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Abstract
This manuscript is concerned with obtaining results for fixed points that arise from
new contractive mappings on controlled metric spaces. These mappings are a
mixture of Wardowski’s contractions with both multivalued, nonlinear mappings and
auxiliary functions. It is also proved that the obtained fixed-point outcomes are
well-posed. Additionally, a data-dependence result for fixed points is given. To aid
with understanding, several illustrative examples are also provided. Numerous
findings that are currently in the literature are specific instances of the findings that
were made.
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1 Introduction
Fixed-point (FP) theory is a mathematical discipline that studies the existence, uniqueness,
and properties of solutions to equations of the form (ϒυ = υ), where (ϒ) is a given func-
tion. Although this equation appears simple, it has profound implications and finds ap-
plications across various domains, from pure mathematics to real-world problem solving
in economics, physics, computer science, and beyond. On metric spaces (MSs), Stephan
Banach established the renowned Banach contraction principle (BCP) [1] in 1922.

There are two ways to build new FP results: either with the contraction inequality or
utilize a more generalized space. BCP is expanded upon and altered in a variety of ways.
For instance, the authors of [2, 3] and [4, 5] altered the underlined space and examined
Kannan-type contractions to support specific fixed-point conclusions.

In another direction, many authors have extended numerous previous findings using F-
contractions. In 2015, Klim and Wardowski [6] extended an F-contraction in terms of non-
linear F-contractions. By using the dynamic processes, the same authors demonstrated a
FP theorem and expanded the concept of F-contractive mappings to the situation of non-
linear F-contractions. Subsequently, Wardowski [7] eliminated one of the criteria on the
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F-mappings to create nonlinear F-contractions. Some theorems on the presence of fixed
points of nonlinear F-contractions and the sum of mappings of this kind with a compact
operator can be found in another paper by Wardowski [8].

FP theory has found significant applications in the realm of fractional calculus, par-
ticularly in the analysis of fractional differential equations. By establishing the existence
and uniqueness of solutions to these equations, fixed-point theorems provide a power-
ful framework for investigating various phenomena in fields such as physics, engineering,
and biology. The nonlocal nature of fractional derivatives, combined with the ability of
fixed-point theorems to handle nonlinear operators, makes them well-suited for address-
ing complex problems involving fractional dynamics, see [9–14]

The concept of b-metric space (bMS) was first introduced by Bakhtin in 1989 [4]. Cz-
erwick [15] added to it in order to provide certain FP outcomes made possible by this
environment. In order to reduce the triangle inequality of a bMS, Kamran et al. [5] estab-
lished a new route using a function z : η × η → [1,∞). By defining an extended bMS as a
controlled metric space (CMS) and expanding upon its concept, Mlaiki et al. [16] achieved
another breakthrough in this regard.

Estimating the separation between the sets of FPs of two mappings is a data-dependence
problem. This notion becomes important only if we are certain that these two opera-
tors have nonempty FP sets. Since multivalued mappings (MVMs) frequently have larger
FP sets than single-valued mappings, the data-dependence problem primarily affects set-
valued mappings. Iqbal et al. [17] addressed data dependence, strict FPs, and the well-
posedness of certain multivalued generalized contractions in the context of complete
MSs in 2021. They also covered the existence of FPs. In the setting of CMSs, we gen-
eralize and unify the findings of Iqbal et al. [17] in this study under new contractive map-
pings.

2 Basic facts
This section is devoted to recalling some basic facts, which are needed to understand the
manuscript. We shall consider (η,�), Q (η), ηc, ηcb, and ηcp to denote, respectively, a MS,
containing all subsets of η, the sets of nonempty, closed subsets of η, nonempty, closed,
and bounded subsets of η, and nonempty, compact subsets of η.

Assume that � : η → Q (η) is a MVM, the point ϑ ∈ η is called a FP of � if ϑ ∈�ϑ . The
point ̂ϑ ∈ η is said to be a strict FP if {̂ϑ} = �ϑ . The set of all (s.o.a.) FPs, and the s.o.a.
strict FPs of � are denoted by Fix (�) and SFix (�), respectively.

Definition 2.1 [16] Assume that η �= ∅ and γ : η × η → [1,∞) is a given function. The
distance mapping � : η × η → [0,∞) is called a CMS if the assertions below hold, for all
ϑ1,ϑ2,ϑ3 ∈ η,

(�1) � (ϑ1,ϑ2) = 0 if and only if ϑ1 = ϑ2;
(�2) � (ϑ1,ϑ2) = � (ϑ2,ϑ1);
(�3) � (ϑ1,ϑ2) ≤ γ (ϑ1,ϑ3)� (ϑ1,ϑ3) + γ (ϑ3,ϑ2)� (ϑ3,ϑ2).

Then, the trio (η,� ,γ ) is called a CMS.
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The definition of a Pompei–Hausdorff (PH) MS is defined by the authors in [18], where
they considered that �,� ∈ NCB(η) and defined the mapping ϒ : ηcb × ηcb → [0,∞) by

ϒ (�,�) = max

{

sup
ϑ∈�

B (ϑ ,�) , sup
˜ϑ∈�

B
(

˜ϑ ,�)
}

,

where B (ϑ ,�) =
{

inf�
(

ϑ ,˜ϑ
)

:˜ϑ ∈ �
}

and ϒ (�,�) is called a Hausdorff distance.
In [7], Wardowski presented a wonderful definition (F-contraction) by selecting a

strictly increasing function to the Banach contraction mapping: the function F : (0,∞) →
R fulfills the axioms below:

(♥1) for each ϑ ,˜ϑ ∈ (0,∞), if ϑ <˜ϑ , then F(ϑ) < F(˜ϑ), that is, F is strictly increasing;
(♥2) limu→∞ 	u = 0 ⇔ limu→∞ F(	u) = –∞, for all sequences 	u ⊆ (0,∞);
(♥3) there is l ∈ (0, 1) such that limu→0+ 	lF (	) = 0.
Assume that �(
) is the s.o.a. functions F , which satisfy (♥1), (♥2), and (♥3). Further,

let

�(Z) = {F ∈ �(
) : (♥3) is true for F} ,

where
(♥4) for all � ∈ (0,∞) with inf (�) > 0, F (inf�) = inf F (�).
The results of Turinici [19] can be obtained if we change the axiom (♥2) to
(♥′

2) limu→∞ F(s) = –∞.
Let us consider �(˜Z) to denote the s.o.a. functions F that fulfill (♥1), (♥′

2), (♥3), and
(♥4).

Now, for all ϑ ,˜ϑ ∈ η, if there are ν > 0 and F ∈ �(Z) such that

ϒ
(

�ϑ ,�˜ϑ
)

> 0 ⇒ ν + F
(

ϒ
(

�ϑ ,�˜ϑ
))≤ F

(

�
(

ϑ ,˜ϑ
))

,

then the mapping � : η → ηcb is said to be a multivalued F-contraction [20].

Definition 2.2 [21] Assume that there exist F ∈ �(Z) and a function σ : (0,∞) → (0,∞)

such that the assumptions below hold:
(A1) for all 	 > 0, lim infκ→	+ σ (κ) > 0;
(A2) for all ϑ ,˜ϑ ∈ η with �ϑ �= �˜ϑ ,

σ
(

�
(

ϑ ,˜ϑ
))

+ F
(

ϒ
(

�ϑ ,�˜ϑ
))≤ F

(

�
(

ϑ ,˜ϑ
))

.

Then, the mapping � : η → η is called a (σ , F)-contraction.

Definition 2.3 [17] Assume that � represents the s.o.a functions ψ : (0,∞) → (0,∞)

such that, for each 	 ≥ 0, we have

lim inf
κ→	+

ψ (κ) > 0.

3 Auxiliary functions
The following new definitions are very important in the following.
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Definition 3.1 Suppose that ℵ refers to the s.o.a. continuous mappings � : [0,∞)7 →
[0,∞) such that the hypotheses below hold:

(�1) for λ,υ ≥ 1, �
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
) ∈ [0, 1);

(�2) for all (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) ∈ [0,∞)7 and m ≥ 0, we obtain

� (mϑ1, mϑ2, mϑ3, mϑ4, mϑ5, mϑ6, mϑ7) ≤ m� (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) ,

that is, � is subhomogeneous;
(�3) for ϑi,˜ϑi ∈ [0,∞) with ϑi ≤˜ϑi (i = 1, 2, . . . , 7), we obtain

� (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) ≤ �
(

˜ϑ1,˜ϑ2,˜ϑ3,˜ϑ4,˜ϑ5,˜ϑ6,˜ϑ7
)

,

that is, � is nondecreasing. Moreover, if ϑi <˜ϑi (i = 1, 2, 3, 4, 6, 7), we have

� (ϑ1,ϑ2,ϑ3,ϑ4, 0,ϑ6,ϑ7) < �
(

˜ϑ1,˜ϑ2,˜ϑ3,˜ϑ4, 0,˜ϑ6,˜ϑ7
)

and

� (ϑ1,ϑ2,ϑ3, 0,ϑ4,ϑ6,ϑ7) < �
(

˜ϑ1,˜ϑ2,˜ϑ3, 0,˜ϑ4,˜ϑ6,˜ϑ7
)

.

Further, let˜ℵ =
{

� ∈ ℵ : �
(

1, 0, 0,λ,υ, 0, λ
2
) ∈ (0, 1]

}

, where˜ℵ ⊆ ℵ.

