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We consider the following eigenvalue problems: −Δu+ u = λ( f (u) + h(x)) in Ω, u > 0
in Ω, u ∈H1

0 (Ω), where λ > 0, N =m+ n ≥ 2, n ≥ 1, 0 ∈ ω ⊆ Rm is a smooth bounded
domain, S = ω×Rn, D is a smooth bounded domain in RN such that D ⊂⊂ S, Ω =
S\ ––

D. Under some suitable conditions on f and h, we show that there exists a positive
constant λ∗ such that the above-mentioned problems have at least two solutions if λ ∈
(0,λ∗), a unique positive solution if λ = λ∗ , and no solution if λ > λ∗ . We also obtain
some bifurcation results of the solutions at λ= λ∗ .
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1. Introduction

Throughout this article, let N =m+n≥ 2, n≥ 1, 2∗ = 2N/(N − 2) forN ≥ 3, 2∗ =∞ for
N = 2, x = (y,z) be the generic point of RN with y ∈Rm, z ∈Rn.

In this article, we are concerned with the following eigenvalue problems:

−Δu+u= λ
(
f (u) +h(x)

)
in Ω, u in H1

0 (Ω), u > 0 in Ω, N ≥ 2, (1.1)λ

where λ > 0, 0 ∈ ω ⊆ Rm is a smooth bounded domain, S = ω ×Rn, D is a smooth
bounded domain in RN such that D ⊂⊂ S, Ω= S \D is an exterior strip domain in RN ,
h(x)∈ L2(Ω)∩ Lq0 (Ω) for some q0 > N/2 if N ≥ 4, q0 = 2 if N = 2,3, h(x) ≥ 0, h(x) 	≡ 0
and f satisfies the following conditions:

(f1) f ∈ C1([0,+∞),R+), f (0)= 0, and f (t)≡ 0 if t < 0;
(f2) there is a positive constant C such that

∣
∣ f (t)

∣
∣≤ C

(|t|+ |t|p) for some 1 < p < 2∗ − 1; (1.1)
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(f3) limt→0 t−1 f (t)= 0;
(f4) there is a number θ ∈ (0,1) such that

θt f ′(t)≥ f (t) > 0 for t > 0; (1.2)

(f5) f ∈ C2(0,+∞) and f ′′(t)≥ 0 for t > 0;
(f5)∗ f ∈ C2(0,+∞) and f ′′(t) > 0 for t > 0;
(f6) limt→0+ t1−q1 f ′′(t) ≤ C where C is some constant, 0 < q1 < 4/(N − 2) if N ≥ 3,

q1 > 0 if N = 2.
If Ω=RN orΩ=RN \D (m= 0 in our case), then the homogeneous case of problem

(1.1)λ (i.e., the case h(x) ≡ 0) has been studied by many authors (see Cao [4] and the
references therein). For the nonhomogeneous case (h(x) 	≡ 0), Zhu [18] has studied the
special problem

−Δu+u= up +h(x) in RN ,

u in H1(RN
)
, u > 0 in RN , N ≥ 2.

(1.3)

They have proved that (1.3) has at least two positive solutions for ‖h‖L2 sufficiently small
and h exponentially decaying.

Cao and Zhou [5] have considered the following general problems:

−Δu+u= f (x,u) +h(x) in RN ,

u in H1(RN
)
, u > 0 in RN , N ≥ 2,

(1.4)

where h ∈ H−1(RN ), 0 ≤ f (x,u) ≤ c1up + c2u with c1 > 0, c2 ∈ [0,1) being some con-
stants. They also have shown that (1.4) has at least two positive solutions for ‖h‖H−1 <
CpS(p+1)/2(p−1) and h ≥ 0, h 	≡ 0 in RN , where S is the best Sobolev constant and Cp =
c
−1/(p−1)
1 (p− 1)[(1− c2)/p]p/(p−1).
Zhu and Zhou [19] have investigated the existence and multiplicity of positive solu-

tions of (1.1)λ in RN \D for N ≥ 3. They have shown that there exists λ∗ > 0 such that
(1.1)λ admits at least two positive solutions if λ∈ (0,λ∗) and (1.1)λ has no positive solu-
tions if λ > λ∗ under the conditions that h(x) ≥ 0, h(x) 	≡ 0, h(x) ∈ L2(Ω)∩ L(N+γ)/2(Ω)
(γ > 0 if N ≥ 4 and γ = 0 if N = 3), and f satisfies conditions (f1)–(f5). However, their
method cannot know whether λ∗ is bounded or infinite.

In the present paper, motivated by [19], we extend and improve the paper by Zhu and
Zhou [19]. First, we deal with the more general domains instead of the exterior domains,
and second, we prove that λ∗ is finite, and third, we also obtain the behavior of the two
solutions on (0,λ∗) and some bifurcation results of the solutions at λ= λ∗. Now, we state
our main results.

Theorem 1.1. Let Ω= S \D or Ω=RN \D. Suppose h(x)≥ 0, h(x) 	≡ 0, h(x)∈ L2(Ω)∩
Lq0 (Ω) for some q0 > N/2 ifN ≥ 4, q0 = 2 ifN = 2,3, and f (t) satisfies (f1)–(f5). Then there
exists λ∗ > 0, 0 < λ∗ <∞ such that

(i) equation (1.1)λ has at least two positive solutions uλ, Uλ, and uλ < Uλ if λ∈ (0,λ∗),
where uλ is the minimal solution of (1.1)λ and Uλ is the second solution of (1.1)λ
constructed in Section 5;
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(ii) equation (1.1)λ has at least one minimal positive solution uλ∗ ;
(iii) equation (1.1)λ has no positive solutions if λ > λ∗.

Moreover, assume that condition (f5)∗ holds, then (1.1)λ∗ has a unique positive solution uλ∗ .

Theorem 1.2. Suppose the assumptions of Theorem 1.1 and condition (f5)∗ hold, then
(i) uλ is strictly increasing with respect to λ, uλ is uniformly bounded in L∞(Ω)∩H1

0 (Ω)
for all λ∈ (0,λ∗], and

uλ −→ 0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+, (1.5)

(ii) Uλ is unbounded in L∞(Ω)∩H1
0 (Ω) for λ∈ (0,λ∗), that is,

lim
λ→0+

∥
∥Uλ

∥
∥= lim

λ→0+

∥
∥Uλ

∥
∥∞ =∞, (1.6)

(iii) moreover, assume that condition (f6) holds and h(x) is in Cα(Ω)∩ L2(Ω), then all
solutions of (1.1)λ are in C2,α(Ω)∩H2(Ω), and (λ∗,uλ∗) is a bifurcation point for
(1.1)λ and

uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗,

Uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗.
(1.7)

2. Preliminaries

In this paper, we denote byC andCi (i= 1,2, . . .) the universal constants, unless otherwise
specified. Now, we will establish some analytic tools and auxiliary results which will be
used later. We set

F(u)=
∫ u

0
f (s)ds,

‖u‖ =
(∫

Ω

(|∇u|2 +u2
)
dx
)1/2

,

‖u‖p =
(∫

Ω
|u|qdx

)1/q
, 1≤ q <∞,

‖u‖∞ = sup
x∈Ω

∣
∣u(x)

∣
∣.

