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Abstract
This paper presents a novel spectral algorithm for the numerical solution of
multi-dimensional fractional-order telegraph equations, a critical model used to
capture the combined effects of diffusion and wave propagation. The core innovation
of this work is the application of Jacobi-Romanovski polynomials as the basis
functions for spectral discretization. These polynomials offer unique advantages,
including the ability to handle nonstandard domains and boundary conditions,
making them particularly suitable for partial differential equation (PDE) applications.
A comprehensive error analysis is conducted, providing deep insights into the
convergence rates and factors affecting the accuracy of the numerical solutions.
Extensive numerical experiments further demonstrate the superior performance of
the proposed spectral algorithm in solving a wide range of multi-dimensional
fractional-order telegraph equation models. The results show a significant
improvement in accuracy and computational efficiency compared to traditional
numerical methods, such as finite difference or finite element techniques. This
research advances the field of computational science by offering a robust, efficient,
and versatile numerical framework for the precise solution of complex
multi-dimensional PDEs.
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1 Introduction
Over the past few years, fractional calculus (FC) has emerged as a rapidly expanding field
of science that has gained significant attention, with diverse applications ranging from
physics, engineering, natural phenomena, and even financial modeling [1]. In many phys-
ical systems, particularly those involving diffusion and wave propagation, the behavior of
the system is influenced not only by its current state but also by its historical evolution.
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This memory effect is naturally captured through the use of fractional-order derivatives.
Unlike classical integer-order derivatives, which describe the rate of change of a quantity
at a given moment, fractional derivatives incorporate an integral term that accounts for
all prior states of the system. In the context of the fractional-order telegraph equations
considered in this study, the fractional derivative allows for more nuanced modeling of
processes with memory and hereditary properties, making it especially relevant in multi-
dimensional scenarios. This ensures that the model accounts for both local dynamics and
cumulative effects from the past, providing a more accurate representation of real-world
phenomena. Several fractional definitions have been used across various disciplines, such
as viscoelasticity, biology, electrical engineering, and others [2]. These fractional defini-
tions have proven particularly valuable in the formulation of differential equations for sim-
ulating complex problems or phenomena, often involving memory-related or delayed ef-
fects. Although many physical processes can be adequately described only in terms of their
current state, many other processes are better modeled by considering the dependence on
the previous states [3]. In such cases, incorporating historical information into the model
can lead to more accurate representations, albeit with increased complexity. These defini-
tions may include Riemann-Liouville [4], Caputo [5], Caputo-Fabrizio [6], and Atangana-
Baleanu derivatives [7]. Each of these operators has its advantages and disadvantages.
Among others, one of the most widely and important used operators is the Caputo or,
more precisely, Liouville-Caputo fractional definition. The Caputo fractional derivative is
a powerful mathematical tool that has found widespread applications in various fields. One
of the primary benefits of the Caputo fractional derivative, compared to other fractional
definitions, is its compatibility with the traditional initial conditions used in the study of
differential equations. Unlike the Riemann-Liouville fractional derivative operator, which
requires the specification of fractional-order initial conditions, the Caputo formulation
allows for more intuitive and familiar initial conditions. This property facilitates the in-
tegration of the Caputo fractional derivative into existing mathematical frameworks and
simplifies the interpretation of the resulting models. Another important advantage is its
improved numerical stability, particularly when dealing with noisy or irregular data. The
Caputo definition tends to be more robust to these challenges compared to other fractional
derivative definitions, which can be more susceptible to numerical instabilities. This en-
hanced numerical stability is crucial in the analysis of real-world systems, where noise and
uncertainties are often presented. With these important remarks, the Caputo definitions
have been used in the simulations of models with physical importance. For example, the
Caputo fractional derivative has been used for simulating and understanding the dynamics
of the Nipah virus by Evirgen [8]. In addition, Bhangale et al. [9] utilized the definition of
the Caputo derivative for simulating the Maxwell model arising in the simulation of fluid
dynamics. A hybrid kernel functions-based collocation strategy has also been adopted by
Li et al. [10] for solving boundary value problems. These are only some models that have
recently used the definition of the Caputo derivative. For more information, the reader
may refer to [11–14] and the references therein.

One of the most important topics is communication networks, which are related to the
exchange of information between different locations. This transmission is done through
a medium known as the transmission medium, which can be categorized into guided and
unguided mediums. The guided transmission media can be described by the signal con-
tained within a conductive channel or medium. An example of such a medium is the cable
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transmission media, which provides a physical infrastructure for the widespread distri-
bution of messages between multiple locations [15, 16]. To better understand the trans-
mission of a such signal, mathematical modeling can be utilized to simulate this signal.
This model can be expressed by a second-order hyperbolic Partial Differential Equation
(PDE) known as a telegraph equation. The properties of the telegraph equation are com-
monly utilized to model the propagation of electrical currents through cables, with appli-
cations in various fields such as neutron transport, random walk analysis, signal process-
ing, electrical signal transmission, molecular dynamics, and others. The one-dimensional
telegraph equation can represent wave propagation without leakage or resistance, as well
as diffusion processes without significant leakage or inductance [17, 18]. In recent years,
the telegraph equation has been recognized as a more suitable model compared to the tra-
ditional diffusion equation for studying reaction-diffusion dynamics in various scientific
and technological domains.

Spectral and collocation methods have emerged as powerful tools for solving com-
plex differential equations, particularly those involving fractional derivatives and multi-
dimensional domains. Spectral methods, which utilize basis functions such as orthogo-
nal polynomials or wavelets, are renowned for their accuracy and efficiency in captur-
ing the nuances of fractional-order dynamics. For instance, wavelet-based computational
algorithms have been successfully applied to multi-dimensional distributed-order frac-
tional differential equations with nonlinear source terms, demonstrating the capability
of wavelets to manage complex boundary and source term interactions [19]. Similarly,
wavelet approaches have been adapted for financial mathematical models governed by
distributed-order fractional differential equations, showcasing their versatility in various
applications [20]. Collocation methods, on the other hand, involve approximating the so-
lution at discrete points, leveraging basis functions to solve the differential equations ef-
ficiently. Noteworthy advancements include the development of a collocation method for
time-fractional diffusion equations on metric star graphs, which has provided significant
insights into the behavior of fractional systems [21], see also [22]. Additionally, wavelet
collocation methods based on Gegenbauer scaling functions have been employed to solve
fourth-order time-fractional integro-differential equations with weakly singular kernels,
illustrating their effectiveness in handling singularities [23]. The use of Legendre wavelets
in collocation methods for coupled time-fractional nonlinear diffusion systems further
highlights the strength of wavelet-based techniques in both linear and nonlinear scenar-
ios [24]. Moreover, recent work on numerical techniques based on Legendre wavelets for
hyperbolic telegraph equations underscores their applicability to complex telegraph mod-
els [25]. Finally, the integration of wavelet-based approximations with nonstandard finite
difference schemes has been explored for singularly perturbed partial integro differential
equations, providing a robust framework for addressing challenging computational prob-
lems [26, 27].