Example 3.2 The following functions support the above definition:
(1) Describe �1 : [0,∞)7 → [0,∞) as

�1 (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) = �min

{

ϑ1,
ϑ2 + ϑ3

2
,
ϑ4 + ϑ5

2
,
ϑ6 + ϑ7

2

}

,

where � ∈ (0, 1), then, �1 ∈ ℵ. Since �1
(

1, 0, 0,λ,υ, 0, λ
2
)

= 0 /∈ (0, 1]. Hence, �1 /∈˜ℵ.
This proves that˜ℵ ⊆ ℵ, but the converse is not true.

(2) Describe �2 : [0,∞)7 → [0,∞) as

�2 (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) =
ϑ1

2
+

ϑ2 + ϑ3

4
+

ϑ6

8
,

then �2
(

1, 0, 0,λ,υ, 0, λ
2
)

= 1
2 ∈ (0, 1]. Thus, �2 ∈˜ℵ.

(3) Describe �3 : [0,∞)7 → [0,∞) as

�3 (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) = �min

{

ϑ1 + ϑ3

2
,
ϑ4 + ϑ5

2
,
ϑ6 + ϑ7

2

}

,

where � ∈ (0, 1), then �3
(

1, 0, 0,λ,υ, 0, λ
2
)

= 1
2 ∈ (0, 1]. Thus, �3 ∈˜ℵ.

The Lemma below is very important in the following:

Lemma 3.3 Assume that � ∈ ℵ, β , θ ∈ [0,∞), λ,υ ≥ 1, and

β ≤ max

{

�

(

θ , θ ,β ,λθ + υβ , 0,
θ + β

2
,
λθ + υβ

2

)

,
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�

(

θ , θ ,β , 0,λθ + υβ ,
θ + β

2
,
λθ + υβ

2

)

,

�

(

θ ,β , θ ,λθ + υβ , 0,
θ + β

2
,
λθ + υβ

2

)

,

�

(

θ ,β , θ , 0,λθ + υβ ,
θ + β

2
,
λθ + υβ

2

)}

.

Then, β ≤ θ .

Proof Keeping the generalization intact, we can suppose that

β ≤ �

(

θ , θ ,β ,λθ + υβ , 0,
θ + β

2
,
λθ + υβ

2

)

. (3.1)

Conversely, let us assume that θ < β . Now, we examine

�

(

θ , θ ,β ,λθ + υβ , 0,
θ + β

2
,
λθ + υβ

2

)

< �

(

β ,β ,β ,λβ + υβ , 0,β ,
λβ + υβ

2

)

≤ β�

(

1, 1, 1,λ + υ, 0, 1,
λ + υ

2

)

≤ β (1) .

Hence,

�

(

θ , θ ,β ,λθ + υβ , 0,
θ + β

2
,
λθ + υβ

2

)

< β ,

which contradicts (3.1). Therefore, β ≤ θ . �

4 Existence of fixed points
According to a new definition 3.1, we present our contraction mapping here as follows:

Definition 4.1 (˜ψF-contraction) We say that the mapping � : η → ηcb is an ˜ψF-
contraction if
(

˜ψF
)

i for all q > 0, F1(q) ≤ F2(q);
(

˜ψF
)

ii ϒ
(

�ϑ ,�˜ϑ
)

> 0, implies

˜ψ
(

�
(

ϑ ,˜ϑ
))

+ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F1

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

,

for all ϑ ,˜ϑ ∈ η, where � is described in Definition 2.1, F1, F2 are real-valued func-
tions on (0,∞), � ∈ ℵ, and ˜ψ ∈ � .

Theorem 4.2 Let � : η → ηcp be an ˜ψF-contraction defined on a complete CMS (η,� ,γ ).
If the conditions below hold:

(C1) F1 is a nondecreasing function;
(C2) F2 fulfills axioms (♥′

2), and (♥3);
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(C3) for ϑ0 ∈ η, define the Picard sequence {ϑu = �
uϑ0} such that

sup
n≥1

lim
j→∞

γ
(

ϑj+1,ϑj+2
)

γ
(

ϑj+1,ϑn
)

γ
(

ϑj,ϑj+1
) < 1;

(C4) for ϑ ∈ η, limu→∞ γ (ϑu,ϑ) ≤ 1.
Then, � has at least one FP, that is, Fix (�) �= ∅.

Proof Assume that ϑ0 ∈ η and ϑ1 ∈�ϑ0. Clearly, if ϑ1 ∈�ϑ1, ϑ1 ∈ Fix (�) and the proof is
completed. Hence, let ϑ1 /∈�ϑ1, which means B (ϑ1,�ϑ1) > 0. Thus, ϒ (�ϑ0,�ϑ1) > 0. As
�ϑ1 is compact, there is ϑ2 ∈�ϑ1 such that � (ϑ1,ϑ2) = B (ϑ1,�ϑ1). Consider

F1 (� (ϑ1,ϑ2)) = F1 (B (ϑ1,�ϑ1))

≤ F1 (ϒ (�ϑ0,�ϑ1))

≤ F2 (ϒ (�ϑ0,�ϑ1))

≤ F1

{

�

(

� (ϑ0,ϑ1) , B (ϑ0,�ϑ0) , B (ϑ1,�ϑ1) , B (ϑ0,�ϑ1) ,
B (ϑ1,�ϑ0) , B(ϑ0,�ϑ0)+B(ϑ1,�ϑ1)

2 , B(ϑ0,�ϑ1)+B(ϑ1,�ϑ0)

2

)}

–˜ψ (� (ϑ0,ϑ1))

< F1

{

�

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) ,
� (ϑ1,ϑ1) , �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)+�(ϑ1,ϑ1)

2

)}

.

Since F1 is nondecreasing, one has

� (ϑ1,ϑ2) < �

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) ,
0, �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)

2

)

≤ �

⎛

⎜

⎝

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,
γ (ϑ0,ϑ1)� (ϑ0,ϑ1) + γ (ϑ1,ϑ2)� (ϑ1,ϑ2) ,

0, �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , γ (ϑ0,ϑ1)�(ϑ0,ϑ1)+γ (ϑ1,ϑ2)�(ϑ1,ϑ2)

2

⎞

⎟

⎠ .

Based on Lemma 3.3, we conclude that

� (ϑ1,ϑ2) < � (ϑ0,ϑ1) .

In the same way, we have ϑ3 ∈�ϑ2 such that � (ϑ2,ϑ3) = B (ϑ2,�ϑ2) with B (ϑ2,�ϑ2) > 0
and

� (ϑ2,ϑ3) < � (ϑ1,ϑ2) .

Repeating this technique, we have a sequence {ϑu} ⊂ η in order that ϑu+1 ∈ �ϑu fulfills
� (ϑu,ϑu+1) = B (ϑu,�ϑu) with B (ϑu,�ϑu) > 0 and

� (ϑu,ϑu+1) < � (ϑu–1,ϑu) , ∀u ∈N.

It follows that {� (ϑu,ϑu+1)}s∈N is a decreasing sequence. Next, we can write

˜ψ (� (ϑu,ϑu+1)) + F2 (ϒ (�ϑu,�ϑu+1))
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≤ F1

{

�

(

� (ϑu,ϑu+1) , B (ϑu,�ϑu) , B (ϑu+1,�ϑu+1) , B (ϑu,�ϑu+1) ,
B (ϑu+1,�ϑu) , B(ϑu ,�ϑu)+B(ϑu+1,�ϑu+1)

2 , B(ϑu ,�ϑu+1)+B(ϑu+1,�ϑu)

2

)}

≤ F1

{

�

(

� (ϑu,ϑu+1) ,� (ϑu,ϑu+1) ,� (ϑu+1,ϑu+2) ,� (ϑu,ϑu+2) ,
� (ϑu+1,ϑu+1) , �(ϑu ,ϑu+1)+�(ϑu+1,ϑu+2)

2 , �(ϑu ,ϑu+2)+�(ϑu+1,ϑu+1)

2

)}

≤ F1

⎧

⎪

⎨

⎪

⎩

�

⎛

⎜

⎝

� (ϑu,ϑu+1) ,� (ϑu,ϑu+1) ,� (ϑu+1,ϑu+2) ,
γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑu+2)� (ϑu+1,ϑu+2) ,

0, �(ϑu ,ϑu+1)+�(ϑu+1,ϑu+2)

2 , γ (ϑu ,ϑu+1)�(ϑu ,ϑu+1)+γ (ϑu+1,ϑu+2)�(ϑu+1,ϑu+2)

2

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

< F1

⎧

⎪

⎨

⎪

⎩

�

⎛

⎜

⎝

� (ϑu,ϑu+1) ,� (ϑu,ϑu+1) ,� (ϑu,ϑu+1) ,
γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑu+2)� (ϑu,ϑu+1) ,

0, �(ϑu ,ϑu+1)+�(ϑu ,ϑu+1)

2 , γ (ϑu ,ϑu+1)�(ϑu ,ϑu+1)+γ (ϑu+1,ϑu+2)�(ϑu ,ϑu+1)

2

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

≤ F1

{

� (ϑu,ϑu+1) �

(

1, 1, 1,γ (ϑu,ϑu+1) + γ (ϑu+1,ϑu+2) ,
0, 1, γ (ϑu ,ϑu+1)+γ (ϑu+1,ϑu+2)

2

)}

≤ F1 (� (ϑu,ϑu+1))

= F1 (B (ϑu,�ϑu))

≤ F1 (ϒ (�ϑu–1,�ϑu))

≤ F2 (ϒ (�ϑu–1,�ϑu)) .