(2.1)

First, we give some properties of f (t). The proof can be found in Zhu and Zhou [19].

Lemma 2.1. Under conditions (f1), (f4), and (f5),
(i) let ν= 1+ θ−1 > 2, one has that t f (t)≥ νF(t) for t > 0;
(ii) t−1/θ f (t) is monotone nondecreasing for t > 0 and t−1 f (t) is strictly monotone in-

creasing if t > 0;
(iii) for any t1, t2 ∈ (0,+∞), one has

f
(
t1 + t2

)≥ f
(
t1
)
+ f
(
t2
)
, f

(
t1 + t2

) 	≡ f
(
t1
)
+ f
(
t2
)
. (2.2)
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In order to get the existence of positive solutions of (1.1)λ, consider the energy functional
I :H1

0 (Ω)→R defined by

I(u)= 1
2

∫

Ω

(|∇u|2 +u2
)
dx− λ

∫

Ω
F
(
u+
)
dx− λ

∫

Ω
hudx. (2.3)

By the strong maximum principle, it is easy to show that the critical points of I are the positive
solutions of (1.1)λ.

Now, introduce the following elliptic equation on S:

−Δu+u= λ f (u) in S, u∈H1
0 (S), N ≥ 2, (2.4)λ

and its associated energy functional I∞ defined by

I∞(u)= 1
2

∫

S

(|∇u|2 +u2
)
dx− λ

∫

S
F
(
u+
)
dx, u∈H1

0 (S). (2.4)

If (f1)–(f4) hold, using results of Esteban [8] and Lions [15, 16], one knows that (2.4)λ has a
ground state w(x) > 0 in S such that

S∞ = I∞(w)= sup
t≥0

I∞(tw). (2.5)

Now, establish the following decomposition lemma for later use.

Proposition 2.2. Let conditions (f1), (f2), and (f4) be satisfied and suppose that {uk} is a
(PS)α-sequence of I inH1

0 (Ω), that is, I(uk)= α+ o(1) and I′(uk)= o(1) strong inH−1(Ω).
Then there exist an integer l ≥ 0, sequence {xik} ⊆RN of the form (0,zik)∈ S, a solution u of
(1.1)λ, and solutions ui of (2.4)λ, 1≤ i≤ l, such that for some subsequence {uk}, one has

uk u weakly in H1
0 (Ω),

I
(
uk
)−→ I(u) +

l∑

i=1
I∞
(
ui
)
,

uk −
(

u+
m∑

i=1
ui
(
x− xik

)
)

−→ 0 strong in H1
0 (Ω),

∣
∣xik
∣
∣−→∞,

∣
∣xik − x

j
k

∣
∣−→∞, 1≤ i 	= j ≤ l,

(2.6)

where one agrees that in the case l = 0, the above hold without ui, xik.

Proof. This result can be derived from the arguments in [3] (see also [15–17]). Here we
omit it. �

3. Asymptotic behavior of solutions

In this section, we establish the decay estimate for solutions of (1.1)λ and (2.4)λ. In order
to get the asymptotic behavior of solutions of (1.1)λ, we need the following lemmas. First,
we quote regularity Lemma 1 (see Hsu [12] for the proof). Now, let X be a C1,1 domain
in RN .
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Lemma 3.1 (regularity Lemma 1). Let g : X×R→R be a Carathéodory function such that
for almost every x ∈ X, there holds

∣
∣ f (x,u)

∣
∣≤ C

(|u|+ |u|p) uniformly in x ∈ X, (3.1)

where 1 < p < 2∗ − 1.
Also, let u ∈ H1

0 (X) be a weak solution of equation −Δu = f (x,u) + h(x) in X, where
h∈ LN/2(X)∩L2(X). Then u∈ Lq(X) for q ∈ [2,∞).

Now, we quote Regularity Lemmas 2–4, (see Gilbarg and Trudinger [9, Theorems 8.8,
9.11, and 9.16] for the proof).

Lemma 3.2 (regularity Lemma 2). Let X ⊂ RN be a domain, g ∈ L2(X), and u ∈ H1(X)
a weak solution of the equation −Δu+ u= g in X. Then for any subdomain X′ ⊂⊂ X with
d′ = dist(X′,∂X) > 0, u∈H2(X′) and

‖u‖H2(X′) ≤ C
(‖u‖H1(X) +‖g‖L2(X)

)
(3.2)

for someC = C(N ,d′). Furthermore, u satisfies the equation−Δu+u= g almost everywhere
in X.

Lemma 3.3 (regularity Lemma 3). Let g ∈ L2(X) and let u∈H1
0 (X) be a weak solution of

the equation −Δu+u= g. Then u∈H2
0 (X) satisfies

‖u‖H2(X) ≤ C‖g‖L2(X), (3.3)

where C = C(N ,∂X).

Lemma 3.4 (regularity Lemma 4). Let g ∈ L2(X)∩Lq(X) for some q ∈ [2,∞) and let u∈
H1

0 (X) be a weak solution of the equation −Δu+u= g in X. Then u∈W2,q(X) satisfies

‖u‖W2,q(X) ≤ C
(‖u‖Lq(X) +‖g‖Lq(X)

)
, (3.4)

where C = C(N ,q,∂X).

By Lemmas 3.1 and 3.4, we obtain the first asymptotic behavior of solution of (1.1)λ.

Lemma 3.5 (asymptotic Lemma 1). Let condition (f2) hold and let u be a weak solution of
(1.1)λ, then u(y,z)→ 0 as |z| →∞ uniformly for y ∈ ω. Moreover, if h(x) is bounded, then
u∈ C1,α(Ω) for any 0 < α < 1.

Proof. Suppose that u is a solution of (1.1)λ, then −Δu+ u = λ( f (u) + h(x)) in Ω. Since
f satisfies condition (f2) and h ∈ L2(Ω)∩ Lq0 (Ω) for some q0 > N/2 if N ≥ 4, q0 = 2 if
N = 2,3, this implies that h∈ L2(Ω)∩LN/2(Ω) for N ≥ 4 and h∈ L2(Ω) for N = 2,3. By
Lemma 3.1, we conclude that

u∈ Lq(Ω) for q ∈ [2,∞). (3.5)

Hence, λ( f (u) +h(x))∈ L2(Ω)∩Lq0 (Ω) and by Lemma 3.4, we have

u∈W2,2(Ω)∩W2,q0 (Ω), q0 >
N

2
if N ≥ 4, q0 = 2 if N = 2,3. (3.6)
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Now, by the Sobolev embedding theorem, we obtain that u∈ Cb(Ω). It is well known that
the Sobolev embedding constants are independent of domains (see [1]). Thus there exists
a constant C such that, for R > 0,