Currently, researchers are paying considerable attention to the advancement, investi-
gation, and development of appropriate techniques for solving fractional-order telegraph
equation (FOTE). Various scholars have gained the analytical results of the FOTE using
different techniques, including Laplace transforms, Fourier transforms, and transform in-
version as some examples of the techniques used [28]. The analytical solution of the space-
time FOTE has been obtained by applying the double Laplace transform method [29]. Sim-
ilarly, the double Laplace transform method has been utilized to derive analytical solutions
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of the time-fractional wave equation under non-homogeneous Neumann and Dirichlet
boundary conditions [30]. On the other side, researchers have proposed several methods
for solving the second-order hyperbolic telegraph equation in 1D. Mittal et al. [31] sug-
gested an approach based on the definition of the cubic B-spline collocation for solving
the FOTE. In addition, Nazir et al. [32] adapted the new cubic trigonometric B-splines for
solving the second-order hyperbolic telegraph equation. Another technique is the mesh-
less approach based on collocation methodology, which uses the radial bases in space and
the orthogonal Chebyshev polynomials in time and has been employed by Bansu et al. [33].
Additionally, the Bernstein polynomial operational matrices method has been applied to
find solutions of the fractional-order telegraph equation [34]. Marasi et al. [35] also devel-
oped a method based on the fractional-order Gegenbauer wavelet technique for solving
the multi-term FOTE with distributed order. Other methods that have been used for solv-
ing the model can be found in [36–38] and references therein.

In this manuscript, we are mainly interested in adapting a novel collocation approach
for solving the multi-dimensional fractional-order telegraph equation using the classical
Jacobi and (novel) Jacobi-Romanovski polynomials as basis functions. The Jacobi polyno-
mials are used for approximating the space variable while opting for Romanovski-Jacobi
polynomials to approximate the time variable. Although Jacobi polynomials could the-
oretically be used for both directions, Romanovski-Jacobi polynomials provide distinct
advantages when dealing with time-dependent fractional-order models. These polynomi-
als are orthogonal polynomials that play a significant role in mathematical analysis as well
as in approximation theory. In addition, these polynomials are particularly well-suited for
functions with asymptotic behavior or when the solution involves wave-like structures.
Their orthogonality in the unbounded domain and their ability to better capture oscilla-
tory and decaying behavior make them an ideal choice for approximating time dynamics
in telegraph equations. By using Romanovski-Jacobi polynomials, we enhance the accu-
racy and robustness of the solution when modeling time-dependent processes in multi-
dimensional spaces, especially in the presence of fractional orders, where memory and
hereditary properties are significant. Numerous successful applications of spectral orthog-
onal methodologies can be tracked in the previously accomplished works [39–44]. The
importance of studying the multi-dimensional fractional-order FOTE lies in its potential
for better understanding the possible applications of such models. To the best of the au-
thors’ knowledge, this is the first time the fractional multi-term FOTE model has been
studied using the fractional Jacobi-Romanovski collocation approach. The novelty of this
paper lies in the following points:

1. A novel development of a spectral algorithm for the numerical study of
multi-dimensional telegraph equations of fractional order.

2. Jacobi-Romanovski polynomials possess desirable properties that make them
well-suited for PDE applications.

3. A detailed error analysis of the proposed spectral algorithm is provided, which
provides valuable insights into the convergence rates of the performance of the
proposed technique.

4. Experimental simulations are provided to justify that the recommended approach
generates efficient and accurate solutions for the governing fractional-order model.

The structure of the article is as follows: Sect. 2 contains a brief definition of the Jacobi
and Jacobi-Romanovski polynomials, which will be used in following sections, along with
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an error analysis for the proposed spectral methodology. Section 3 presents the outcome
of the novel Jacobi-Romanovski polynomials collocation technique applied to solve the
main model. Section 4 is devoted to the computational investigations of the underlying
model under diverse scenarios and compares the available outcomes with other relevant
research methods. Eventually, the key findings, as well as directions for future research
studies, are summarized in Sect. 5.

2 A brief introduction to Jacobi and Jacobi-Romanovski polynomials
This part is devoted to the descriptions of the used basis functions in our proposed spectral
algorithm. Initially, we preview some basic facts associated with the Jacobi and Jacobi-
Romanovski (JR) polynomials.

2.1 Main ingredient of Jacobi basis functions
The Jacobi polynomials (JPs) play an important role in several branches of mathemat-
ics [45]. They are orthogonal and belong to the weight function w(x) = (1 – x)α(1 + x)β on
the interval [–1, 1] with α,β > –1. We denote by Jα,β

ŝ (x) the ŝth degree Jacobi polynomial
of order α, β . One of its explicit representation forms for this class of polynomials is given
below

(1 – x)α(1 + x)β Jα,β
ŝ (x) =

(–1)ŝ

2ŝ ŝ!
dŝ

dxŝ

[
(1 – x)ŝ+α(1 + x)ŝ+β

]
, (2.1)

which is known as the Rodrigues formula for ŝ = 0, 1, 2, . . . .
We define next the so-called shifted version of JPs on the interval [0, L], where L > 0.

With the aid of new change of variable x → (–1 + 2x/L), we get the shifted JPs (SJPs) de-
noted by J α,β

ŝ (x) := Jα,β
ŝ (–1 + 2x/L). In the explicit form, we may write the ŝ-degree SJPs

as

J α,β
ŝ (x) :=

ŝ∑
s=0

(–1)ŝ–s �(ŝ + s + α + 1)�(ŝ + β + 1)

�(ŝ + α + β + 1)�(s + β + 1)(ŝ – s)! s! Ls xs, ŝ ≥ 0. (2.2)

The orthogonality of SJPs is also deduced against the weight function wJ (x) ≡ (L – x)α xβ .
As a result, we have

∫ L

0
J α,β

ŝ (x)J α,β
r̂ (x) wJ (x)dx =

⎧⎨
⎩

Cŝ, if ŝ = r̂,

0, otherwise,
(2.3)

where (2ŝ + α + β + 1) ŝ!�(ŝ + α + β + 1) Cŝ := �(ŝ + α + 1)�(ŝ + β + 1) Lα+β+1. In addition,
the ordinary differential equations in which these polynomials are satisfied given by

x(L – x) y′′ + [L(β + 1) – (α + β + 2)x] y′ = –ŝ(ŝ + α + β + 1)y,

where y(x) = J α,β
ŝ (x).

2.2 Main ingredient of Romanovski-Jacobi basis functions
A novel set of finite orthogonal bases are the Romanovski-Jacobi (RJ) polynomials. This
class was first considered in [46] and then attracted the attention of authors when approx-
imating the solutions of differential equations [47–49]. Let us denote them by Rρ,σ

t̂ (t),
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which is explicitly rewritten as

Rρ,σ
t̂ (t) :=

t̂∑
�=0

(–1)�
�(–ρ – σ – t̂)�(ρ + t̂ + 1)

�!�(–ρ – σ – t̂ – �)�(ρ + � + 1)�(t̂ – � + 1)
t�. (2.4)

In fact, these are the polynomial solutions of the subsequent Sturm-Liouville problem of
singular type

Lρ,σ

(
Rρ,σ

t̂ (t)
)

= λ
ρ,σ
t̂ Rρ,σ

t̂ (t),

where the differential operator Lρ,σ is defined by

Lρ,σ (·) = t(t + 1)
d2

dt2 (·) + [(ρ + σ + 2)t + (ρ + 1)]
d
dt

(·)

= t–ρ(1 – t)–σ d
dt

[
tρ+1(1 + t)1+σ d

dt
(·)

]
,

and the related eigenvalues are given by λ
ρ,σ
t̂ = t̂(t̂ + ρ + σ + 1) < 0.

The next main property of these RJ polynomials is that they are orthogonal against the
weight function wRJ (t) ≡ tρ(1 + t)σ . It is required that ρ > –1 and σ < –2N – ρ – 1, where
N > 0 is a given integer. The domain of orthogonality is over semi-infinite interval (0,∞).
More precisely, we have

∫ ∞

0
Rρ,σ

t̂ (t)Rρ,σ
ŝ (t) wRJ (t) dt =

⎧⎨
⎩

C̃t̂ , if t̂ = ŝ,

0, otherwise,
(2.5)

where C̃t̂ = –
[
�(ρ + t̂ + 1)�(–σ – ρ – t̂)

]
/
[
t̂! (ρ + σ + 2t̂ + 1)�(–σ – t̂)

]
.