Hence, for each u ∈N, we conclude that

F2 (ϒ (�ϑu,�ϑu+1)) ≤ F2 (ϒ (�ϑu–1,�ϑu)) – ˜ψ (� (ϑu,ϑu+1)) . (4.1)

Since˜ψ ∈ � , there is ζ > 0 so that ˜ψ (� (ϑu,ϑu+1)) > ζ , for all u ≥ u0. From (4.1), we obtain

F2 (ϒ (�ϑu,�ϑu+1)) ≤ F2 (ϒ (�ϑu–1,�ϑu)) – ˜ψ (� (ϑu,ϑu+1))

< F2 (ϒ (�ϑu–2,�ϑu–1)) – ˜ψ (� (ϑu–1,ϑu)) – ˜ψ (� (ϑu,ϑu+1))

...

< F2 (ϒ (�ϑ0,�ϑ1)) –
u
∑

j=1

˜ψ
(

�
(

ϑj,ϑj+1
))

= F2 (ϒ (�ϑ0,�ϑ1)) –
u0–1
∑

j=1

˜ψ
(

�
(

ϑj,ϑj+1
))

–
u
∑

j=u0

˜ψ
(

�
(

ϑj,ϑj+1
))

< F2 (ϒ (�ϑ0,�ϑ1)) – (u – u0)ζ , u ≥ u0.

Hence,

F2 (ϒ (�ϑu,�ϑu+1)) < F2 (ϒ (�ϑ0,�ϑ1)) – (u – u0)ζ , u ≥ u0. (4.2)

Letting u → ∞ in (4.2), we have

lim
u→∞ F2 (ϒ (�ϑu,�ϑu+1)) = –∞.



Hammad and Kattan Boundary Value Problems        (2024) 2024:130 Page 8 of 27

Applying (♥′
2), we obtain

lim
u→∞ϒ (�ϑu,�ϑu+1) = 0,

which yields,

lim
u→∞� (ϑu,ϑu+1) = lim

u→∞ D (ϑu,�ϑu) ≤ lim
u→∞ϒ (�ϑu–1,�ϑu) = 0. (4.3)

According to (♥3), there is l ∈ (0, 1) so that

lim
u→∞ (ϒ (�ϑu,�ϑu+1))

l F2 (ϒ (�ϑu,�ϑu+1)) = 0. (4.4)

For all u ≥ u0, from (4.2), one has

(ϒ (�ϑu,�ϑu+1))
l F2 (ϒ (�ϑu,�ϑu+1)) – (ϒ (�ϑu,�ϑu+1))

l F2 (ϒ (�ϑ0,�ϑ1))

≤ (ϒ (�ϑu,�ϑu+1))
l [F2 (ϒ (�ϑ0,�ϑ1)) – (u – u0)ζ ]

– (ϒ (�ϑu,�ϑu+1))
l F2 (ϒ (�ϑ0,�ϑ1))

= – (ϒ (�ϑu,�ϑu+1))
l (u – u0)ζ

≤ 0.

As u → ∞ in (4.3) and (4.4), we can write

0 ≤ lim
u→∞ u (ϒ (�ϑu,�ϑu+1))

l ≤ 0

and it follows that

lim
u→∞ u (ϒ (�ϑu,�ϑu+1))

l = 0. (4.5)

Based on (4.5), there is u1 ∈ N so that u (ϒ (�ϑu,�ϑu+1))
l ≤ 1, for all u ≥ u1. Thus, we

have

ϒ (�ϑu,�ϑu+1) ≤ 1

u
1
l

for all u ≥ u1.

Therefore,

� (ϑu,ϑu+1) = B (ϑu,�ϑu) ≤ ϒ (�ϑu–1,�ϑu) ≤ 1

u
1
l

for all u ≥ u1.

Now, we prove that {ϑu} is a Cauchy sequence (CS). In this regard, let v, u ∈ N in order
that v > u > u1. Then,

� (ϑu,ϑv) = γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑv)� (ϑu+1,ϑv)

≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑv) γ (ϑu+1,ϑu+2)� (ϑu+1,ϑu+2)

+γ (ϑu+1,ϑv) γ (ϑu+2,ϑv)� (ϑu+2,ϑv)
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≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑv) γ (ϑu+1,ϑu+2)� (ϑu+1,ϑu+2)

+γ (ϑu+1,ϑv) γ (ϑu+2,ϑv) γ (ϑu+2,ϑu+3)� (ϑu+2,ϑu+3)

+γ (ϑu+1,ϑv) γ (ϑu+2,ϑv) γ (ϑu+3,ϑv)� (ϑu+3,ϑv)

≤
...

≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) +
v–2
∑

j=u+1

( j
∏

b=u+1

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

�
(

ϑj,ϑj+1
)

+

( v–1
∏

b=u+1

γ
(

ϑj,ϑv
)

)

� (ϑv–1,ϑv)

≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) +
v–2
∑

j=u+1

( j
∏

b=u+1

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

�
(

ϑj,ϑj+1
)

+

( v–1
∏

b=u+1

γ
(

ϑj,ϑv
)

)

γ (ϑv–1,ϑv)� (ϑv–1,ϑv)

= γ (ϑu,ϑu+1)� (ϑu,ϑu+1) +
v–2
∑

j=u+1

( j
∏

b=u+1

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

�
(

ϑj,ϑj+1
)

≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) +
v–2
∑

j=u+1

( j
∏

b=0

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

�
(

ϑj,ϑj+1
)

.

Therefore,

� (ϑu,ϑv) ≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) +
v–2
∑

j=u+1

( j
∏

b=0

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)× 1

j
1
l

. (4.6)

Consider

v–2
∑

j=u+1

( j
∏

b=0

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)× 1

j
1
l

≤
∞
∑

j=u+1

1

j
1
l

( j
∏

b=0

γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

=
∞
∑

j=u+1

MjNj,

where Mj = 1

j
1
l

and Nj =
(

∏j
b=0 γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
)

. As 1
l > 0, the series

∑∞
j=u+1

(

1

j
1
l

)

converges. Since {Nj}j is bounded above and increasing, the nonzero limj→∞{Nj} exists.
Hence, limj→∞{MjNj} converges.

Take the partial sums ℘ =
∑∞

j=0

(

∏j
b=0 γ (ϑb,ϑv)

)

γ
(

ϑj,ϑj+1
) × 1

j
1
l

. From (4.6), we can

write

� (ϑu,ϑv) ≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + (℘v–1 – ℘u) . (4.7)
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Utilizing the ratio test and Condition (C3), we have that limu→∞{℘u} exists. Letting u → ∞
in (4.7), we conclude that

lim
u→∞� (ϑu,ϑv) = 0.

This proves that {ϑu} is a CS. Since η is complete, there is ϑ∗ ∈ η so that

lim
u→∞ϑu = ϑ∗. (4.8)

Consider

F1
(

ϒ
(

�ϑ ,�˜ϑ
)) ≤ F2

(

ϒ
(

�ϑ ,�˜ϑ
))≤ ˜ψ (� (ϑ ,˜ϑ

))

+ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F1

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

.

Since F1 is a nondecreasing function, then for ϑ ,˜ϑ ∈ ξ , one can write

ϒ
(

�ϑ ,�˜ϑ
)≤ �

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

, B
(

˜ϑ ,�ϑ
)

,
B(ϑ ,�ϑ)+B

(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)

. (4.9)

Then, to illustrate the existence of the FP of�, assume the contrary, that is, B (ϑ∗,�ϑ∗) > 0.
Using (4.9) and the compactness of �ϑ∗ implies that there is ϑ ∈ �ϑ∗ such that

B
(

ϑ∗,�ϑ∗)

= �
(

ϑ∗,ϑ
)

≤ γ
(

ϑ∗,ϑu+1
)

�
(

ϑ∗,ϑu+1
)

+ γ (ϑu+1,ϑ)� (ϑu+1,ϑ)

= γ
(

ϑ∗,ϑu+1
)

�
(

ϑ∗,ϑu+1
)

+ γ (ϑu+1,ϑ)B
(

ϑu+1,�ϑ∗)

≤ γ
(

ϑ∗,ϑu+1
)

�
(

ϑ∗,ϑu+1
)

+ γ (ϑu+1,ϑ)ϒ
(

�ϑu,�ϑ∗)

≤ γ
(

ϑ∗,ϑu+1
)

�
(

ϑ∗,ϑu+1
)

+ γ (ϑu+1,ϑ)

× �

⎛

⎜

⎝

� (ϑu,ϑ∗) , B (ϑu,�ϑu) , B (ϑ∗,�ϑ∗) ,
B (ϑu,�ϑ∗) , B (ϑ∗,�ϑu) ,

B(ϑu ,�ϑu)+B
(

ϑ∗ ,�ϑ∗)

2 , B
(

ϑu ,�ϑ∗)+B
(

ϑ∗ ,�ϑu
)

2

⎞

⎟

⎠

≤ γ
(

ϑ∗,ϑu+1
)

�
(

ϑ∗,ϑu+1
)

+ γ (ϑu+1,ϑ)

× �

⎛

⎜

⎜

⎜

⎜

⎝

� (ϑu,ϑ∗) ,� (ϑu,ϑu+1) , B (ϑ∗,�ϑ∗) ,
γ (ϑu,ϑ∗)� (ϑu,ϑ∗) + γ (ϑ∗,�ϑ∗)� (ϑ∗,�ϑ∗) ,

� (ϑ∗,ϑu+1) , �(ϑu ,ϑu+1)+B
(

ϑ∗ ,�ϑ∗)

2 ,
γ
(

ϑu ,ϑ∗)�
(

ϑu ,ϑ∗)+γ
(

ϑ∗ ,�ϑ∗)�
(

ϑ∗ ,�ϑ∗)+�
(

ϑ∗ ,ϑu+1
)

2

⎞

⎟

⎟

⎟

⎟

⎠

.

