions. We will embed the right end functions of the coupling equations into the coupled
differential inclusion system with coupled slit-strips-type condition.
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