For convenience, we shall define the fractional-order (generalized) version of the RJ
polynomials. To achieve this aim, we exploit the change of variable t → tε in the RJ poly-
nomials Rρ,σ

t̂ (t). We have

Definition 2.1 The generalized RJ (GRJ) polynomials are defined by the following relation

Rρ,σ ,ε
t̂ (t) = Rρ,σ

t̂ (tε), (2.6)

where 0 < ε ≤ 1 is a real number.

Let us emphasize that by taking ε = 1 in (2.6), we retrieve the normal RJ polynomials.
The explicit form of GRJ polynomials is easily obtained by relation (2.4). Based on (2.5),
we get the associated orthogonality of GRJ polynomials in the form

∫ ∞

0
Rρ,σ ,ε

t̂ (t)Rρ,σ ,ε
ŝ (t) wε

RJ (t) dt =

⎧⎨
⎩

C̃ε

t̂ , if t̂ = ŝ,

0, otherwise,
(2.7)

where C̃ε

t̂ = 1
ε

C̃t̂ , and the weight function is wε
RJ (t) = tε–1wRJ (tε).
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2.3 Error analysis of product of Jacobi and Romanovski-Jacobi basis functions
To proceed, we set


 :=
{

(x, t) : x ∈ [0, L], t ∈ [0, T]
}

,

where L ≡ ζ and T ≡ λ. Let us define the space of weighted L2(
) in the form

VW ≡ L2,W (
) :=
{
ψ : 
 →R : ψ is measurable and ‖ψ(x, t)‖W < ∞

}
.

Here, the weight function W (x, t) is written as the product of two weight functions wJ (x)

and wε
RJ (t) related to SJPs and GRJPs defined above. To be precise, we have W (x, t) =

wJ (x) wε
RJ (t). The associated norm on this space is defined by

‖(x, t)‖W :=
∫ L

0

∫ T

0
|(x, t)|2 W (x, t) dx dt.

The subsequent inner product will be assumed on the space VW

〈 ,�〉W :=
∫ L

0

∫ T

0
(x, t)�(x, t) W (x, t) dx dt.

Let us then consider a subspace of VW denoted by ZS ,T of finite dimension defined by

ZS ,T := Span
{
J α,β

ŝ (x)Rρ,σ ,ε
t̂ (t) | ŝ = 0, 1, . . . ,S , t̂ = 0, 1, . . . ,T

}
. (2.8)

It should be stressed that ZS ,T creates a complete subspace of VW .
We now suppose that an element φ(x, t) ∈ VW is approximated by an element of ZS ,T .

One says that an element z�(x, t) ∈ ZS ,T is the nearest (best) approximation to φ(x, t) if the
subsequent relation holds

‖φ – z�‖W = inf
v∈VW

‖φ – v‖W .

See [50, Thm. I1] for the existence of the best approximation. As an ultimate goal, let us
denote by φ̌(x, t) ∈ ZS ,T the approximate form of φ(x, t) as the solution of model problem.
Therefore, we can write

φ(x, t) ≈ φ̌(x, t) :=
∑

ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂ (t) = JT (x) E R(t), (x, t) ∈ 
, (2.9)

where the basis vectors J(x) and R(t), consisting of (S + 1) SJPs and (T + 1) GRJPs, are
given respectively by

J(x) :=
[
J α,β

0 (x) J α,β
1 (x) . . . J α,β

S (x)
]

,

R(t) :=
[
Rρ,σ ,ε

0 (t) Rρ,σ ,ε
1 (t) . . . Rρ,σ ,ε

T (t)
]

,

and the matrix E := (εŝ,t̂)
S ,T
ŝ,t̂=0 of size (S + 1) × (T + 1) contains the unknown coefficients.
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We will show that the error between φ(x, t) and its approximation φ̌(x, t) tends to zero
as the number of bases S , T grows to infinity. So, we define

ES ,T (x, t) := φ(x, t) – φ̌(x, t). (2.10)

When M := S = T , we represent the error by EM(x, t). In this case, we have the following
result

Theorem 2.2 Let 0 < ε ≤ 1 and assume that a continuous function φ : 
 → R is given and
all fractional partial derivatives of φ(x, t) exist and are continuous on 
 such that all of
them of order ε bounded by Kε,φ in magnitude. If φ̌(x, t) = JT (x) E R(t) in (2.9) represents
the best (nearest) approximation to φ(x, t) out of ZS ,T for M = S = T , then we have

‖EM(x, t)‖W → 0, as M → ∞.

Proof Following [51, 52], we can write the generalized Taylor series form of the function
φ(x, t) as follows

φ(x, t) =
M–1∑
m=0

1
�(1 + εm)

(
xε ∂ε

∂xε
+ tε ∂ε

∂tε

)m

φ(0+, 0+)

+
1

�(1 + εM)

(
xε ∂ε

∂xε
+ tε ∂ε

∂tε

)M

φ(x̄, t̄),

:= φM(x, t) + RM(x, t),

where 0 ≤ x̄ ≤ L and 0 ≤ t̄ ≤ T . As a result, we have the next upper bound

‖RM(x, t)‖2
W =

1
�2(1 + εM)

∫ L

0

∫ T

0

∣∣∣∣∣
M∑

k=0

(
M
k

)
xεk tε(M–k) ∂εM φ(x̄, t̄)

∂xεk ∂tε(M–k)

∣∣∣∣∣
2

W (x, t) dx dt

≤ K2
ε,φ

�2(1 + εM)

∥∥∥(xε + tε)M
∥∥∥

2

W
, (2.11)

where we have assumed that the absolute values of all fractional partial derivatives of
φ(x, t) are bounded by Kε,φ . We now utilize the assumption that the function φ̌(x, t) =
JT (x) E R(t) given in (2.9) denotes the best approximation to φ(x, t) out of subspace ZS ,T .
As a conclusion, we may write

‖φ(x, t) – φ̌(x, t)‖W ≤ ‖φ(x, t) – v(x, t)‖W , ∀v ∈VW .

Let us now substitute v(x, t) in the last inequality by φM(x, t) as the Taylor series form of
φ(x, t), which is in VW . Thus, we can write

‖EM(x, t)‖2
W ≤ ‖RM(x, t)‖2

W ≤ K2
ε,φ

�2(1 + εM)

∥∥∥(xε + tε)M
∥∥∥

2

W

≤ K2
ε,φ

�2(1 + εM)

∫ L

0

∫ T

0

2M∑
k=0

(
2M
k

)
xεk tε(2M–k) wJ (x) wε

RJ (t) dt dx
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≤ K2
ε,φ

�2(1 + εM)

2M∑
k=0

(
2M
k

)∫ L

0
xεk wJ (x) dx

∫ T

0
tε(2M–k) wε

RJ (t)dt. (2.12)

We next calculate two previous integrals. According to the definitions of weight functions,
we have

I1,k :=
∫ L

0
xεk wJ (x) dx ≤ Lα

∫ L

0
xεk+β dx =

Lα+εk+β+1

εk + β + 1
,

I2,k :=
∫ T

0
tε(2M–k) wε

RJ (t) dt :=
∫ T

0
tε(2M–k+ρ+1)–1(1 + tε)σ dt ≤ (1 + Tε)σ Tε(2M–k+ρ+1)

ε(2M – k + ρ + 1)
.