‖u‖L∞(Ω\BR) ≤ C‖u‖W2,q0 (Ω\BR) for N ≥ 2, (3.7)

where BR = {x = (y,z)∈Ω | |z| ≤ R}. From this, we conclude that u(y,z)→ 0 as |z| →∞
uniformly for y ∈ ω. By Lemma 3.4 and condition (f2), we also have that

‖u‖∞ ≤ ‖u‖W2,q0 (Ω) ≤ C
(
‖u‖q0 +

∥
∥λ f (u) + λh(x)

∥
∥
q0

)
≤ C1‖u‖q0 + λC2

(‖u‖ppq0 +‖h‖q0
)
,

(3.8)

where C1, C2 are constants independent of λ.
Moreover, if h(x) is bounded, then we have u∈W2,q(Ω) for q ∈ [2,∞). Hence, by the

Sobolev embedding theorem, we obtain that u∈ C1,α(Ω) for α∈ (0,1). �

We use Lemma 3.5, and modify the proof in Hsu [11]. We obtain the following precise
asymptotic behavior of solutions of (1.1)λ and (2.4)λ at infinity.

Lemma 3.6 (asymptotic Lemma 2). Let w be a positive solution of (2.4)λ, let u be a positive
solution of (1.1)λ, and let ϕ be the first positive eigenfunction of the Dirichlet problem−Δϕ=
λ1ϕ in ω, then for any ε > 0 with 0 < ε < 1+ λ1, there exist constants C,Cε > 0 such that

w(y,z)≤ Cεϕ(y)exp
(
−
√
1+ λ1− ε|z|

)
,

w(y,z)≥ Cϕ(y)exp
(
−
√
1+ λ1|z|

)
|z|−(n−1)/2 as |z| −→∞, y ∈ 
,

u(y,z)≥ Cϕ(y)exp
(
−
√
1+ λ1|z|

)
|z|−(n−1)/2.

(3.9)

Proof. (i) First, we claim that for any ε > 0 with 0 < ε < 1+ λ1, there exists Cε > 0 such that

w(y,z)≤ Cεϕ(y)exp
(
−
√
1+ λ1− ε|z|

)
as |z| −→∞, y ∈ 
. (3.10)

Without loss of generality, we may assume ε < 1. Now given ε > 0, by condition (f3) and
Lemma 3.5, we may choose R0 large enough such that

λ f
(
w(y,z)

)≤ εw(y,z) for |z| ≥ R0. (3.11)

Let q = (qy ,qz), qy ∈ ∂ω, |qz| = R0, and B a small ball inΩ such that q ∈ ∂B. Since ϕ(y) >
0 for x = (y,z) ∈ B, ϕ(qy) = 0, w(x) > 0 for x ∈ B, w(q) = 0, by the strong maximum
principle (∂ϕ/∂y)(qy) < 0, (∂w/∂x)(q) < 0. Thus

lim
x→q

|z|=R0

w(x)
ϕ(y)

= (∂w/∂x)(q)
(∂ϕ/∂y)

(
qy
) > 0. (3.12)

Note that w(x)ϕ−1(y) > 0 for x = (y,z), y ∈ ω, |z| = R0. Thus w(x)ϕ−1(y) > 0 for x =
(y,z), y ∈ 
, |z| = R0. Since ϕ(y)exp(−

√
1+ λ1− ε|z|) and w(x) are C1(ω× ∂BR0 (0)), if
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set

Cε = sup
y∈
,|z|=R0

(
w(x)ϕ−1(y)exp

(√
1+ λ1− εR0

))
, (3.13)

then 0 < Cε < +∞ and

Cεϕ(y)exp
(
−
√
1+ λ1− εR0

)
≥w(x) for y ∈ 
, |z| = R0. (3.14)

Let Φ1(x)= Cεϕ(y)exp(−
√
1+ λ1− ε|z|), for x ∈Ω. Then, for |z| ≥ R0, we have

Δ
(
w−Φ1

)
(x)− (w−Φ1

)
(x)=−λ f (w(x))+

(
ε+

√
1+ λ1− ε(n− 1)

|z|
)
Φ1(x)

≥−εw(x) + εΦ1(x)= ε
(
Φ1−w

)
(x).

(3.15)

Hence Δ(w−Φ1)(x)− (1− ε)(w−Φ1)(x)≥ 0, for |z| ≥ R0.
The strong maximum principle implies that w(x)−Φ1(x) ≤ 0 for x = (y,z), y ∈ 
,

|z| ≥ R0, and therefore we get this claim.
(ii) Let

Ψ(y,z)=
(

1+
1
√|z|

)

ϕ(y)exp
(
−
√
1+ λ1|z|

)
|z|−(n−1)/2 for (y,z)∈Ω. (3.16)

It is very easy to show that

−ΔΨ+Ψ≤ 0 for y ∈ 
, |z| large. (3.17)

Therefore, by means of the maximum principle, there exists a constant C > 0 such that

w(y,z)≥ Cϕ(y)exp
(
−
√
1+ λ1|z|

)
|z|−(n−1)/2

u(y,z)≥ Cϕ(y)exp
(
−
√
1+ λ1|z|

)
|z|−(n−1)/2

as |z| −→∞, y ∈ 
. (3.18)

This completes the proof of Lemma 3.6. �

4. Existence of minimal solution

In this section, by the barrier method, we prove that there exists some λ∗ > 0 such that
for λ∈ (0,λ∗), (1.1)λ has a minimal positive solution uλ (i.e., for any positive solution u
of (1.1)λ, then u≥ uλ).

Lemma 4.1. If conditions (f1) and (f2) hold, then for any given ρ > 0, there exists λ0 > 0 such
that for λ∈ (0,λ0), one has I(u) > 0 for all u∈ Sρ = {u∈H1

0 (Ω) | ‖u‖ = ρ}.
For the proof, see Zhu and Zhou [19].

Remark 4.2. For any ε > 0, there exists δ > 0 (δ ≤ ρ) such that I(u)≥−ε for all u∈ {u∈
H1

0 (Ω) | ρ− δ ≤ ‖u‖ ≤ ρ} and for λ ∈ (0,λ0) if λ0 is small enough (see Zhu and Zhou
[19]).
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For the number ρ > 0 given in Lemma 4.1, we denote

Bρ =
{
u∈H1

0 (Ω) | ‖u‖ < ρ
}
. (4.1)

Thus we have the following local minimum result.

Lemma 4.3. Under conditions (f1), (f2), and (f4), if λ0 is chosen as in Remark 4.2 and
λ ∈ (0,λ0), then there is a u0 ∈ Bρ such that I(u0) =min{I(u) | u ∈ Bρ} < 0 and u0 is a
positive solution of (1.1)λ.

Proof. Since h 	≡ 0 and h ≥ 0, we can choose a function ϕ ∈H1
0 (Ω) such that

∫
Ωhϕ > 0.