In the above inequality, letting u → ∞, using Condition (C4), and (4.8), we have

B
(

ϑ∗,�ϑ∗) ≤ (1)�

(

0, 0, B (ϑ∗,�ϑ∗) , 0 + γ (ϑ∗,�ϑ∗)� (ϑ∗,�ϑ∗) ,
0, 0+B

(

ϑ∗ ,�ϑ∗)

2 , 0+γ
(

ϑ∗ ,�ϑ∗)�
(

ϑ∗ ,�ϑ∗)

2

)



Hammad and Kattan Boundary Value Problems        (2024) 2024:130 Page 11 of 27

≤ �

(

0, 0, B
(

ϑ∗,�ϑ∗) ,�
(

ϑ∗,�ϑ∗) , 0,
B (ϑ∗,�ϑ∗)

2
,
� (ϑ∗,�ϑ∗)

2

)

.

Applying Lemma 3.3, we obtain that B (ϑ∗,�ϑ∗) ≤ 0. Hence, B (ϑ∗,�ϑ∗) = 0. As �ϑ∗ is
closed, we have ϑ∗ ∈ �ϑ∗, and this completes the proof. �

Theorem 4.2 can be supported by the following example:

Example 4.3 Consider η =
{

0, 1
2 , 1

3 , 1
4 , 1

5
}

. Describe � : η × η → [0,∞) and γ : η × η →
[1,∞) as mapping �

(

ϑ ,˜ϑ
)

=
∣

∣ϑ –˜ϑ
∣

∣

2 and

γ
(

ϑ ,˜ϑ
)

=

{

1, if ϑ =˜ϑ = 0,
1

(

ϑ+˜ϑ
)2 , if ϑ �= 0 or˜ϑ �= 0,

respectively. Clearly, (η,� ,γ ) is a complete CMS. Further, define F1, F2 : R+ →R by

F1 (h) =

{

–1
h , if h ∈ (0, 1),

h2, if h ∈ [1,∞)

and F2 (h) = ln (h) + h2, for h ∈ R
+. From the definition of F1 and F2, we find that F1 is

nondecreasing, F2 fulfills the conditions (♥′
2) and (♥3), and for all h ∈ R

+, F1 (h) ≤ F2 (h).
Let us define � : η → ηcp, � : [0,∞)7 → [0,∞), and ˜ψ : R+ →R

+ by

�ϑ =

{

{0} if ϑ = 0,
{0, 1

2 , 1
3 } if ϑ �= 0,

� (ϑ1,ϑ2,ϑ3,ϑ4,ϑ5,ϑ6,ϑ7) = ϑ1
2 + 30ϑ5, and ˜ψ (s) = 1

s2 , s ∈ R
+, respectively. It is clear that

� ∈ ℵ, ˜ψ ∈ � . As ϒ
(

�ϑ ,�˜ϑ
)

> 0, it follows that

˜ψ
(

�
(

ϑ ,˜ϑ
))

+ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F1

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

.

Moreover, limu→∞ γ (ϑu,ϑ) ≤ 1. Therefore, all the requirements of Theorem 4.2 are ful-
filled and Fix (�) = {0, 1

2 , 1
3 }.

We can relax the conditions of Theorem 4.2, by neglecting conditions (♥3) and (C3) as
follows:

Theorem 4.4 Let � : η → ηcp be an MVM described on a complete CMS (η,� ,γ ). Assume
that F1 and F2 are functions verifying ˜ψF-contraction. Also, suppose that the assertions
below are true:

(i) F1 is nondecreasing;
(ii) F2 fulfills (♥′

2);
(iii) for ϑ ∈ η, liml→∞ γ

(

ϑvl ,ϑul

)≤ 1.
Then, Fix (�) �= ∅.
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Proof Assume that ϑ0 ∈ η and ϑ1 ∈ �ϑ0. Similar to the proof of Theorem 4.2, consider
that {ϑu} ⊂ η is a sequence such that ϑu+1 ∈�ϑu. It fulfills � (ϑu,ϑu+1) = B (ϑu,�ϑu) with
B (ϑu,�ϑu) > 0 and

� (ϑu,ϑu+1) < � (ϑu–1,ϑu) , ∀u ∈N.

Also, we have

F2 (ϒ (�ϑu,�ϑu+1)) < F2 (ϒ (�ϑ0,�ϑ1)) – (u – u0)ζ , u ≥ u0. (4.10)

Passing u → ∞ in (4.10), we obtain

lim
u→∞ F2 (ϒ (�ϑu,�ϑu+1)) = –∞.

From (♥′
2), we have

lim
u→∞ϒ (�ϑu,�ϑu+1) = 0, (4.11)

which implies that

lim
u→∞� (ϑu,ϑu+1) = lim

u→∞ D (ϑu,�ϑu) ≤ lim
u→∞ϒ (�ϑu–1,�ϑu) = 0.

Now, we claim that

lim
u,v→∞� (ϑu,ϑv) = 0. (4.12)

Assume the converse, i.e., there is θ > 0 so that for each r̂ ≥ 0, there exists vl > ul > r̂ such
that

�
(

ϑul ,ϑvl

)

> θ .

Further, there is r̂0 ∈ N in order that

mr̂0 = � (ϑu–1,ϑu) < θ , ∀u ≥ r̂0.

Also, there are two subsequences {ϑul } and {ϑvl } of {ϑu} in order that

r̂0 ≤ ul ≤ vl + 1 and �
(

ϑul ,ϑvl

)

> θ , ∀l ≥ 0. (4.13)

It should be noted that

�
(

ϑvl–1,ϑul

)

< θ , ∀l (4.14)

and vl is the minimal index in order that (4.14) is satisfied. From (4.13) and (4.14), it is
impossible to verify that ϑu + 1 ≤ ϑu, then, ϑu + 2 ≤ vl . This proves that

ϑu + 1 < vl < vl + 1, ∀l.
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Again, using (4.13), (4.14), and (�3), one can write

θ < �
(

ϑvl ,ϑul

)

≤ γ
(

ϑvl ,ϑvl–1
)

�
(

ϑvl ,ϑvl–1
)

+ γ
(

ϑvl–1,ϑul

)

�
(

ϑvl–1,ϑul

)

≤ γ
(

ϑvl ,ϑvl–1
)

�
(

ϑvl ,ϑvl–1
)

+ θγ
(

ϑvl–1,ϑul

)

.

Passing l → ∞ in the above inequality and using the condition (iii) of Theorem 4.4, one
has

θ < lim
l→∞

�
(

ϑvl ,ϑul

)

≤ 0 + θ lim
l→∞

γ
(

ϑvl–1,ϑul

)

= θ lim
l→∞

γ
(

ϑvl–1,ϑul

)

≤ θ .

This proves that

lim
l→∞

�
(

ϑvl ,ϑul

)

= θ . (4.15)

From (4.11) and (4.15), we deduce that

lim
l→∞

�
(

ϑvl+1,ϑul+1
)

= θ . (4.16)

Let

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F1
(

�
(

ϑvl+1,ϑul+1
))

= ˜ψ
(

�
(

ϑvl ,ϑul

))

+ F1
(

B
(

ϑvl+1,�ϑul

))

≤ ˜ψ (� (ϑvl ,ϑul

))

+ F1
(

ϒ
(

�ϑvl ,�ϑul

))

≤ ˜ψ (� (ϑvl ,ϑul

))

+ F2
(

ϒ
(

�ϑvl ,�ϑul

))

≤ F1

⎧

⎨

⎩

�

⎛

⎝

�
(

ϑvl ,ϑul

)

, B
(

ϑvl ,�ϑvl

)

, B
(

ϑul ,�ϑul

)

, B
(

ϑvl ,�ϑul

)

,

B
(

ϑul ,�ϑvl

)

,
B
(

ϑvl ,�ϑvl

)

+B
(

ϑul ,�ϑul

)

2 ,
B
(

ϑvl ,�ϑul

)

+B
(

ϑul ,�ϑvl

)

2

⎞

⎠

⎫

⎬

⎭

= F1

⎧

⎨

⎩

�

⎛

⎝

�
(

ϑvl ,ϑul

)

,�
(

ϑvl ,ϑvl+1
)

,�
(

ϑul ,ϑul+1
)

,�
(

ϑvl ,ϑul+1
)

,

�
(

ϑul ,ϑvl+1
)

,
�
(

ϑvl ,ϑvl+1
)

+�
(

ϑul ,ϑul+1
)

2 ,
�
(

ϑvl ,ϑul+1
)

+�
(

ϑul ,ϑvl+1
)

2

⎞

⎠

⎫

⎬

⎭

≤ F1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�
(

ϑvl ,ϑul

)

,�
(

ϑvl ,ϑvl+1
)

,�
(

ϑul ,ϑul+1
)

,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+ γ
(

ϑul ,ϑvl

)

�
(

ϑul ,ϑvl

)

,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+ γ
(

ϑul+1,ϑvl+1
)

�
(

ϑul+1,ϑvl+1
)