Let us consider three cases: k = 0, k = 2M, and 1 ≤ k ≤ 2M – 1. In the latter case, we
immediately reach at the following relation

I1,k × I2,k ≤ C1(M)

(
L
T

)kε 1
k

× 1
2M – k

≤ C1(M)

(
L
T

)kε

, 1 ≤ k ≤ 2M – 1, (2.13)

where C1(M) := 1
ε2 Lα+β+1 exp(σ Tε) Tε(2M+ρ+1). Clearly, for k = 0, we have the following

inequality

I1,0 × I2,0 ≤ C2(M)
1

2M + ρ + 1
, C2(M) := ε C1(M). (2.14)

For the case k = 2M, we get

I1,2M × I2,2M ≤ C3(M) :=
1

2ε2 M(ρ + 1)
L2Mε+α+β+1 exp(σ Tε) Tε(ρ+1). (2.15)

Totally, we have

2M∑
k=0

(
2M
k

)
I1,k × I2,k = I1,0 × I2,0 +

2M–1∑
k=1

(
2M
k

)
I1,k × I2,k + I1,2M × I2,2M. (2.16)

It remains to estimate an upper bound for the middle term in (2.16). In view of (2.13), we
obtain

2M–1∑
k=1

(
2M
k

)
I1,k × I2,k ≤ C1(M)

2M∑
k=0

(
2M
k

)(
L
T

)kε

= C1(M) (1 + Lε/Tε)
2M

≤ C1(M) exp(2MLε/Tε). (2.17)

The proof is carried out by inserting the three obtained upper bounds (2.14), (2.15),
and (2.17) into (2.12) following by approaching M to infinity. �

Remark 2.3 Arguments similar to those described in Theorem 2.2 can be applied in 2D
for the error term EM(x, y, t) := φ(x, y, t) – φ̌(x, y, t) when M := S = T = V . In fact, the gen-
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eralized Taylor expansion of the function φ(x, y, t) takes the form

φ(x, y, t) =
M–1∑
m=0

1
�(1 + εm)

(
xε ∂ε

∂xε
+ yε ∂ε

∂yε
+ tε ∂ε

∂tε

)m

φ(0+, 0+, 0+)

+
1

�(1 + εM)

(
xε ∂ε

∂xε
+ +yε ∂ε

∂yε
+ tε ∂ε

∂tε

)M

φ(x̄, ȳ, t̄),

:= φM(x, y, t) + RM(x, y, t),

for some 0 ≤ x̄ ≤ ζ1, 0 ≤ ȳ ≤ ζ2, 0 ≤ t̄ ≤ λ, and the associated space is taken as 
 :={
(x, y, t) : x ∈ [0, ζ1], y ∈ [0, ζ2], t ∈ [0,λ]

}
.

3 The main aspects of spectral algorithms in 1D and 2D
In the following parts, we are going to develop a spectral collocation algorithm for the one-
and two-dimensional time-fractional telegraph equations. The suggested main approach
is based on the Romanovski and Jacobi basis functions.

3.1 Time-fractional telegraph equation in 1D
Here, an effective numerical based spectral technique for the time-fractional telegraph
equation (TFTE) will be discussed in detail. The following model equation is considered

LC
D

ω
t φ(x, t) + LC

D
ω–1
t φ(x, t) = c2�φ(x, t) + N (x, t), x ∈ [0, ζ ], t ∈ [0,λ], (3.1)

with the subsequent initial and boundary conditions

⎧⎨
⎩

φ(0, t) = χ1(t),

φ(ζ , t) = χ2(t),

⎧⎨
⎩

φ(x, 0) = χ3(x),

φt(x, 0) = χ4(x),
(3.2)

where χ1(t), χ2(t), χ3(x), χ4(x), and N (x, t) are some familiar functions.
The next goal is to combine the shifted Jacobi and shifted Romanovski-Jacobi polyno-

mials in order to express the approximate solution of (3.1) in terms of these functions. To
accomplish this task, let us assume that

φ(x, t) ≈ φ̃(x, t) =
∑

ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂ (t),

(3.3)

where εŝ,t̂ are constants to be determined,J α,β
ŝ (x) is the shifted Jacobi polynomials defined

in (2.2), and Rρ,σ ,ε
t̂ (t) is the fractional Romanovski-Jacobi polynomials introduced in (2.6).

The integer-order time derivatives are then computed as

∂φ̃

∂t
=

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂,1 (t),

∂2φ̃

∂t2 =
∑

ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂,2 (t), (3.4)

where

Rρ,σ ,ε
t̂,j (t) :=

∂ j

∂tj R
ρ,σ ,ε
t̂ (t), j = 1, 2. (3.5)
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Moreover, the integer-order spatial derivatives are

∂φ̃

∂x
=

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ,1 (x)Rρ,σ ,ε
t̂ (t),

∂2φ̃

∂x2 =
∑

ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ,2 (x)Rρ,σ ,ε
t̂ (t), (3.6)

where

J α,β
ŝ,j (x) :=

∂ j

∂xj J
α,β

ŝ (x), j = 1, 2. (3.7)

Additionally, we can expand the Liouville-Caputo fractional derivatives LC
D

η
t φ̃(x, t) of

orders η = ω,ω – 1 in the forms

LC
D

η
t φ̃(x, t) =

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x) LC
D

η
t (Rρ,σ ,ε

t̂ (t))

=
∑

ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂,η (t),

(3.8)

we have used the notations Rρ,σ ,ε
t̂,η (t) := LC

D
η
t

(
Rρ,σ ,ε

t̂ (t)
)

for η = ω,ω – 1. Here,

Rρ,σ ,ε
t̂,η (t) =

1
�(k – η)

∫ t

0

1
(t – τ )η–k+1

dk

dτ k (Rρ,σ ,ε
t̂ (τ )) dτ , k – 1 < η < k, (3.9)

where �(·) denotes the Gamma function.

Remark 3.1 We can expand the Liouville-Caputo fractional derivatives Rρ,σ ,ε
t̂,η (t) of order

η = ω,ω – 1 in the forms

Rρ,σ ,ε
t̂,η (t) =

t̂∑
�=k

(–1)�
�(–ρ – σ – t̂)�(ρ + t̂ + 1)

�!�(–ρ – σ – t̂ – �)�(ρ + � + 1)�(t̂ – � + 1)

�(ε � + 1)t� ε–η

�(ε � – η + 1)
.

(3.10)

By substituting the preceding relations (3.3)–(3.8) into the main one-dimensional
TFTE (3.1), we get

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)
(
Rρ,σ ,ε

t̂,ω (t) + Rρ,σ ,ε
t̂,ω–1(t)

)
=c2

( ∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂J
α,β

ŝ,2 (x)Rρ,σ ,ε
t̂ (t)

)

+N (x, t).

(3.11)

Besides, the provided initial and boundary conditions (3.2) can be written as

⎧⎪⎨
⎪⎩

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (0)Rρ,σ ,ε
t̂ (t) = χ1(t),

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (ζ )Rρ,σ ,ε
t̂ (t) = χ2(t),

⎧⎪⎨
⎪⎩

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂ (0) = χ3(x),

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (x)Rρ,σ ,ε
t̂,1 (0) = χ4(x).