For t ∈ (0,+∞), then

I(tϕ)= t2

2

∫

Ω

(|∇ϕ|2 +ϕ2)− λ
∫

RN
+

F
(
tϕ+)− λt

∫

Ω
hϕ

≤ t2

2
‖ϕ‖2 + λCt2

∫

Ω

(|ϕ|2 + tp−1|ϕ|p+1)− λt
∫

Ω
hϕ.

(4.2)

Then for t small enough, I(tϕ) < 0. So α= inf{I(u) | u∈ Bρ}. Clearly, α >−∞. By Remark
4.2, there is ρ′ such that 0 < ρ′ < ρ and α = inf{I(u) | u ∈ Bρ′ }. By Ekeland variational
principle [7], there exists a (PS)α-sequence {uk} ⊂ Bρ′ . By Proposition 2.2, there exists a
subsequence {uk}, an integer l ≥ 0, a solution ui of (2.4)λ, 1≤ i≤ l, and a solution u0 in
Bρ′ of (1.1)λ such that uk ⇀ u0 weakly in H1

0 (Ω) and α = I(u0) +
∑l

i=1 I∞(ui). Note that
I∞(ui) ≥ S∞ > 0 for i = 1,2, . . . ,m. Since u0 ∈ Bρ, we have I(u0) ≥ α. We conclude that
l = 0, I(u0)= α, and I′(u0)= 0. �

By the standard barrier method, we prove the following lemma.

Lemma 4.4. Let conditions (f1), (f2), and (f4) be satisfied, then there exists λ∗ > 0 such that
(i) for any λ∈ (0,λ∗), (1.1)λ has a minimal positive solution uλ and uλ is strictly increas-

ing in λ;
(ii) if λ > λ∗, (1.1)λ has no positive solution.

Proof. SetQλ = {0 < λ < +∞ | (1.1)λ is solvable}, by Lemma 4.3, we haveQλ is nonempty.
Denoting λ∗ = supQλ > 0, we claim that (1.1)λ has at least one solution for all λ∈ (0,λ∗).
In fact, for any λ ∈ (0,λ∗), by the definition of λ∗, we know that there exists λ′ > 0 and
0 < λ < λ′ < λ∗ such that (1.3)λ′ has a solution uλ′ > 0, that is,

−Δuλ′ +uλ′ = λ′
(
f
(
uλ′
)
+h
)≥ λ

(
f
(
uλ′
)
+h
)
. (4.3)

Then uλ′ is a supersolution of (1.1)λ. From h ≥ 0 and h 	≡ 0, it is easy to see that 0 is a
subsolution of (1.1)λ. By the standard barrier method, there exists a solution uλ > 0 of
(1.1)λ such that 0≤ uλ ≤ uλ′ . Since 0 is not a solution of (1.1)λ and λ′ > λ, the maximum
principle implies that 0 < uλ < uλ′ . Using the result of Graham-Eagle [10], we can choose
a minimal positive solution uλ of (1.1)λ. �
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Let uλ be the minimal positive solution of (1.1)λ for λ∈ (0,λ∗), we study the following
eigenvalue problem

−Δv+ v = μλ f
′(uλ

)
v in Ω,

v ∈H1
0 (Ω), v > 0 in Ω,

(4.4)

then we have the following lemma.

Lemma 4.5. Under conditions (f1)–(f5), the first eigenvalue μλ of (4.4) is defined by

μλ = inf
{∫

Ω

(|∇v|2 + v2
)
dx | v ∈H1

0 (Ω),
∫

Ω
f ′
(
uλ
)
v2dx = 1

}
. (4.5)

Then
(i) μλ is achieved;
(ii) μλ > λ and is strictly decreasing in λ, λ∈ (0,λ∗);
(iii) λ∗ < +∞ and (1.1)λ∗ has a minimal positive solution uλ∗ .

Proof. (i) Indeed, by the definition of μλ, we know that 0 < μλ < +∞. Let {vk} ⊂H1
0 (Ω)

be a minimizing sequence of μλ, that is,

∫

Ω
f ′
(
uλ
)
v2kdx = 1,

∫

Ω

(∣
∣∇vk

∣
∣2 + v2k

)
dx −→ μλ as k −→∞. (4.6)

This implies that {vk} is bounded in H1
0 (Ω), then there is a subsequence, still denoted by

{vk} and some v0 ∈H1
0 (Ω) such that

vk v0 weakly in H1
0 (Ω),

vk −→ v0 a.e. in Ω.
(4.7)

Thus,
∫

Ω

(∣
∣∇v0

∣
∣2 + v20

)
dx ≤ liminf

∫

Ω

(∣
∣∇vk

∣
∣2 + v2k

)
dx = μλ. (4.8)

By Lemma 3.5 and the conditions (f1), (f3), we have f ′(uλ)→ 0 as |x| →∞, it follows that
there exists a constant C > 0 such that

∣
∣ f ′

(
uλ
)∣∣≤ C ∀x ∈Ω. (4.9)

Furthermore, for any ε > 0, there exists R > 0 such that for x ∈Ω and |x| ≥ R, f ′(uλ) < ε.
Then
∣
∣
∣
∣

∫

Ω
f ′
(
uλ
)∣∣vk − v0

∣
∣2dx

∣
∣
∣
∣≤

∫

BR∩Ω
f ′
(
uλ
)∣∣vk − v0

∣
∣2dx+

∫

Ω\BR

f ′
(
uλ
)∣∣vk − v0

∣
∣2dx

≤ C
∫

BR∩Ω

∣
∣vk − v0

∣
∣2dx+ ε

∫

Ω\BR

∣
∣vk − v0

∣
∣2dx.

(4.10)
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It follows from the Sobolev embedding theorem that there exists k1, such that for k ≥ k1,

∫

BR∩Ω

∣
∣vk − v0

∣
∣2dx < ε. (4.11)

Since {vk} is bounded in H1
0 (Ω), this implies that there exists a constant C1 > 0 such that

∫

Ω\BR

∣
∣vk − v0

∣
∣2dx ≤ C1. (4.12)

Therefore, we conclude that for k ≥ k1,

∣
∣
∣
∣

∫

Ω
f ′
(
uλ
)∣∣vk − v0

∣
∣2dx

∣
∣
∣
∣≤ Cε+C1ε. (4.13)

Takeing ε→ 0, we obtain that

∫

Ω
f ′
(
uλ
)
v20dx = 1. (4.14)

Hence
∫

Ω

(∣
∣∇v0

∣
∣2 + v20

)
dx ≥ μλ. (4.15)

This implies that v0 achieves μ. Clearly, |v0| also achieves μλ. By (4.17) and the maximum
principle, we may assume v0 > 0 in Ω.