,
�
(

ϑvl ,ϑvl+1
)

+�
(

ϑul ,ϑul+1
)

2 ,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+γ
(

ϑul ,ϑvl

)

�
(

ϑul ,ϑvl

)

2

+
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+γ
(

ϑul+1,ϑvl+1
)

�
(

ϑul+1,ϑvl+1
)

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.
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Since F1 is continuous, letting l → ∞, and using (4.15) and (4.16), we have

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F1 (θ)

≤ F1

⎧

⎨

⎩

�

⎛

⎝

θ , 0, 0, 0 + θγ
(

ϑul ,ϑvl

)

, 0 + θγ
(

ϑul+1,ϑvl+1
)

,

0,
0+θγ

(

ϑul ,ϑvl

)

+θγ
(

ϑul+1,ϑvl+1
)

2

⎞

⎠

⎫

⎬

⎭

= F1

{

�

(

θ , 0, 0, θγ
(

ϑul ,ϑvl

)

, θγ
(

ϑul+1,ϑvl+1
)

, 0,
θγ
(

ϑul ,ϑvl

)

+ θγ
(

ϑul+1,ϑvl+1
)

2

)}

≤ F1

{

θ�

(

1, 0, 0,γ
(

ϑul ,ϑvl

)

,γ
(

ϑul+1,ϑvl+1
)

, 0,
γ
(

ϑul ,ϑvl

)

+ γ
(

ϑul+1,ϑvl+1
)

2

)}

≤ F1(θ ),

since � ∈ ˜ℵ, thus, �

(

1, 0, 0,γ
(

ϑul ,ϑvl

)

,γ
(

ϑul+1,ϑvl+1
)

, 0,
γ
(

ϑul ,ϑvl

)

+γ
(

ϑul+1,ϑvl+1
)

2

)

∈ (0, 1].

Hence,

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F1 (θ) ≤ F1(θ ),

which implies that

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))≤ 0.

Therefore,

lim
℘→θ+

inf˜ψ(℘) ≤ 0,

which is a contradiction. Hence, (4.13) is true. Thus, {ϑu} is a CS and the completeness of
η implies that there is ϑ∗ ∈ η in order that ϑu → ϑ∗ as u → ∞. Theorem 4.2 provides the
remainder of the proof, which leads to ϑ∗ ∈�ϑ∗. �

If we take F ∈ �(˜Z), we can present the following theorem:

Theorem 4.5 Let � : η → ηc be an MVM defined on a complete CMS (η,� ,γ ). Assume
that the following conditions are true:

(ci) ˜ψ ∈ � and F ∈ �(˜Z);
(cii) for all ϑ > 0, F (ϑ) ≤ � (ϑ), where � is a real-valued function on R

+;
(ciii) ϒ

(

�ϑ ,�˜ϑ
)

> 0, implies

˜ψ
(

�
(

ϑ ,˜ϑ
))

+ �
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

,

for all ϑ ,˜ϑ ∈ η and � ∈ ℵ;
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(civ) for ϑ0 ∈ η, define the Picard sequence {ϑu = �
uϑ0} such that

sup
n≥1

lim
j→∞

γ
(

ϑj+1,ϑj+2
)

γ
(

ϑj+1,ϑn
)

γ
(

ϑj,ϑj+1
) < 1;

(cv) for all ϑ ∈ η, limu→∞ γ (ϑu,ϑ) ≤ 1.
Then, Fix (�) �= ∅.

Proof Suppose that ϑ0 ∈ η and ϑ1 ∈ �ϑ0. If ϑ1 ∈ �ϑ1, ϑ1 ∈ Fix (�) and this completes
the proof. Hence, consider that ϑ1 /∈ �ϑ1, that is, B (ϑ1,�ϑ1) > 0. Thus, ϒ (�ϑ0,�ϑ1) > 0.
From (♥4), one has

F (B (ϑ1,�ϑ1)) = inf
a∈�ϑ1

F (� (ϑ1, a)) . (4.17)

It follows from (4.17), (cii), and (ciii) that

inf
a∈�ϑ1

F (� (ϑ1, a)) = F (B (ϑ1,�ϑ1))

≤ F (ϒ (�ϑ0,�ϑ1))

≤ � (ϒ (�ϑ0,�ϑ1))

≤ F

{

�

(

� (ϑ0,ϑ1) , B (ϑ0,�ϑ0) , B (ϑ1,�ϑ1) , B (ϑ0,�ϑ1) ,
B (ϑ1,�ϑ0) , B(ϑ0,�ϑ0)+B(ϑ1,�ϑ1)

2 , B(ϑ0,�ϑ1)+B(ϑ1,�ϑ0)

2

)}

–˜ψ (� (ϑ0,ϑ1))

< F

{

�

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) , 0,
�(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)+�(ϑ1,ϑ1)

2

)}

.

Hence, there is ϑ2 ∈�ϑ1 in order that

F (� (ϑ1,ϑ2)) < F

{

�

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) , 0,
�(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)+�(ϑ1,ϑ1)

2

)}

. (4.18)

Since F is nondecreasing, it follows from (4.18) and (�3) that

� (ϑ1,ϑ2) < �

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) ,
0, �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)

2

)

≤ �

⎛

⎜

⎝

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,
γ (ϑ0,ϑ1)� (ϑ0,ϑ1) + γ (ϑ1,ϑ2)� (ϑ1,ϑ2) , 0,
�(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , γ (ϑ0,ϑ1)�(ϑ0,ϑ1)+γ (ϑ1,ϑ2)�(ϑ1,ϑ2)

2

⎞

⎟

⎠ .

From Lemma 3.3, we obtain

� (ϑ1,ϑ2) < � (ϑ0,ϑ1) .

Similarly, we have ϑ3 ∈�ϑ2 with B (ϑ2,�ϑ2) > 0. Using Lemma 3.3, (cii), and (ciii), we have

� (ϑ2,ϑ3) < � (ϑ1,ϑ2) .
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As we stated before, we have a sequence {ϑu} ⊂ η in order that ϑu+1 ∈ �ϑu with
B (ϑu,�ϑu) > 0 and

� (ϑu,ϑu+1) < � (ϑu–1,ϑu) , ∀u ∈N. (4.19)

Inequality ((4.19) proves that {� (ϑu,ϑu+1)}s∈N is a decreasing sequence. From (♥4), one
can write

inf
a∈�ϑu

F (� (ϑu, a))

= F (B (ϑu,�ϑu))

≤ F (ϒ (�ϑu–1,�ϑu))

≤ � (ϒ (�ϑu–1,�ϑu))

≤ F

{

�

(

� (ϑu–1,ϑu) , B (ϑu–1,�ϑu–1) , B (ϑu,�ϑu) , B (ϑu–1,�ϑu) ,
B (ϑu,�ϑu–1) , B(ϑu–1,�ϑu–1)+B(ϑu ,�ϑu)

2 , B(ϑu–1,�ϑu)+B(ϑu ,�ϑu–1)

2

)}

– ˜ψ (� (ϑu–1,ϑu))

≤ F

{

�

(

� (ϑu–1,ϑu) ,� (ϑu–1,ϑu) ,� (ϑu,ϑu+1) ,� (ϑu–1,ϑu+1) ,
� (ϑu,ϑu) , �(ϑu–1,ϑu)+�(ϑu ,ϑu+1)

2 , �(ϑu–1,ϑu+1)+�(ϑu ,ϑu)

2

)}

– ˜ψ (� (ϑu–1,ϑu))

≤ F

⎧

⎪

⎨

⎪

⎩

�

⎛

⎜

⎝

� (ϑu–1,ϑu) ,� (ϑu–1,ϑu) ,� (ϑu,ϑu+1) ,
γ (ϑu–1,ϑu)� (ϑu–1,ϑu) + γ (ϑu,ϑu+1)� (ϑu,ϑu+1) , 0,

�(ϑu–1,ϑu)+�(ϑu ,ϑu+1)

2 , γ (ϑu–1,ϑu)�(ϑu–1,ϑu)+γ (ϑu ,ϑu+1)�(ϑu ,ϑu+1)+0
2

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

– ˜ψ (� (ϑu–1,ϑu))

< F

⎧

⎪

⎨

⎪

⎩

�

⎛

⎜

⎝

� (ϑu–1,ϑu) ,� (ϑu–1,ϑu) ,� (ϑu–1,ϑu) ,
γ (ϑu–1,ϑu)� (ϑu–1,ϑu) + γ (ϑu,ϑu+1)� (ϑu–1,ϑu) , 0,

�(ϑu–1,ϑu)+�(ϑu–1,ϑu)

2 , γ (ϑu–1,ϑu)�(ϑu–1,ϑu)+γ (ϑu ,ϑu+1)�(ϑu–1,ϑu)

2

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

– ˜ψ (� (ϑu–1,ϑu))

≤ F

{

� (ϑu–1,ϑu) �

(

1, 1, 1,γ (ϑu–1,ϑu) + γ (ϑu,ϑu+1) , 0,
1, γ (ϑu–1,ϑu)+γ (ϑu ,ϑu+1)

2

)}

– ˜ψ (� (ϑu–1,ϑu))

≤ F (� (ϑu–1,ϑu)) – ˜ψ (� (ϑu–1,ϑu)) .