(3.12)
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To proceed, we require a set of (S + 1) × (T + 1) collocation points to obtain the unknown
coefficients εŝ,t̂ in (3.3). To achieve this goal, the Romanovski-Jacobi-Gauss-Radau nodes
{ti}Ti=1 are the zeros of Rρ+1,σ

t̂ and t0 = 0, whenever, the Jacobi-Gauss-Lobatto nodes {xj}S–1
j=1

are the zeros of d
dx (J α,β

ŝ (x)) and x0 = 0, xS = ζ .
We now evaluate the set of equations (3.11) and (3.12) at the former selected collocation

nodes. The resulting algebraic system of equations is obtained as follows

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (xi)
(
Rρ,σ ,ε

t̂,ω (tj) + Rρ,σ ,ε
t̂,ω–1(tj)

)
=c2

( ∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ,2 (xi)Rρ,σ ,ε
t̂ (tj)

)

+N (xi, tj),

(3.13)

and

⎧
⎪⎨
⎪⎩

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (0)Rρ,σ ,ε
t̂ (tj) = χ1(tj),

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (ζ )Rρ,σ ,ε
t̂ (tj) = χ2(tj),

⎧⎪⎨
⎪⎩

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (xi)Rρ,σ ,ε
t̂ (0) = χ3(xi)

∑
ŝ=0,1,...,S
t̂=0,1,...,T

εŝ,t̂ J
α,β

ŝ (xi)Rρ,σ ,ε
t̂,1 (0) = χ4(xi).

(3.14)

After solving the above system of equations (3.13)–(3.14), we get the unknown coefficients
εŝ,t̂ for ŝ = 0, 1, . . . ,S and t̂ = 0, 1, . . . ,T .

3.2 The time-fractional telegraph equation in 2D
Now, we consider the two-dimensional TFTE. This model equation has the following
form

LC
D

ω
t φ(x, y, t) + LC

D
ω–1
t φ(x, y, t) = c2�φ(x, y, t) + N (x, y, t),

x ∈ [0, ζ1], y ∈ [0, ζ2], t ∈ [0,λ].
(3.15)

The following initial and boundary conditions are

⎧⎨
⎩

φ(0, y, t) = χ1(y, t),

φ(ζ1, y, t) = χ2(y, t),

⎧⎨
⎩

φ(x, 0, t) = χ3(x, t),

φ(x, ζ2, t) = χ4(x, t),

⎧⎨
⎩

φ(x, y, 0) = χ5(x, y),

φt(x, y, 0) = χ6(x, y).
(3.16)

Here, the functions χ1(y, t), χ2(y, t), χ3(y, t), χ4(x, t), χ5(x, y), χ6(x, y), and N (x, y, t) are
known.

Let the approximate solution of (3.15) be denoted by φ̃(x, y, t) ≈ φ(x, y, t). Similar to one-
dimensional problem, we may expand φ̃(x, y, t) as a combination of shifted Jacobi functions
and the shifted version of Romanovski-Jacobi polynomials. Let us express the approximate
solution in the form

φ̃(x, y, t) =
∑

ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (t), (3.17)
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where J αi ,βi
ŝ (x) for i = 1, 2 represent the shifted Jacobi polynomials defined in (2.2). Fur-

thermore, the third basis Rρ,σ ,ε
t̂ (t) denotes the generalized Romanovski-Jacobi polynomi-

als defined by (2.6).
Let us calculate the integer-order time derivatives of φ̃(x, y, t). To this end, we use the

notations defined in (3.5). Therefore, we obtain

∂φ̃

∂t
=

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂,1 (t),

∂2φ̃

∂t2 =
∑

ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂,2 (t).

(3.18)

By utilizing the symbols defined in (3.7), the integer-order spatial derivatives with respect
to x are computed as

∂φ̃

∂x
=

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ,1 (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (t),

∂2φ̃

∂x2 =
∑

ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ,2 (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (t).

(3.19)

Analogously, by defining J α2,β2
v̂,j (y) := ∂ j

∂yj J α2,β2
v̂ (y) for j = 1, 2, we may express the integer-

order spatial derivatives with respect to y as

∂φ̃

∂y
=

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂,1 (y)Rρ,σ ,ε

t̂ (t),

∂2φ̃

∂y2 =
∑

ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂,2 (y)Rρ,σ ,ε

t̂ (t).

(3.20)

It remains to compute the Liouville-Caputo derivatives LC
D

η
t φ̃(x, y, t) for η = ω,ω – 1. In

view of Rρ,σ ,ε
t̂,η (t) := LC

D
η
t

(
Rρ,σ ,ε

t̂ (t)
)

for η = ω,ω – 1 and Remark 3.1, we get

LC
D

η
t φ̃(x, y, t) =

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂,η (t), η = ω,ω – 1. (3.21)

All the obtained relations (3.17)–(3.21) will now be inserted into (3.15). The resulting
relation is as follows

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)

(
Rρ,σ ,ε

t̂,ω (t) + Rρ,σ ,ε
t̂,ω–1(t)

)
= Q(x, y, t), (3.22)
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where

Q(x, y, t) = c2

( ∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂

(
J α1,β1

ŝ,2 (x)J α2,β2
v̂ (y) + J α1,β1

ŝ (x)J α2,β2
v̂,2 (y)

)
Rρ,σ ,ε

t̂,2 (t)

)

+ N (x, y, t).

In addition, the given initial and boundary conditions (3.16) are converted to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (0)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (t) = χ1(y, t),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (ζ1)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (t) = χ2(y, t),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (0)Rρ,σ ,ε

t̂ (t) = χ3(x, t),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (ζ2)Rρ,σ ,ε

t̂ (t) = χ4(x, t),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂ (0) = χ5(x, y),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (x)J α2,β2
v̂ (y)Rρ,σ ,ε

t̂,1 (0) = χ6(x, y).

(3.23)

A set of (S + 1) × (V + 1) × (T + 1) collocation nodes will be needed to determine the
unknown coefficients εŝ,v̂,t̂ in (3.17). To achieve this goal, the Romanovski-Jacobi-Gauss-
Radau nodes {ti}Ti=1 are the zeros of Rρ+1,σ

t̂ and t0 = 0, whenever, the Jacobi-Gauss-Lobatto
nodes {xj}S–1

j=1 are the zeros of d
dx (J α,β

ŝ (x)), and x0 = 0, xS = ζ1 and the Jacobi-Gauss-
Lobatto nodes {yk}V–1

k=1 are the zeros of d
dy (J α2,β2

v̂ (y)) and y0 = 0, yV = ζ2.
We then collocate the relations (3.22) and (3.23) at the collocation nodes and get

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (xi)J α2,β2
v̂ (yj)

(
Rρ,σ ,ε

t̂,ω (tk) + Rρ,σ ,ε
t̂,ω–1(tk)

)
= Q(xi, yj, tk), (3.24)

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (0)J α2,β2
v̂ (yj)Rρ,σ ,ε

t̂ (tk) = χ1(yj, tk),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (ζ1)J α2,β2
v̂ (yj)Rρ,σ ,ε

t̂ (tk) = χ2(yj, tk),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (xi)J α2,β2
v̂ (0)Rρ,σ ,ε

t̂ (tk) = χ3(xi, tk),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (xi)J α2,β2
v̂ (ζ2)Rρ,σ ,ε

t̂ (tk) = χ4(xi, tk),
(3.25)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (xi)J α2,β2
v̂ (yj)Rρ,σ ,ε

t̂ (0) = χ5(xi, yj),

∑
ŝ=0,1,...,S
v̂=0,1,...,V
t̂=0,1,...,T

εŝ,v̂,t̂ J
α1,β1

ŝ (xi)J α2,β2
v̂ (yj)Rρ,σ ,ε

t̂,1 (0) = χ6(xi, yj).