(ii) We now prove μλ > λ. Setting λ′ > λ > 0 and λ′ ∈ (0,λ∗), by Lemma 4.4, (1.1)λ′ has
a positive solution uλ′ . Since uλ is the minimal positive solution of (1.1)λ, then uλ′ > uλ as
λ′ > λ. By virtue of (1.1)λ′ and (1.1)λ, we see that

−Δ(uλ′ −uλ
)
+
(
uλ′ −uλ

)= λ′ f
(
uλ′
)− λ f

(
uλ
)
+ (λ′ − λ)h. (4.16)

Applying the Taylor expansion and noting that λ′ > λ, h(x) ≥ 0 and f ′′(t) ≥ 0, f (t) > 0
for all t > 0, we get

−Δ(uλ′ −uλ
)
+
(
uλ′ −uλ

)≥ (λ′ − λ) f
(
uλ
)
+ λ′ f ′

(
uλ
)(
uλ′ −uλ

)
> λ f ′

(
uλ
)(
uλ′ −uλ

)
.

(4.17)

Let v0 ∈H1
0 (Ω) and v0 > 0 solve (4.4). Multiplying (4.17) by v0 and noting (4.4), then we

get

μλ

∫

Ω
f ′
(
uλ
)(
uλ′ −uλ

)
v0dx > λ

∫

Ω
f ′
(
uλ
)(
uλ′ −uλ

)
v0dx, (4.18)

hence μλ > λ. Now let vλ be a minimizer of μλ, then

∫

Ω
f ′
(
uλ′
)
v2λdx >

∫

Ω
f ′
(
uλ
)
v2λdx = 1, (4.19)



Tsing-San Hsu 11

and there is t, with 0 < t < 1 such that
∫

Ω
f ′
(
uλ′
)(
tvλ
)2
dx = 1. (4.20)

Therefore,

μλ′ ≤ t2
∥
∥vλ
∥
∥2 <

∥
∥vλ
∥
∥2 = μλ, (4.21)

showing that μλ is strictly decreasing in λ, for λ∈ (0,λ∗).
(iii) We show next that λ∗ < +∞. Let λ0 ∈ (0,λ∗) be fixed. For any λ ≥ λ0, we have

μλ > λ and by (4.21), then

μλ0 ≥ μλ > λ (4.22)

for all λ∈ [λ0,λ∗). Thus λ∗ < +∞.
By (4.4) and μλ > λ, we have

∫

Ω

(∣
∣∇uλ

∣
∣2 +

∣
∣uλ

∣
∣2
)
dx >

∫

Ω
λ f ′
(
uλ
)
u2λdx, (4.23)

and also we have
∫

Ω

(∣
∣∇uλ

∣
∣2 +

∣
∣uλ

∣
∣2
)
dx−

∫

Ω
λ f
(
uλ
)
uλdx−

∫

Ω
λh(x)uλdx = 0. (4.24)

By condition (f4) and (4.23), we have that
∫

Ω

(∣
∣∇uλ

∣
∣2 +

∣
∣uλ

∣
∣2
)
dx =

∫

Ω
λ f
(
uλ
)
uλdx+

∫

Ω
λh(x)uλdx ≤ θ

∫

Ω
λ f ′
(
uλ
)
u2λdx

+ λ‖h‖2
∥
∥uλ

∥
∥≤ θ

∥
∥uλ

∥
∥2 + λ‖h‖2

∥
∥uλ

∥
∥.

(4.25)

This implies that

∥
∥uλ

∥
∥≤ λ

1− θ
‖h‖2 (4.26)

for all λ ∈ (0,λ∗). Since λ∗ < +∞, by (4.26) we can obtain that ‖uλ‖ ≤ C < +∞ for all
λ∈ (0,λ∗). Thus, there exists uλ∗ ∈H1

0 (Ω) such that

uλ uλ∗ weakly in H1
0

(
Ω
)
,

uλ −→ uλ∗ strongly in L
q
loc(Ω) for 2≤ q <

2N
N − 2

, as λ−→ λ∗,

uλ −→ uλ∗ almost everywhere in Ω.

(4.27)

For ϕ∈H1
0 (Ω), by condition (f2), we obtain that

∫

Ω

(∇uλ ·∇ϕ+uλϕ
)
dx −→

∫

Ω

(∇uλ∗ ·∇ϕ+uλ∗ϕ
)
dx

λ
∫

Ω

(
f
(
uλ
)
+h
)
ϕdx −→ λ∗

∫

Ω

(
f
(
uλ∗
)
+h
)
ϕdx

as λ−→ λ∗. (4.28)



12 Boundary Value Problems

From 〈I′λ(uλ),ϕ〉 = 0 and let λ→ λ∗, we deduce I′λ∗(uλ∗) = 0 in H−1(Ω). Hence, uλ∗ is a
positive solution of (1.1)λ∗ .

Let u be any positive solution of (1.1)λ∗ . By adopting the argument as in Lemma 4.4,
we have u≥ uλ inΩ for λ∈ (0,λ∗). Let λ→ λ∗, we deduce that u≥ uλ∗ inΩ. This implies
that uλ∗ is a minimal solution of (1.1)λ∗ . �

5. Existence of second solution

When λ∈ (0,λ∗), we have known that (1.1)λ has aminimal positive solution uλ by Lemma
4.4, then we need only to prove that (1.1)λ has another positive solution in the form of
Uλ = uλ + v, where v is a solution of the following equation:

−Δv+ v = λ
(
f
(
uλ + v

)− f
(
uλ
))

in Ω,

v > 0 in Ω, v ∈H1
0 (Ω).

(5.1)

For (5.1), we define the energy functional J :H1
0 (Ω)→R as follows:

J(v)= 1
2

∫

Ω

(|∇v|2 + v2
)
dx− λ

∫

Ω

(
F
(
uλ + v+

)−F
(
uλ
)− f

(
uλ
)
v+
)
dx. (5.2)

Using the monotonicity of f and the maximum principle, we know that the nontrivial
critical points of energy functional J are the positive solutions of (5.1).

First, we give an inequality about f and uλ.

Lemma 5.1. Under conditions (f1), (f2), and (f5), then for any ε > 0, there exists Cε > 0 such
that

f
(
uλ + s

)− f
(
uλ
)− f ′

(
uλ
)
s≤ εs+Cεs

p, s≥ 0, (5.3)

where 1 < p < 2∗ − 1 and uλ is the minimal solution of (1.1)λ.

For the proof, see Zhu and Zhou [19].

Lemma 5.2. Under conditions (f1), (f2), (f4), and (f5), there exist ρ > 0 and α > 0 such that

J(v) |Sρ≥ α > 0, (5.4)

where Sρ = {u∈H1
0 (Ω) | ‖u‖ = ρ}.