Hence, for each u ∈N, we have

inf
a∈�ϑu

F (� (ϑu, a)) ≤ F (� (ϑu–1,ϑu)) – ˜ψ (� (ϑu–1,ϑu)) , ∀u ∈N. (4.20)

Since ˜ψ ∈ � , there is ζ > 0 and u0 ∈ N so that ˜ψ (� (ϑu,ϑu+1)) > ζ , for all u ≥ u0. From
(4.22), we obtain

F (� (ϑu,ϑu+1)) ≤ F (� (ϑu–1,ϑu)) – ˜ψ (� (ϑu–1,ϑu))
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≤ F (� (ϑu–2,ϑu–1)) – ˜ψ (� (ϑu–2,ϑu–1)) – ˜ψ (� (ϑu–1,ϑu))

...

≤ F (� (ϑ0,ϑ1)) –
u–1
∑

j=1

˜ψ
(

�
(

ϑj–1,ϑj
))

= F (� (ϑ0,ϑ1)) –
u0–1
∑

j=1

˜ψ
(

�
(

ϑj–1,ϑj
))

–
u
∑

j=u0

˜ψ
(

�
(

ϑj–1,ϑj
))

= F (� (ϑ0,ϑ1)) – (u – u0)ζ , u ≥ u0. (4.21)

In (4.21), take u → ∞, we have

lim
u→∞ F (� (ϑu–1,ϑu)) = –∞.

From (♥′
2), we obtain

lim
u→∞� (ϑu–1,ϑu) = 0. (4.22)

Based on (♥3), there is l ∈ (0, 1) such that that

lim
u→∞ (� (ϑu–1,ϑu))

l F2 (� (ϑu–1,ϑu)) = 0. (4.23)

For all u ≥ u0, by (4.22), one can write

(� (ϑu–1,ϑu))
l F2 (� (ϑu–1,ϑu)) – (� (ϑu–1,ϑu))

l F (� (ϑ0,ϑ1))

≤ (� (ϑu–1,ϑu))
l [F (� (ϑ0,ϑ1)) – (u – u0)ζ ]

– (� (ϑu–1,ϑu))
l F (� (ϑ0,ϑ1))

= – (� (ϑ0,ϑ1))
l (u – u0)ζ ≤ 0. (4.24)

Letting u → ∞ in (4.24) and utilizing (4.22) and (4.23), we obtain that

0 ≤ – lim
u→∞ u (� (ϑu–1,ϑu))

l ≤ 0,

which yields

lim
u→∞ u (� (ϑu–1,ϑu))

l = 0. (4.25)

By (4.5), there is u1 ∈N so that u (� (ϑu–1,ϑu))
l ≤ 1, for all u ≥ u1. Thus, we have

� (ϑu–1,ϑu) ≤ 1

u
1
l

for all u ≥ u1.

In order to demonstrate that {ϑu}u∈N is a CS, let us look at v, u ∈ N such that v > u > u1.
The remainder of the proof proceeds from Theorem 4.2. Using (civ) and the ratio test, we
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determine that {ϑu}u∈N is a CS and thus, there is ϑ∗ ∈ η so that

lim
u→∞ϑu = ϑ∗.

Consider

F
(

ϒ
(

�ϑ ,�˜ϑ
)) ≤ L

(

ϒ
(

�ϑ ,�˜ϑ
))≤ ˜ψ (� (ϑ ,˜ϑ

))

+ L
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

.

Since F1 is nondecreasing, one can write for all ϑ ,˜ϑ ∈ η,

ϒ
(

�ϑ ,�˜ϑ
)≤ �

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

, B
(

˜ϑ ,�ϑ
)

,
B(ϑ ,�ϑ)+B

(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)

.

Finally, to find the FP of �, assume the contrary, that is, B (ϑ∗,�ϑ∗) > 0. Along the same
lines as Theorem 4.2, we have B (ϑ∗,�ϑ∗). Since �ϑ∗ is closed, ϑ∗ ∈�ϑ∗. This completes
the proof. �

Now, if we take � ∈˜ℵ, we have the following theorem:

Theorem 4.6 Let � : η → ηc be an MVM defined on a complete CMS (η,� ,γ ). Assume
that the following conditions are satisfied:

(�i) ˜ψ ∈ � , � ∈˜ℵ, and F satisfy condition (♥′
2), where F : R+ → R is a nondecreasing,

continuous, and real-valued function;
(�ii) for all ϑ > 0, F (ϑ) ≤ � (ϑ), where � is a real-valued function on R

+;
(�iii) ϒ

(

�ϑ ,�˜ϑ
)

> 0, implies

˜ψ
(

�
(

ϑ ,˜ϑ
))

+ �
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

,

for all ϑ ,˜ϑ ∈ η;
(�iv) for all ϑ ∈ η, limu→∞ γ (ϑu,ϑ) ≤ 1.
Then, Fix (�) �= ∅.

Proof Assume that ϑ0 ∈ η and ϑ1 ∈ �ϑ0. Similar to the proof of Theorem 4.2, we have a
sequence {ϑu} ⊂ η such that ϑu+1 ∈�ϑu with B (ϑu,�ϑu+1) > 0, and

� (ϑu,ϑu+1) < � (ϑu–1,ϑu)

and

F (� (ϑu–1,ϑu)) < F (� (ϑ0,ϑ1)) – (u – u0)ζ , ∀u ≥ u0. (4.26)
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In (4.26), letting u → ∞, we have

lim
u→∞ F (� (ϑu–1,ϑu)) = –∞.

By (♥′
2), we obtain

lim
u→∞� (ϑu–1,ϑu) = 0.

Now, we show that

lim
u,v→∞� (ϑu,ϑv) = 0. (4.27)

Assume that (4.27) is not true, there is θ > 0 so that for each r̂ ≥ 0, and we have vl > ul > r̂
and

� (ϑu,ϑv) < θ .

In addition, there is r̂0 ∈ N in order that

mr̂0 = � (ϑu–1,ϑu) < θ , ∀u ≥ r̂0.

There are two subsequences {ϑul } and {ϑvl } of {ϑu}, and following the same steps as The-
orem 4.4, we obtain that

lim
l→∞

�
(

ϑvl ,ϑul

)

= θ

and

lim
l→∞

�
(

ϑvl+1,ϑul+1
)

= θ . (4.28)

The monotonicity of F and the conditions (�ii) and (�iii) imply that

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F
(

�
(

ϑvl+1,ϑul+1
))

= ˜ψ
(

�
(

ϑvl ,ϑul

))

+ F
(

B
(

ϑvl+1,�ϑul

))

≤ ˜ψ (� (ϑvl ,ϑul

))

+ F
(

ϒ
(

�ϑvl ,�ϑul

))

≤ ˜ψ (� (ϑvl ,ϑul

))

+ �
(

ϒ
(

�ϑvl ,�ϑul

))

≤ F

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�
(

ϑvl ,ϑul

)

,�
(

ϑvl ,ϑvl+1
)

,�
(

ϑul ,ϑul+1
)

,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+ γ
(

ϑul ,ϑvl

)

�
(

ϑul ,ϑvl

)

,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+ γ
(

ϑul+1,ϑvl+1
)

�
(

ϑul+1,ϑvl+1
)

,
�
(

ϑvl ,ϑvl+1
)

+�
(

ϑul ,ϑul+1
)

2 ,
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+γ
(

ϑul ,ϑvl

)

�
(

ϑul ,ϑvl

)

2

+
γ
(

ϑul ,ϑul+1
)

�
(

ϑul ,ϑul+1
)

+γ
(

ϑul+1,ϑvl+1
)

�
(

ϑul+1,ϑvl+1
)

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

In the above inequality, letting l → ∞, and using the continuity of F and (4.28), we have

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F (θ)
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≤ F

⎧

⎨

⎩

�

⎛

⎝

θ , 0, 0, 0 + θγ
(

ϑul ,ϑvl

)

, 0 + θγ
(

ϑul+1,ϑvl+1
)

,

0,
0+θγ

(

ϑul ,ϑvl

)

+θγ
(

ϑul+1,ϑvl+1
)

2

⎞

⎠

⎫

⎬

⎭

= F

{

�

(

θ , 0, 0, θγ
(

ϑul ,ϑvl

)

, θγ
(

ϑul+1,ϑvl+1
)

, 0,
θγ
(

ϑul ,ϑvl

)

+ θγ
(

ϑul+1,ϑvl+1
)

2

)}

≤ F

{

θ�

(

1, 0, 0,γ
(

ϑul ,ϑvl

)

,γ
(

ϑul+1,ϑvl+1
)

, 0,
γ
(

ϑul ,ϑvl

)

+ γ
(

ϑul+1,ϑvl+1
)

2

)}

≤ F(θ ),

since � ∈ ˜ℵ, and thus �

(

1, 0, 0,γ
(

ϑul ,ϑvl

)

,γ
(

ϑul+1,ϑvl+1
)

, 0,
γ
(

ϑul ,ϑvl

)

+γ
(

ϑul+1,ϑvl+1
)

2

)

∈
(0, 1]. Hence,

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))

+ F (θ) ≤ F(θ ),

which implies that

lim
l→∞

˜ψ
(

�
(

ϑvl ,ϑul

))≤ 0.

Therefore,

lim
℘→θ+

inf˜ψ(℘) ≤ 0,

which is a contradiction of the definition of � . Hence, (4.26) is true. Thus, {ϑu} is a CS
and the completeness of η implies that there is ϑ∗ ∈ η in order that ϑu → ϑ∗ as u → ∞.
Theorem 4.5 provides the remainder of the proof, which leads to ϑ∗ ∈ �ϑ∗. �

5 Data-dependence result
The FP sets Fix (�1) and Fix (�2) are nonempty for a MS (η,� ) and mappings �1,�2 : η →
Q(η). Numerous authors have tackled the topic of determining the PH distance ϒ between
Fix (�1) and Fix (�2), provided that for k > 0, ϒ(�1ϑ ,�2ϑ) < k for all ϑ ∈ η. For instance,
see [22–24].