The above system of algebraic equations (3.24) and (3.25) must be solved to give us the
unknown coefficients εŝ,v̂,t̂ in the expansion series (3.17).

4 Computational evidences
The utility and applicability of the recommended spectral collocation technique are il-
lustrated in the following part. In order to measure the error, we calculate the difference
between the estimated and exact solutions through the following formulae

E(x, t) = |φ(x, t) – φ̃(x, t)|, and E(x, y, t) = |φ(x, y, t) – φ̃(x, y, t)|, (4.1)

in one- and two-dimensional cases. Here, φ denotes the true solution while φ̃ is the corre-
sponding approximated solution of the models. The greatest absolute values of the errors
are denoted by L∞. These are defined by

L∞ := max
(x,t)∈[0,ζ ]×[0,λ]

E(x, t), L∞ := max
(x,y,t)∈[0,ζ1]×[0,ζ2]×[0,λ]

E(x, y, t). (4.2)

Note that in the next examples we take ε = 1, furthermore for nonsmooth solutions we
can use the same analysis with fractional values of ε, which give us very accurate results.

Example 4.1 We take the following TFTE (3.1) in 1D given by

LC
D

ω
t φ(x, t) + LC

D
ω–1
t φ(x, t) + φ(x, t) =

1
2

t3
[
12 sin2(x)

(
t–ω

�(4 – ω)
+

t1–ω

�(5 – ω)

)

– 5 cos(2x) + 1
]

+ �φ(x, t),
(4.3)

where ζ = λ = 1. The associated initial and boundary conditions (3.2) are extracted from
the actual true solution φ(x, t) = t3 sin2(x). Furthermore, the following four cases for the
parameters related to the basis functions and the fractional order ω are taken

1. Case I: α,β = 0, ω = 1.5, ρ = 1, σ = –30.
2. Case II: α,β = 0, ω = 1.5, ρ = 3, σ = –50.
3. Case III: α,β = 0, ω = 1.9, ρ = 4, σ = –40.
4. Case IV: α,β = 0, ω = 1.9, ρ = 6, σ = –80.

To begin computations, we first consider Case I. We also set S ,T = 10. The graphs of
approximate solution φ̃(x, t) together with the related achieved absolute errors E(x, t) are
visualized in Fig. 1.

To show the superiority of presented spectral collocation algorithm, we compare the
achieved absolute error and the root mean square (RMS) error in Table 1 and Table 2. The
comparisons have been made between the results obtained using our technique and those
obtained using the local meshless scheme (LMS) [53]. It is evident that our results with
less computational effort are more accurate in comparison with the LMS.
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Figure 1 The approximate solution φ̃(x, t) (left) and the attained absolute errors (right) for Example 4.1, for
Case I with S ,T = 10

Table 1 The results of L∞ and Lrms for Example 4.1 reported in [53]

δt M = 501,m = 3 m M,N = 1000

ω = 1.5 ω = 1.9 ω = 1.9

L∞ Lrms L∞ Lrms L∞ Lrms

1
10 2.3879e–3 1.6759e–3 1.3760e–2 9.8112e–3 3 9.1474e–5 6.5786e–5

1
20 8.6047e–4 6.0373e–4 6.5907e–3 4.7162e–3 7 9.1472e–5 6.5785e–5

1
40 3.0834e–4 2.1632e–4 3.1163e–3 2.2348e–3 9 9.1494e–5 6.5804e–5

1
80 1.1004e–4 7.7184e–5 1.4634e–3 1.0508e–3 11 9.1483e–5 6.5794e–5

1
160 3.9131e–5 2.7439e–5 6.8491e–4 4.9209e–4 15 9.1484e–5 6.5796e–5

Table 2 The results of L∞ and Lrms for Example 4.1 by the presented spectral collocation method

(S ,T ) Case I Case II Case III Case IV

L∞ Lrms L∞ Lrms L∞ Lrms L∞ Lrms

(2,2) 6.3166e–2 3.0132e–9 6.7570e–2 1.5474e–10 4.9682e–2 4.0990e–9 4.7087e–2 6.5717e–9

(4,4) 7.1872e–9 2.5344e–11 2.9824e–9 4.9920e–16 2.9737e–9 4.4848e–13 2.9696e–9 6.7123e–13

(6,6) 5.7271e–13 5.7460e–16 4.0306e–13 1.3012e–19 4.0067e–13 4.3882e–18 4.0066e–13 6.2867e–18

(8,8) 2.9647e–20 2.1906e–18 1.2635e–19 6.3486e–25 1.2635e–19 2.5908e–23 1.2635e–19 6.0413e–23

(10,10) 2.7512e–25 7.5460e–18 1.8679e–25 5.4818e–27 1.8686e–25 1.9316e–23 1.8682e–25 3.7296e–23

Figure 2 The plots in t-direction (left) and x-direction (right) for the numerical and actual solutions φ̃(x, t) and
φ(x, t) for Example 4.1 in Case I with S ,T = 10

Figure 2 represents the approximate solution φ(x, t) in x-direction as well as the t-
direction of Example 4.1. Figure 3 shows the absolute error for Example 4.1 in xy-plane
and in x- and t-directions, respectively. The convergence decay curve for this test Exam-
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Figure 3 The plots in x-direction (left) and t-direction (right) for the numerical and actual solutions φ̃(x, t) and
φ(x, t) for Example 4.1 in Case I with S ,T = 10

Figure 4 Convergence decay curve of Example 4.1

ple 4.1 is finally plotted for all Cases I-IV in Fig. 4. Obviously, by increasing the number of
bases, our presented spectral algorithm produces more accurate outcomes.

Example 4.2 The second test problem is also devoted to 1D model equation (3.1)

LC
D

ω
t φ(x, t) + LC

D
ω–1
t φ(x, t) + φ(x, t) = �φ(x, t) + N (x, t), (4.4)

where we set ζ ,λ = 1, and the initial and boundary conditions and the right-hand side
term N (x, t) are obtained from the exact solution φ(x, t) = x cos

(
t2 + x2).

For the second test example, we set α = 0, β = 0, and ρ = 4, σ = –60 for the bases param-
eters. We also take ω = 1.95 and S ,T = 10. The approximated solution φ̃(x, t), along with
the graph of absolute error E(x, t) on the whole domain [0, 1] × [0, 1], is depicted in Fig. 5.

The numerical results for various values of (S ,T ) and related to RMS error for these
values of parameter and ω = 1.95 are reported in Table 3. Besides, we also used diverse
values ω = 1.25, 1.5, and 1.75 in this table and presented the RMS errors. Similar outcomes
with the same fractional orders but with the parameters α = 0, β = 0, ρ = 5, σ = –80 are
shown in Table 3. For comparison, the results of RMS errors achieved by the LMS [53]
with the parameters M = 201, m = 3, and N = 200 and the radial basis functions (RBF) [54]
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Figure 5 The approximate solution φ̃(x, t) (left) and the attained absolute errors (right) for Example 4.2, for
α = 0, β = 0, ω = 1.95, ρ = 4, σ = –60, S = T = 10

Table 3 The results of Lrms for Example 4.2 by the presented spectral collocation method

(S ,T ) α = 0, β = 0, ρ = 3, σ = –60 α = 0, β = 0, ρ = 5, σ = –80

ω = 1.25 ω = 1.5 ω = 1.75 ω = 1.95 ω = 1.25 ω = 1.5 ω = 1.75 ω = 1.95

(2,2) 3.6388e–6 2.0308e–6 1.1590e–6 7.7242e–7 6.0294e–5 2.7207e–6 1.695e–6 1.6412–6
(4,4) 3.9134e–4 3.0107e–9 3.0491e–9 2.9368e–9 4.1060e–9 3.1874e–9 2.4478e–11 3.6371e–9