Proof. By Lemma 4.5, it is easy to see that, for all v ∈H1
0 (Ω),

∫

Ω

(|∇v|2 + v2
)
dx ≥ μλ

∫

Ω
f ′
(
uλ
)
v2dx. (5.5)
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Again, by Lemma 5.1 and Sobolev embedding, we obtain that

J(v)= 1
2

∫

Ω

(|∇v|2 + v2
)
dx− λ

∫

Ω

(
F
(
uλ + v+

)−F
(
uλ
)− f

(
uλ
)
v+
)
dx

= 1
2
‖v‖2− λ

2

∫

Ω
f ′
(
uλ
)∣∣v+

∣
∣2dx− λ

∫

Ω

∫ v+

0

(
f
(
uλ + s

)− f
(
uλ
)− f ′

(
uλ
)
s
)
dsdx

≥ 1
2
‖v‖2− λ

2

∫

Ω
f ′
(
uλ
)∣∣v+

∣
∣2dx− 1

2
λε
∫

Ω

∣
∣v+

∣
∣2dx− λ

p+1

∫

Ω
Cε

∣
∣v+

∣
∣p+1dx

≥ 1
2
‖v‖2− λ

2
μ−1‖v‖2− 1

2
λε‖v‖2−Cε‖v‖p+1

= 1
2
μ−1λ
(
μλ− λ− λμλε

)‖v‖2−Cε‖v‖p+1.
(5.6)

Since μλ > λ, we may choose ε > 0 small enough such that μλ − λ− λμλε > 0. If we take
ε = (μλ− λ)/2λμλ, then

J(v)≥ 1
4
μ−1λ
(
μλ− λ

)‖v‖2−C‖v‖p+1. (5.7)

Hence, there exist ρ > 0 and α > 0 such that J(v) |Sρ≥ α > 0. �

Similar to Proposition 2.2, for the energy functional J , we also have the following re-
sult.

Proposition 5.3. Under conditions (f1), (f2), and (f4), let {vk} be a (PS)c-sequence of J .
Then there exists a subsequence (still denoted by {vk}) for which the following holds: there
exist an integer l ≥ 0, a sequence {xik} ⊆RN of the form (0,zik)∈ S, a solution v of (5.1), and
solutions ui of (2.4)λ, 1≤ i≤ l, such that for some subsequence {vk}, as k→∞, one has

vk v weakly in H1
0 (Ω),

J
(
vk
)−→ J(v) +

l∑

i=1
I∞
(
ui
)
,

vk −
(

v+
l∑

i=1
ui
(
x− xik

)
)

−→ 0 strongly in H1
0 (Ω),

∣
∣xik
∣
∣−→∞,

∣
∣xik − x

j
k

∣
∣−→∞, 1≤ i 	= j ≤ l,

(5.8)

where one agrees that in the case l = 0, the above hold without ui, xik.

Now, let δ be small enough, Dδ a δ-tubular neighborhood of D such that Dδ ⊂⊂ S.
Let η(x) : S→ [0,1] be a C∞ cut-off function such that 0≤ η ≤ 1 and

η(x)=
⎧
⎨

⎩
0 if x ∈D;

1 if x ∈ S \Dδ
.

(5.9)



14 Boundary Value Problems

Let eN = (0,0, . . . ,0,1)∈RN , denote

τ0 = 2 sup
x∈Dδ

|x|+1,

wτ(x)=w
(
x− τeN

)
, τ ∈ [0,∞),

(5.10)

where w is a ground state solution of (2.4)λ.

Lemma 5.4. Let conditions (f1)–(f5) be satisfied. Then
(i) there exists t0 > 0 such that J(tηwτ) < 0 for t ≥ t0, τ ≥ τ0,
(ii) there exists τ∗ > 0 such that the following inequality holds for τ ≥ τ∗:

0 < sup
t≥0

J
(
tηwτ

)
< I∞(w)= S∞. (5.11)

Proof. (i) By the definition of η and Lemma 2.1(iii), we have

J
(
tηwτ

)= 1
2

∫

Ω

(∣
∣∇(tηwτ

)∣∣2 +
(
tηwτ

)2)
dx− λ

∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
))
dsdx

≤ t2

2

∫

Ω

(∣
∣∇(ηwτ

)∣∣2 +
(
ηwτ

)2)
dx− λ

∫

S\Dδ
F
(
twτ
)
dx.

(5.12)

Noting part (ii) of Lemma 2.1, we see that F(u)/(ν−1uν) is monotone nondecreasing for
u > 0, where ν= 1+ θ−1 > 2. Thus, for any given constant C > 0, there is u0 ≥ 0 such that

F(u)≥ Cuν ∀u≥ u0. (5.13)

Let r0 be a positive constant such that Bm(0;r0) = {y | |y| ≤ r0} ⊂⊂ ω, Bn(0;1) = {z |
|z| ≤ 1}, Ω1 = Bm(0;r0)×Bn(0;1), and Ω1τ = Bm(0;r0)×{z+ τeN | |z| ≤ 1}. By the defi-
nition of τ0, we have that Ω1τ ⊂⊂Ω \Dδ

for all τ ≥ τ0. This also implies that there exists
t0 ≥ 0, as t ≥ t0, we have

F
(
twτ
)≥ Ctνwν

τ ∀τ ≥ τ0, ∀x ∈Ω1τ . (5.14)

Therefore, as t > t0 and τ ≥ τ0,

J
(
tηwτ

)≤ t2

2

∫

Ω

(∣
∣∇(ηwτ

)∣∣2 +
(
ηwτ

)2)
dx− λCtν

∫

Ω1τ

wν
τdx

≤ t2

2

∥
∥ηwτ

∥
∥2− λCtν

∫

Ω1

wνdx.

(5.15)

Since ν > 2, we can choose t0 > 0 large enough such that (i) holds.
(ii) By (i), J is continuous on H1

0 (Ω), J(0) = 0, and Lemma 5.2, we know that there
exists t1 with 0 < t1 < t0 such that

sup
t≥0

J
(
tηwτ

)= sup
t1≤t≤t0

J
(
tηwτ

) ∀τ ≥ τ0. (5.16)
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For τ ≥ τ0, t1 ≤ t ≤ t0, by condition (f2), (2.5), Lemmas 2.1 and 3.6, we have

J
(
tηwτ

)= t2

2

∫

Ω

(∣
∣∇(ηwτ

)∣∣2 +
(
ηwτ

)2)
dx− λ

∫

Ω
F
(
tηwτ

)
dx

− λ
∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx

≤ t2

2

∫

S
(−Δw+w)

(
η2τw

)
dx+

t2

2

∫

S

∣
∣∇ητ

∣
∣2|w|2dx− λ

∫

S
F
(
twτ
)
dx

+ λ
∫

S

∫ twτ

tηwτ

f (s)dsdx− λ
∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx

≤ S∞ +
t20
2

∫

Dδ\D
|∇η|2∣∣
τ

∣
∣2dx+ λ

∫

Dδ

∫ twτ

0
f (s)dsdx

− λ
∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx

≤ S∞ +Cε exp
(
− 2
√
1+ λ1− ετ

)
+ λC

∫

Dδ

[(
twτ
)2

2
+

(
twτ
)p+1

p+1

]

dx

− λ
∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx

≤ S∞ +Cε exp
(
− 2
√
1+ λ1− ετ

)
− λ

∫

Ω

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx,

(5.17)

where 0 < ε < 1+ λ1 and Cε is independent of τ.
It follows from the Taylor’s expansion that

f
(
uλ + s

)= f (s) + f ′(s)uλ +
1
2
f ′′(ξ)u2λ, ξ ∈ (s,uλ + s

)
. (5.18)

From (f5) and the above formula, for t1 ≤ t ≤ t0, we obtain that

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
ds

≥
∫ t1ηwτ

0

(
f ′(s)uλ− f

(
uλ
))
ds= [(t1wτ

)−1
f
(
t1ηwτ

)−ηu−1λ f
(
uλ
)]
t1wτuλ.