We provide a data-dependence result for the established result in this section.

Definition 5.1 Suppose that (η,� ) is a MS and � : η → ηc is a MVM such that for all
ϑ ∈ η and˜ϑ ∈�ϑ , there is a sequence {ϑu}u∈N satisfying

(1) ϑ0 = ϑ and ϑ1 =˜ϑ ;
(2) ϑu+1 ∈�ϑu, for all u ∈ N;
(3) {ϑu}u∈N is convergent to a FP of �.
Then, � is called a multivalued, weakly Picard operator (MWPO, for short). A sequence

{ϑu}u∈N that satisfies conditions (2) and (3) of Definition 5.1 is described as a sequence of
successive approximations (SAM).

Our main theorem in this section is as follows:
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Theorem 5.2 Assume that �1,�2 : η → ηcp are MVMs on a complete CMS (η,� ,γ ) such
that an ˜ψF-contraction is true for �j, where j = 1, 2. Also, assume that the hypotheses below
hold:

(D1) F1 is a real-valued, nondecreasing function on R
+;

(D2) F2 is a real-valued function on R
+ verifying (♥′

2) and (♥3);
(D4) for all ϑ ∈ η, there exists ζ > 0 so that ϒ (�1ϑ ,�2ϑ) ≤ ζ ;
(D5) for ϑ0 ∈ η, define the Picard sequence {ϑu = �

uϑ0} such that

sup
n≥1

lim
j→∞

γ
(

ϑj+1,ϑj+2
)

γ
(

ϑj+1,ϑn
)

γ
(

ϑj,ϑj+1
) < 1;

(D6) for all ϑ ∈ η, limu→∞ γ (ϑu,ϑ) ≤ 1.
Then, the following results are obtained:
(R1) for j ∈ {1, 2}, Fix

(

�j
) ∈ ηc;

(R2) �1 are �2 are MWPOs, and

ϒ (Fix (�1) , Fix (�2))

≤ ζ

1 – max
{

�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)

,�2
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)} ,

where λ,υ ≥ 1.

Proof (R1) Thanks to Theorem 4.2, Fix
(

�j
) �= ∅ for j ∈ {1, 2}. We claim that Fix

(

�j
)

is closed for j ∈ {1, 2}. Assume that a there is a sequence {ϑu} in Fix
(

�j
)

such that
limu→∞ ϑu = ϑ . Now,

F1
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ ˜ψ (� (ϑ ,˜ϑ
))

+ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F1

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

.

The monotonicity of F1, implies that

ϒ
(

�ϑ ,�˜ϑ
)≤ �

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)

, (5.1)

for all ϑ ,˜ϑ ∈ η. Let B
(

˜ϑ ,�˜ϑ
)

> 0. Then, by (5.1), there is ϑ ∈ �˜ϑ such that

B
(

˜ϑ ,�˜ϑ
)

= �
(

˜ϑ ,ϑ
)

≤ γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)

+ γ (ϑu+1,ϑ)� (ϑu+1,ϑ)

= γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)

+ γ (ϑu+1,ϑ)B
(

ϑu+1,�˜ϑ
)

≤ γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)

+ γ (ϑu+1,ϑ)ϒ
(

�ϑu,�˜ϑ
)

≤ γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)
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+γ (ϑu+1,ϑ)�

(

�
(

ϑu,˜ϑ
)

, B (ϑu,�ϑu) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑu,�˜ϑ
)

,
B
(

˜ϑ ,�ϑu
)

, B(ϑu ,�ϑu)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑu ,�˜ϑ
)

+B
(

˜ϑ ,�ϑu
)

2

)

≤ γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)

+γ (ϑu+1,ϑ)�

⎛

⎜

⎜

⎜

⎜

⎝

�
(

ϑu,˜ϑ
)

, B (ϑu,�ϑu) , B
(

˜ϑ ,�˜ϑ
)

,
γ
(

ϑu,˜ϑ
)

B
(

ϑu,˜ϑ
)

+ γ
(

˜ϑ ,�˜ϑ
)

B
(

˜ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑu
)

, B(ϑu ,�ϑu)+B
(

˜ϑ ,�˜ϑ
)

2 ,
γ
(

ϑu ,˜ϑ
)

B
(

ϑu ,˜ϑ
)

+γ
(

˜ϑ ,�˜ϑ
)

B
(

˜ϑ ,�˜ϑ
)

+B
(

ϑu ,�˜ϑ
)

2

⎞

⎟

⎟

⎟

⎟

⎠

≤ γ
(

˜ϑ ,ϑu+1
)

�
(

˜ϑ ,ϑu+1
)

+γ (ϑu+1,ϑ)�

⎛

⎜

⎜

⎜

⎜

⎝

�
(

ϑu,˜ϑ
)

,� (ϑu,ϑu+1) , B
(

˜ϑ ,�˜ϑ
)

,
γ
(

ϑu,˜ϑ
)

�
(

ϑu,˜ϑ
)

+ γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

,
�
(

˜ϑ ,ϑu+1
)

, �(ϑu ,ϑu+1)+B
(

˜ϑ ,�˜ϑ
)

2 ,
γ
(

ϑu ,˜ϑ
)

�
(

ϑu ,˜ϑ
)

+γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

+�
(

˜ϑ ,ϑu+1
)

2

⎞

⎟

⎟

⎟

⎟

⎠

.

Letting u → ∞ in the above inequality and using the definition of � and (D6), we have

B
(

˜ϑ ,�˜ϑ
)

≤ (1)�

(

0, 0, B
(

˜ϑ ,�˜ϑ
)

, 0 + γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

, 0,
B
(

˜ϑ ,�˜ϑ
)

2
,

0 + γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

2

)

= �

(

0, 0, B
(

˜ϑ ,�˜ϑ
)

,γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

, 0,
B
(

˜ϑ ,�˜ϑ
)

2
,
γ
(

˜ϑ ,ϑ
)

B
(

˜ϑ ,�˜ϑ
)

2

)

.

Using Lemma 3.3, we observe that B
(

˜ϑ ,�˜ϑ
)≤ 0, hence B

(

˜ϑ ,�˜ϑ
)

= 0. Since �˜ϑ is closed,
˜ϑ ∈�˜ϑ . Therefore, Fix

(

�j
)

is closed for j ∈ {1, 2}.
(R2) According to Theorem 4.2, we conclude that �1 are �2 are MWPOs. It remains to

prove that

ϒ (Fix (�1) , Fix (�2))

≤ ζ

1 – max
{

�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)

,�2
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)} .

Let us consider p > 0 and ϑ0 ∈ Fix (�2). Then, there is ϑ1 ∈�2 (ϑ0) in order that

� (ϑ0,ϑ1) = B (ϑ0,�2 (ϑ0)) and � (ϑ1,ϑ2) ≤ pϒ (�1 (ϑ0) ,�2 (ϑ0)) .

Now, there is ϑ2 ∈�2 (ϑ1) so that

� (ϑ0,ϑ1) = B (ϑ0,�2 (ϑ0)) and � (ϑ1,ϑ2) ≤ pϒ (�2 (ϑ0) ,�2 (ϑ1)) .

Further, we obtain � (ϑ1,ϑ2) < � (ϑ0,ϑ1) and

� (ϑ1,ϑ2)

≤ pϒ (�2 (ϑ0) ,� (ϑ1))
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≤ p�1

(

� (ϑ0,ϑ1) , B (ϑ0,�2ϑ0) , B (ϑ1,�2ϑ1) , B (ϑ0,�2ϑ1) ,
B (ϑ1,�2ϑ0) , �(ϑ0,ϑ0)+B(ϑ1,�2ϑ1)

2 , B(ϑ0,�2ϑ1)+B(ϑ1,�2ϑ0)

2

)

≤ p�1

(

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,� (ϑ0,ϑ2) ,
� (ϑ1,ϑ1) , �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , �(ϑ0,ϑ2)+�(ϑ1,ϑ1)

2

)

≤ p�1

⎛

⎜

⎝

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ1,ϑ2) ,
γ (ϑ0,ϑ1)� (ϑ0,ϑ1) + γ (ϑ1,ϑ2)� (ϑ1,ϑ2) ,

0, �(ϑ0,ϑ1)+�(ϑ1,ϑ2)

2 , γ (ϑ0,ϑ1)�(ϑ0,ϑ1)+γ (ϑ1,ϑ2)�(ϑ1,ϑ2)+0
2

⎞

⎟

⎠

< p�1

⎛

⎜

⎝

� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,� (ϑ0,ϑ1) ,
γ (ϑ0,ϑ1)� (ϑ0,ϑ1) + γ (ϑ1,ϑ2)� (ϑ0,ϑ1) ,

0, �(ϑ0,ϑ1)+�(ϑ0,ϑ1)

2 , γ (ϑ0,ϑ1)�(ϑ0,ϑ1)+γ (ϑ1,ϑ2)�(ϑ0,ϑ1)

2

⎞

⎟

⎠

≤ p� (ϑ0,ϑ1) �1

(

1, 1, 1,γ (ϑ0,ϑ1) + γ (ϑ1,ϑ2) , 0, 1,
γ (ϑ0,ϑ1) + γ (ϑ1,ϑ2)

2

)

,

where �1 ∈ � ∈ ℵ. Therefore, we obtain a sequence of SAM of � at starting point ϑ0, which
fulfills

� (ϑu,ϑu+1) ≤
(

p�1

(

1, 1, 1,λ + υ, 0, 1,
λ + υ

2

)u

� (ϑ0,ϑ1)

)

,

for all λ,υ ≥ 1 and all u ∈N.