(6,6) 8.6998e–12 3.7272e–13 1.7214e–13 1.4195e–13 8.1851e–12 4.0499e–13 2.9892e–13 3.1396e–13

(8,8) 1.1011e–13 7.9274e–14 1.0792e–13 1.8100e–13 4.3779e–13 3.3217e–13 2.5830e–13 1.7112e–13

(10,10) 5.8770e–17 5.1179e–16 4.6632e–16 5.0703e–16 1.9709e–16 1.7492e–16 1.4750e–16 1.4387e–16

Table 4 The results of Lrms for Example 4.2 reported in [53] and [54]

M δt ω = 1.25 ω = 1.5 ω = 1.75 ω = 1.95

MLS [53] RBF [54] LMS [53] RBF [54] LMS [53] RBF [54] LMS [53] RBF [54]

20 1
10 2.2600e–4 8.6205e–3 1.1434e–3 1.0377e–2 4.6511e–3 1.2172e–2 1.1609e–2 1.3240e–2

1
30 1.1860e–4 3.7954e–3 2.5318e–4 5.3478e–3 1.3350e–3 6.4685e–3 4.1575e–3 5.3905e–3

1
50 1.1289e–4 2.6038e–3 1.4989e–4 4.0987e–3 7.6143e–4 5.3163e–3 2.5658e–3 3.7930e–3

50 1
10 1.8197e–4 8.7725e–3 1.1427e–3 1.0560e–2 4.6361e–3 1.2388e–2 1.1618e–2 1.3476e–2

1
30 3.5426e–5 3.8668e–3 2.2873e–4 5.4453e–3 1.2702e–3 6.5897e–3 4.0390e–3 5.5036e–3

1
50 2.2992e–5 2.6551e–3 1.0880e–4 4.1743e–3 6.8631e–4 5.4164e–3 2.4189e–3 3.8800e–3

are tabulated in Table 4. It can be clearly seen that the results obtained by the presented
spectral collocation approaches are superior to those obtained by the LMS and RBF.

Figure 6 represents the approximate solution φ(x, t) and x-direction of Example 4.2. Fig-
ure 7 shows the absolute error for Example 4.1 for xy-plane, t- and x-directions, respec-
tively.

Example 4.3 Consider the one-dimensional time-fractional telegraph equation (3.1) given
by

LC
D

ω
t φ(x, t) + γ1

LC
D

ω–1
t φ(x, t) + γ2φ(x, t)

= e–x2
( γ1t1–ω

�(2 – ω)
+ 2γ3

(
–2tx2 + t – 2x3 + 3x

)
+ γ2(t + x)

)
+ γ3�φ(x, t),

(4.5)

where ζ = λ = 1. The associated initial and boundary conditions (3.2) are extracted from
the exact true solution φ(x, t) = e–x2

(t + x). To show the superiority of presented spectral
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Figure 6 The plots of x-direction for the numerical and actual solutions φ̃(x, t) and φ(x, t) for Example 4.2, for
α = 0, β = 0, ω = 1.95, ρ = 4, σ = –60, S = T = 10

Figure 7 The plots in t-direction (left) and x-direction (right) for the absolute error E(x, t) for Example 4.2
α = 0, β = 0, ω = 1.95, ρ = 4, σ = –60, S = T = 10

Table 5 The results of Lrms for Example 4.3 reported in [54] and the presented spectral collocation
method

γ1, γ2, γ3 ω = 1.05 ω = 1.25 ω = 1.5 ω = 1.75 ω = 1.95

Finite difference scheme in [54] with N = n = 50

γ1 = 0 γ2 = γ3 = 1 2.9337e–7 3.5491e–7 4.0820e–7 4.5681e–7 4.8627e–7

γ2 = 0 γ1 = γ3 = 1 1.7360e–3 2.5572e–3 4.0176e–3 4.8585e–3 1.9516e–3

γ3 = 0 γ1 = γ2 = 1 5.6870e–3 9.1009e–3 1.4579e–2 1.6287e–2 5.7435e–3

γ1 = 1 γ2 = γ3 = 0 7.5640e–3 1.1838e–2 1.7884e–2 1.8785e–2 6.3658e–3

γ2 = 1 γ1 = γ3 = 0 4.8373e–12 9.3509e–12 2.1439e–11 5.2352e–11 9.8006e–11

γ3 = 1 γ1 = γ2 = 0 3.1137e–7 3.8019e–7 4.3920e–7 4.8890e–7 5.1399e–7

Spectral collocation method with S = T = 10, ρ = 3, and σ = –60

γ1 = 0 γ2 = γ3 = 1 5.78254e–18 5.37119e–18 5.09199e–18 1.38906e–16 2.20266e–16

γ2 = 0 γ1 = γ3 = 1 5.2451e–16 4.8242e–16 4.0214–16 1.0215e–16 1.8457e–16

γ3 = 0 γ1 = γ2 = 1 5.38782–21 2.5391e–23 1.49757e–23 5.36477e–25 3.81284e–25

γ1 = 1 γ2 = γ3 = 0 2.73434e–23 2.12934e–23 5.16168e–25 6.05306e–25 1.78471e–25

γ2 = 1 γ1 = γ3 = 0 4.63944e–34 2.97414e–34 6.51962e–35 3.48841e–36 3.53383e–11

γ3 = 1 γ1 = γ2 = 0 5.79337e–18 5.37989e–18 5.09908e–18 1.02856–16 1.6278e–16

collocation algorithm, we compare the achieved root mean square (RMS) error and abso-
lute error in Table 5 for different values of γi, i = 1, 2, 3. The comparisons have been made
between the results obtained using our technique and those obtained using the finite dif-
ference scheme [54]. It is evident that our results with less computational effort are more
accurate in comparison with the finite difference scheme.
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Example 4.4 As the first two-dimensional model problem, we take the following time-
fractional telegraph equation (3.15)

LC
D

ω
t φ(x, y, t) + LC

D
ω–1
t φ(x, y, t) + φ(x, y, t) = t4 + 24t4

(
t–ω

�(5 – ω)
+

t1–ω

�(6 – ω)

)

+ x2 + y2 – 4 + �φ(x, y, t).

Here, we set ζ1 = ζ2 = λ = 1, and the initial and boundary conditions are given from the
actual true solution φ(x, t) = t4 + x2 + y2.

We first take α = 0, β = 0, and ρ = 4, σ = –40 for this test problem. We also take ω = 1.95
and S ,V ,T = 10. The approximated solution φ̃(x, y, t = 1), along with the graph of absolute
error E(x, y, t = 0.5) on the whole domain (x, y) ∈ [0, 1] × [0, 1], is depicted in Fig. 8.

The results of RMS errors and maximum absolute values of errors for two different val-
ues of ω = 1.75, 1.95 are shown in Table 6. These results are obtained by utilizing α = 0,
β = 0 and diverse values of (ρ,σ ). To check the validity of the proposed spectral method,
we compare the obtained results and the LMS outcomes [53] in Table 7.

Finally, for this test example, we represent the approximate solution φ(x, t) and x-
direction. The results are presented in Fig. 9.