(5.19)

Since wτ > 0 in S, there exists γ1 > 0 such that

wτ ≥ γ1 in Ω1τ . (5.20)

By the definition of wτ and uλ(x)→ 0 as |x| →∞, we see that for τ large enough,

t1wτ ≥ uλ in Ω1τ , (5.21)

then part (ii) of Lemma 2.1 implies that there exist γ2 > 0 and τ1 > 0 such that, for τ ≥ τ1,

(
t1wτ

)−1
f
(
t1wτ

)−u−1λ f
(
uλ
)
> γ2 in Ω1τ . (5.22)
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Now by Lemma 3.6, for τ ≥max(τ0,τ1) and t1 ≤ t ≤ t0, we obtain that

∫

Ω1τ

∫ tηwτ

0

(
f
(
uλ + s

)− f
(
uλ
)− f (s)

)
dsdx

≥
∫

Ω1τ

[(
t1wτ

)−1
f
(
t1wτ

)−u−1λ f
(
uλ
)]
t1wτuλdx

≥ γ1γ2

∫

Ω1τ

t1uλdx ≥ C2 exp
(
−
√
1+ λ1τ

)
,

(5.23)

where C2 is independent of τ.
Therefore, we obtain that

J
(
tηwτ

)≤ S∞ + λCε exp
(
− 2
√
1+ λ1− ετ

)
− λC2 exp

(
−
√
1+ λ1τ

)
, (5.24)

for t ∈ [t1, t0] and τ ≥max(τ0,τ1).
Now, let ε = (1+ λ1)/2, then we can find some τ∗ large enough such that

λCε exp
(
−
√
2
(
1+ λ1

)
τ
)
− λC2 exp

(
−
√
1+ λ1τ

)
< 0, (5.25)

for all τ ≥ τ∗ and we complete the proof. �

Theorem 5.5. Let conditions (f1)–(f5) be satisfied. Then (5.1) has a positive solution v if
λ∈ (0,λ∗).

Proof. Now, set

Γ= {p ∈ C
(
[0,1],H1

0 (Ω)
) | p(0)= 0, p(1)= t0ηwτ∗

}
,

c = inf
p∈Γ

max
s∈[0,1]

J
(
p(s)

)
. (5.26)

By Lemmas 5.2 and 5.4, we have

0 < α≤ c < S∞. (5.27)

Applying the mountain pass theorem of Ambrosetti and Rabinowitz [2], there exists a
(PS)c-sequence {vk} such that

J
(
vk
)−→ c,

J ′
(
vk
)−→ 0 strongly in H−1(Ω).

(5.28)

By Proposition 5.3, there exists a sequence (still denoted by {vk}), an integer l ≥ 0, a se-
quence {xik} in Ω, 1≤ i≤ l, a solution v of (5.1), and solutions ui of (2.4)λ such that

c = J(v) +
l∑

i=0
I∞
(
ui
)
. (5.29)
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By the strong maximum principle, to complete the proof, we only need to prove v 	≡ 0 in
Ω. In fact, we have

c = J(v)≥ α > 0 if l = 0, S∞ > c ≥ J(v) + S∞ if l ≥ 1. (5.30)

This implies v 	≡ 0 in Ω. �

6. Properties and bifurcation of solutions

Denote by A= {(λ,u) | u solves problem (1.1)λ} the set of solutions of (1.1)λ, λ∈ (0,λ∗].
For each (λ,u)∈A, let μλ(u) denote the number defined by

μλ(u)= inf
{∫

Ω

(|∇v|2 + v2
)
dx | v ∈H1

0 (Ω),
∫

Ω
f ′(u)v2dx = 1

}
, (6.1)

which is the smallest eigenvalue of the following problem:

−Δv+ v = μλ(u) f ′(u)v in Ω,

v > 0, v ∈H1
0 (Ω).

(6.2)

In this section, we always assume that conditions (f1)–(f4), (f5)∗, and (f6) hold. With
the same arguments used in the proof of part (i) of Lemma 4.5, we can show that μλ(u) is
achieved for all (λ,u)∈ A. By Lemma 3.5, we have A⊂R×L∞(RN )∩H1

0 (Ω). Moreover,
if we assume that h(x)∈ Cα(Ω)∩L2(Ω), then by elliptic regular theory (see [9]), we can
deduce that A⊂R×C2,α(Ω)∩H2(Ω).

Lemma 6.1. Let u be a solution and let uλ be the minimal solution of (1.1)λ for λ∈ (0,λ∗).
Then

(i) μλ(u) > λ if and only if u= uλ;
(ii) μλ(Uλ) < λ, where Uλ is the second solution of (1.1)λ constructed in Section 5.

Proof. Now, let ψ ≥ 0 and ψ ∈H1
0 (Ω). Since u and uλ are the solution of (1.1)λ, then

∫

Ω
∇ψ ·∇(uλ−u

)
dx+

∫

Ω
ψ
(
uλ−u

)
dx

= λ
∫

Ω

(
f
(
uλ
)− f (u)

)
ψdx = λ

∫

Ω

(∫ uλ

u
f ′(t)dt

)
ψdx ≥ λ

∫

Ω
f ′(u)

(
uλ−u

)
ψdx.

(6.3)

Let ψ = (u−uλ)+ ≥ 0 and ψ ∈H1
0 (Ω). If ψ 	≡ 0, then (6.3) implies

−
∫

Ω

(|∇ψ|2 +ψ2)dx ≥−λ
∫

Ω
f ′(u)ψ2dx (6.4)

and, therefore, the definition of μλ(u) implies

∫

Ω

(|∇ψ|2 +ψ2)dx ≤ λ
∫

Ω
f ′(u)ψ2dx < μλ(u)

∫

Ω
f ′(u)ψ2dx ≤

∫

Ω

(|∇ψ|2 +ψ2)dx,

(6.5)
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which is impossible. Hence ψ ≡ 0, and u = uλ in Ω. On the other hand, by Lemma 4.5,
we also have that μλ(uλ) > λ. This completes the proof of (i).