In another form, we can write

� (ϑu,ϑu+n) ≤
(

p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
))u

1 – p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)� (ϑ0,ϑ1) , for all u ∈ N. (5.2)

In (5.2), letting u → ∞, we find that {ϑu} is a CS in η, and thus, converges to some σ ∈ η.
From the proof of Theorem 4.2, we obtain that σ ∈ Fix (�2). Again, passing n → ∞ in
(5.2), one has

� (ϑu,σ) ≤
(

p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
))u

1 – p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)� (ϑ0,ϑ1) , for all u ∈N.

Setting u = 0, and using (D4), we obtain

� (ϑ0,σ) ≤ 1
1 – p�1

(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)� (ϑ0,ϑ1)

≤ pζ

1 – p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
) .

Switching the roles of �1 and �2, for every σ0 ∈ Fix (�1), one can write

� (ϑ0,σ0) ≤ 1
1 – p�2

(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)� (ϑ0,ϑ1)

≤ pζ

1 – p�2
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
) .
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Hence,

ϒ (Fix (�1) , Fix (�2))

≤ Pζ

1 – max
{

p�1
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)

, p�2
(

1, 1, 1,λ + υ, 0, 1, λ+υ
2
)} ,

where λ,υ ≥ 1. Letting p → 1 in the above inequality, we have the result. �

6 Well-posednees and strict FPs
The definition of the well-posedness for the FP problem is presented in [25] as follows:

Definition 6.1 Assume that (η,�) is an MS, � ∈ Q (η), and � : � → ηc is a MVM. The
FP issue is called well-posed for � with respect to (w.r.t.) B if

(w1) Fix (�) = {̂ϑ};
(w2) if ϑu ∈ �, for all u ∈N, limu→∞ B (ϑu,�ϑu) = 0.
Then, limu→∞ ϑu =̂ϑ ∈ Fix (�).

Definition 6.2 Assume that (η,�) is an MS, � ∈ Q (η), and � : � → ηc is a MVM. The
FP issue is called well-posed for � w.r.t. ϒ if

(w1) SFix (�) = {̂ϑ};
(w2) if ϑu ∈ �, for all u ∈N, limu→∞ ϒ (ϑu,�ϑu) = 0.
Then, limu→∞ ϑu =̂ϑ ∈ SFix (�).

The main theorem in this part is as follows:

Theorem 6.3 Suppose that (η,� ,γ ) is a complete CMS,� : η → ηcp is an MVM and F1, F2

are functions verifying an ˜ψF-contraction. Assume that the following presumptions hold:
(P1) F1 is nondecreasing;
(P2) F2 verifies (♥′

2) with � (1, 0, 0, 1, 1, 0, 1) ∈ (0, 1);
(P3) SFix (�) is nonempty;
(P4) for all ϑ ∈ η, limu→∞ γ (ϑu,ϑ) ≤ 1.
Then,
(I) Fix (�) = SFix (�) =

{

̂ϑ
}

;
(II) The FP problem is well-posed for the MVM � w.r.t. ϒ .

Proof (I) According to Theorem 4.4, we have Fix (�) �= ∅. Next, we will show that Fix (�) =
{

̂ϑ
}

. Utilizing
(

˜ψF
)

i and
(

˜ψF
)

ii, we can write

F1
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ ˜ψ (� (ϑ ,˜ϑ
))

+ F2
(

ϒ
(

�ϑ ,�˜ϑ
))

≤ F1

{

�

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)}

.
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The monotonicity of F1, implies that

ϒ
(

�ϑ ,�˜ϑ
)≤ �

(

�
(

ϑ ,˜ϑ
)

, B (ϑ ,�ϑ) , B
(

˜ϑ ,�˜ϑ
)

, B
(

ϑ ,�˜ϑ
)

,
B
(

˜ϑ ,�ϑ
)

, B(ϑ ,�ϑ)+B
(

˜ϑ ,�˜ϑ
)

2 , B
(

ϑ ,�˜ϑ
)

+B
(

˜ϑ ,�ϑ
)

2

)

,

for all ϑ ,˜ϑ ∈ η. Consider σ ∈ Fix (�) with σ �=̂ϑ . Then, B
(

̂ϑ ,�σ
)

> 0. Now, we obtain

B
(

̂ϑ ,�σ
)

= ϒ
(

�̂ϑ ,�σ
)

≤ �

(

�
(

̂ϑ ,σ
)

, B
(

̂ϑ ,�̂ϑ
)

, B (σ ,�σ) , B
(

̂ϑ ,�σ
)

,
B
(

σ ,�̂ϑ
)

, B
(

̂ϑ ,�̂ϑ
)

+B(σ ,�σ)

2 , B
(

̂ϑ ,�σ
)

+B
(

σ ,�̂ϑ
)

2

)

≤ �

(

�
(

̂ϑ ,σ
)

, 0, 0, B
(

̂ϑ ,σ
)

, B
(

σ ,̂ϑ
)

, 0,
B
(

̂ϑ ,σ
)

+ B
(

σ ,̂ϑ
)

2

)

≤ �
(

̂ϑ ,σ
)

� (1, 0, 0, 1, 1, 0, 1) .

Applying the condition (P2), we obtain

�
(

̂ϑ ,σ
)

= B
(

̂ϑ ,�σ
)≤ �

(

̂ϑ ,σ
)

,

which is a contradiction. Hence, �
(

̂ϑ ,σ
)

= 0, that is,̂ϑ = σ .
(II) Assume that ϑu ∈ � and u ∈ N in order that

lim
u→∞ B (ϑu,�ϑu) = 0. (6.1)

We prove that

lim
u→∞�

(

ϑu,̂ϑ
)

= 0,

wherêϑ ∈ Fix (�). Assume the contrary, then for each u ∈N, there is ε > 0 so that

�
(

ϑu,̂ϑ
)

> ε.

Equation (6.1) leads to the fact that there is uε ∈N – {0} so that

lim
u→∞ B (ϑu,�ϑu) < ε, for each u > uε .

It follows that

�
(

ϑu,̂ϑ
)

= B
(

ϑu,�̂ϑ
)

, for each u > uε .

Since �̂ϑ is compact, there is ϑ ∈�̂ϑ so that

�
(

ϑu,̂ϑ
)

= B
(

ϑu,�̂ϑ
)

= � (ϑu,ϑ)

≤ γ (ϑu,ϑu+1)� (ϑu,ϑu+1) + γ (ϑu+1,ϑ)� (ϑu+1,ϑ)

= γ (ϑu,ϑu+1)B (ϑu,�ϑu) + γ (ϑu+1,ϑ)B
(

ϑu+1,�̂ϑ
)
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≤ γ (ϑu,ϑu+1)B (ϑu,�ϑu) + γ (ϑu+1,ϑ)ϒ
(

�ϑu,�̂ϑ
)

≤ γ (ϑu,ϑu+1)B (ϑu,�ϑu)

+γ (ϑu+1,ϑ)�

(

�
(

ϑu,̂ϑ
)

, B (ϑu,�ϑu) , B
(

̂ϑ ,�̂ϑ
)

, B
(

ϑu,�̂ϑ
)

,
B
(

̂ϑ ,�ϑu
)

, B(ϑu ,�ϑu)+B
(

̂ϑ ,�̂ϑ
)

2 , B
(

ϑu ,�̂ϑ
)

+B
(

̂ϑ ,�ϑu
)

2

)

≤ γ (ϑu,ϑu+1)B (ϑu,�ϑu)

+γ (ϑu+1,ϑ)�

⎛

⎜

⎝

�
(

ϑu,̂ϑ
)

, B (ϑu,�ϑu) ,�
(

̂ϑ ,̂ϑ
)

, B
(

ϑu,̂ϑ
)

,
γ
(

̂ϑ ,ϑu
)

B
(

̂ϑ ,ϑu
)

+ γ (ϑu,�ϑu)� (ϑu,ϑu+1) ,
B(ϑu ,�ϑu),�

(

̂ϑ ,̂ϑ
)

2 , B
(

ϑu ,̂ϑ
)

+γ
(

̂ϑ ,ϑu
)

B
(

̂ϑ ,ϑu
)

+γ (ϑu ,�ϑu)�(ϑu ,ϑu+1)

2

⎞

⎟

⎠ .

From conditions (P2) and (P4), letting u → ∞ in the above inequality and using (6.1), we
have limu→∞ �

(

ϑu,̂ϑ
)

= 0, which is a contradiction. Therefore, the FP issue is well-posed
for the MVM � w.r.t. B. Additionally, Fix (�) = SFix (�) and the FP issue is well-posed for
the MVM � w.r.t. ϒ . �

7 Conclusion
Several strict and FP results on CMSs have been established in this study. As we utilized
the controlled metric setting platform and adhered to the plan of Iqbal et al. [17], the
results presented in [17] are specific instances of those presented in this study. We have
also given the theorems’ well-posedness. Additionally, the FP data-dependence issue of
the considered mappings is established. For the sake of authenticity, numerous nontrivial
examples are included.
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