Figure 8 The approximate solution φ̃(x, y, 1) (left) and the absolute error E(x, y, 0.5) (right) in Example 4.4,
α = 0, β = 0, ω = 1.95, ρ = 4, σ = –40, S = T = V = 4

Table 6 The results of L∞ and Lrms for Example 4.4 by the presented spectral collocation method

ω = 1.75, α = β = 0 ω = 1.95, α = β = 0

(x, y, t) (2, 2, 2) (4, 4, 4) (2, 2, 2) (4, 4, 4)

(ρ ,σ ) L∞ Lrms L∞ Lrms L∞ Lrms L∞ Lrms

(2, –20) 5.9585e–2 3.7755e–6 2.6669e–34 4.4109e–32 5.5215e–2 2.3922e–6 6.5361e–35 3.7737e–34

(3, –20) 6.4172e–2 4.2440e–7 1.8760e–32 1.2838e–34 6.1069e–2 4.8489e–7 1.3235e–32 8.718e–35

(4, –40) 6.6603e–2 3.4136e–9 5.5338e–32 3.5812e–36 6.3587e–2 4.0442e–7 6.2967e–32 2.6395e–36

(5, –65) 6.9910e–2 1.2574e–9 1.3211e–27 2.4234e–36 6.8620e–2 2.3597e–9 1.3337e–27 2.2957e–36

(10, –100) 6.9012e–2 2.1513e–9 2.6866e–27 2.7385e–36 6.8240e–2 3.5831e–9 2.8261e–27 3.4312e–36
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Table 7 The results of L∞ and Lrms for Example 4.4 reported in [53]

δt M = 2395,m = 5

ω = 1.75 ω = 1.95

L∞ Lrms L∞ Lrms

1
10 2.8492e–2 1.5193e–2 6.2616e–2 3.3332e–2

1
20 1.2112e–2 6.4347e–3 3.0908e–2 1.6419e–2

1
40 5.0642e–3 2.6646e–3 1.5083e–2 3.8419e–3

1
80 2.0652e–3 1.0621e–3 3.5064e–3 1.8240e–3

1
160 7.9585e–4 3.9004e–4 1.6685e–3 8.4691e–4

Figure 9 x-Direction for the approximate solution φ̃(x, t) and exact solution φ(x, t) in Example 4.4, for α = 0,
β = 0, ω = 1.95, ρ = 4, σ = –40, S = T = V = 4

Example 4.5 In the second test problem, we pay attention to the following time-fractional
telegraph equation as a prototype of (3.15)

LC
D

ω
t φ(x, y, t) + LC

D
ω–1
t φ(x, y, t) + φ(x, y, t)

= t4
(

24t1–ω

�(6 – ω)
+

24t–ω

�(5 – ω)
+ 2π2 + 1

)
sin(π(x + y)) + �φ(x, t).

We set ζ1 = ζ2 = λ = 1. The exact true solution is given by φ(x, t) = t4 sin(π(x + y)). The cor-
responding initial and boundary conditions are extracted from the given actual solution.

Let us consider the next values of parameters α = 0, β = 0, and ρ = 2, σ = –65 for this test
problem. We also take ω = 1.7 and S ,V ,T = 10. The approximated solution φ̃(x, y, t = 1),
along with the graph of absolute error E(x, y, t = 0.5) on the whole domain (x, y) ∈ [0, 1] ×
[0, 1], is depicted in Fig. 10.

In Tables 8 and 9, we report the results of L∞ and RMS errors between our technique
and LMS [53] with 2025 uniform points and m = 5. Here, we used α = β = 0, ω = 1.7, 1.9,
and ρ = 2, 3, σ = –65. Various equal values of S = V = T = 4, 6, 8, 10 are also employed. It
worth noting that the presented results are more accurate than the LMS results.

Figure 11 depicts the approximate solution φ(x, y, t) and x-direction of Example 4.5.
Figures 12 and 13 visualize the absolute error for Example 4.5 for xy-plane, t-, x-, and
y-directions, respectively.
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Figure 10 The approximate solution φ̃(x, y, t) (left) and the absolute errors (right) in Example 4.5, for α = 0,
β = 0, ω = 1.7, ρ = 2, σ = –65, S = T = V = 10

Table 8 The results of L∞ and Lrms for Example 4.5 by the presented spectral collocation method

S = V = T ω = 1.7, α = β = 0 ω = 1.9, α = β = 0

ρ = 2, σ = –65 ρ = 3, σ = –65 ρ = 2, σ = –65 ρ = 3, σ = –65

L∞ Lrms L∞ Lrms L∞ Lrms L∞ Lrms

4 2.6571e–6 4.6754e–16 5.3714e–9 8.5999e–16 2.6113e–6 3.0488e–16 2.6560e–6 5.8731e–16

6 1.5063e–9 3.0933e–18 1.1223e–9 4.7016e–18 1.2842e–9 2.9730e–18 1.2059e–9 4.4964e–18

8 7.2278e–14 6.1905e–21 5.9399e–14 8.7938e–21 5.9647e–14 6.0007e–21 5.8763e–14 8.4728e–21

10 3.8742e–20 2.1666e–25 3.8549e–20 1.3360e–25 3.8781e–20 4.2861e–25 3.8572e–20 1.3456e–25

Table 9 The results of L∞ and Lrms for Example 4.4 reported in [53]

δt M = 2025,m = 5 (uniform mesh)

ω = 1.7 ω = 1.9

L∞ Lrms L∞ Lrms

1
5 3.0420e–2 1.5017e–2 5.7458e–2 2.8347e–2

1
10 1.2917e–2 6.3781e–3 2.7619e–2 1.3636e–2

1
20 5.4532e–3 2.6931e–3 1.3079e–2 6.4626e–3

1
40 2.3351e–3 1.1537e–3 6.1953e–3 3.0631e–3

Figure 11 The plots of x-direction for the numerical and actual solutions φ̃(x, y, t) and φ(x, y, t) for
Example 4.5, for α = 0, β = 0, ω = 1.7, ρ = 2, σ = –65, S = T = V = 10
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Figure 12 The plots of t-direction (left) and x-direction (right) for the attained absolute error E(x, y, t) for
Example 4.5 α = 0, β = 0, ω = 1.7, ρ = 2, σ = –65, S = T = V = 10

Figure 13 The plots of y-direction for the absolute error E(x, y, t) in Example 4.5, for α = 0, β = 0, ω = 1.7,
ρ = 2, σ = –65, S = T = V = 10

5 Conclusion
In this work, we have presented a novel spectral algorithm for the efficient and accurate
numerical solution of multi-dimensional telegraph equations of fractional order. The key
strength of our approach lies in the use of Jacobi-Romanovski polynomials as the basis
functions for the spectral technique, which possess several desirable properties, such as
the ability to handle nonstandard domains and boundary conditions, as well as superior
approximation capabilities. A comprehensive error analysis of the proposed model has
been developed, providing valuable insights into the convergence rates and the factors
that influence the accuracy of the numerical solutions. Some limitations of the proposed
method can be noted, such as requiring higher computational resources when dealing
with extremely irregular boundaries or highly complex geometries and reduced perfor-
mance when applied to models involving very stiff differential equations or nonsmooth
solutions. These challenges remain open issues that will be addressed in future work. In
addition, through several numerical experiments, we have demonstrated the effectiveness
of the proposed spectral algorithm in solving a range of multi-dimensional fractional-
order telegraph equation models. The results showed that our method achieves signif-
icantly higher accuracy and computational efficiency compared to traditional numerical
techniques. The algorithm proved to be a valuable asset in simulating complex models and
achieving excellent results. Future work could focus on extending this approach to other
important models, particularly those with irregular boundaries, as well as exploring adap-
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tive techniques to optimize computational resources. This study paves the way for further
exploration of fractional-order models in various fields, with promising applications in
physics, engineering, and other scientific domains.
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