By (i), we get that μλ(Uλ)≤ λ for λ∈ (0,λ∗). We claim that μλ(Uλ)= λ cannot occur.
We proceed by contradiction. Set w =Uλ−uλ; we have

−Δw+w = λ
[
f
(
Uλ
)− f

(
Uλ−w

)]
, w > 0 in Ω. (6.6)

By μλ(Uλ)= λ, we have that the problem

−Δφ+φ = λ f ′
(
Uλ
)
φ, φ∈H1

0 (Ω) (6.7)

possesses a positive solution φ1.
Multiplying (6.6) by φ1 and (6.7) by w, integrating and subtracting, we deduce that

0=
∫

Ω
λ
[
f
(
Uλ
)− f

(
Uλ−w

)− f ′
(
Uλ
)
w
]
φ1dx =−1

2

∫

Ω
λ f ′′

(
ξλ
)
w2φ1dx, (6.8)

where ξλ ∈ (uλ,Uλ). By condition (f5)∗, we obtain that w ≡ 0, that is, Uλ = uλ for λ ∈
(0,λ∗). This is a contradiction. Hence, we have that μλ(Uλ) < λ for λ∈ (0,λ∗). �

Lemma 6.2. Let uλ be the minimal solution of (1.1)λ for λ ∈ [0,λ∗] and μλ(uλ) > λ. Then
for any g(x)∈H−1(Ω), problem

−Δw+w = λ f ′
(
uλ
)
w+ g(x), w ∈H1

0 (Ω), (6.9)λ

has a solution.

Proof. Consider the functional

Φ(w)= 1
2

∫

Ω

(|∇w|2 +w2)dx− 1
2
λ
∫

Ω
f ′
(
uλ
)
w2dx−

∫

Ω
g(x)wdx, (6.9)

wherew ∈H1
0 (Ω). FromHölder inequality and Young’s inequality, we have, for any ε > 0,

that

Φ(w)≥ 1
2

(
1− λμλ

(
uλ
)−1)‖w‖2− 1

2
ε‖w‖2− Cε

2
‖g‖2H−1(Ω) ≥−C‖g‖2H−1(Ω) (6.10)

if we choose ε small.
Now, let {wk} ⊂H1

0 (Ω) be the minimizing sequence of variational problem

d = inf
{
Φ(w) |w ∈H1

0 (Ω)
}
. (6.11)

From (6.10) and μλ(uλ) > λ, we can also deduce that {wk} is bounded in H1
0 (Ω), if we

choose ε small. So we may suppose that

wk w weakly in H1
0 (Ω) as k −→∞,

wk −→w a.e. in Ω as k −→∞.
(6.12)
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By Fatou’s lemma,

‖w‖2 ≤ liminf
∥
∥wk

∥
∥2. (6.13)

By Lemma 3.5, we have that uλ(x)→ 0 as |x| → ∞, conditions (f1)–(f5) and the weak
convergence imply

∫

Ω
gwkdx −→

∫

Ω
gwdx,

∫

Ω
f ′
(
uλ
)
w2
kdx −→

∫

Ω
f ′
(
uλ
)
w2dx as k −→∞. (6.14)

Therefore

Φ(w)≤ lim
k→∞

Φ
(
wk
)= d, (6.15)

and hence Φ(w)= d which gives that w is a solution of (6.9)λ. �

Remark 6.3. From Lemma 6.2, we know that (6.9)λ has a solution w ∈H1
0 (Ω). Now, we

also assume that h(x) and g(x) are inCα(Ω)∩L2(Ω), then by Lemmas 3.1, 3.3, conditions
(f1)–(f5), and the elliptic regular theory (see [9]), we can deduce that w ∈ C2,α(Ω)∩
H2(Ω).

Lemma 6.4. Suppose uλ∗ is a solution of (1.1)λ∗ , then μλ∗(uλ∗)= λ∗ and the solution uλ∗ is
unique.

Proof. Define F :R×H1
0 (Ω)→H−1(Ω) by

F(λ,u)= Δu−u+ λ
(
f (u) +h(x)

)
. (6.16)

Let g(λ)= μλ(uλ)= inf ∫
Ω f ′(uλ)v2dx=1‖v‖2 for λ∈ (0,λ∗], then it is easy to see that g is con-

tinuous on (0,λ∗]. Since μλ(uλ) > λ for λ ∈ (0,λ∗), so μλ∗(uλ∗) ≥ λ∗. If μλ∗(uλ∗) > λ∗,
the equation Fu(λ∗,uλ∗)φ = 0 has no nontrivial solution. From Lemma 6.2, Fu maps
R×H1

0 (Ω) onto H−1(Ω). Applying the implicit function theorem to F, we can find
a neighborhood (λ∗ − δ, λ∗ + δ) of λ∗ such that (1.1)λ possesses a solution uλ if λ ∈
(λ∗ − δ, λ∗ + δ). This is contradictory to the definition of λ∗. Hence, we obtain that
μλ∗(uλ∗)= λ∗.

Next, we are going to prove that uλ∗ is unique. In fact, suppose (1.1)λ∗ has another
solution Uλ∗ ≥ uλ∗ . Set w =Uλ∗ −uλ∗ ; we have

−Δw+w = λ∗
[
f
(
w+uλ∗

)− f
(
uλ∗
)]
, w > 0 in Ω. (6.17)

By μλ∗(uλ∗)= λ∗, we have that the problem

−Δφ+φ = λ∗ f ′
(
uλ∗
)
φ, φ ∈H1

0 (Ω) (6.18)

possesses a positive solution φ1.
Multiplying (6.17) by φ1 and (6.18) by w, integrating and subtracting, we deduce that

0=
∫

Ω
λ∗
[
f
(
w+uλ∗

)− f
(
uλ∗
)− f ′

(
uλ∗
)
w
]
φ1dx = 1

2

∫

Ω
λ∗ f ′′

(
ξλ∗
)
w2φ1dx, (6.19)
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where ξλ∗ ∈ (uλ∗ ,uλ∗ + w). By condition (f5)∗, we obtain that w ≡ 0. Thus, uλ∗ is
unique. �

Proposition 6.5. Let uλ be the minimal solution of (1.1)λ. Then uλ is uniformly bounded
in L∞(Ω)∩H1

0 (Ω) for all λ∈ (0,λ∗], and

uλ −→ 0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+. (6.20)

Proof. By (4.26), we have that

∥
∥uλ

∥
∥≤ λ

1− θ
‖h‖2 (6.21)

for λ∈ (0,λ∗), and uλ is strictly increasing with respect to λ, we can easily deduce that uλ
is uniformly bounded in L∞(Ω)∩H1

0 (Ω) for λ∈ (0,λ∗] and uλ→ 0 in H1
0 (Ω) as λ→ 0+.

By (3.8), (4.26), and uλ is uniformly bounded in L∞(Ω)∩H1
0 (Ω), we have that

∥
∥uλ

∥
∥∞ ≤ C1

∥
∥uλ

∥
∥
q0
+ λC2

(∥∥uλ
∥
∥p
pq0

+‖h‖q0
)≤ C1

∥
∥uλ

∥
∥(q0−2)/q0∞

∥
∥uλ

∥
∥2/q0
2 +C3λ≤ C

(
λ2/q0 + λ

)
,

(6.22)

where C is independent of λ, and λ∈ (0,λ∗]. Hence, we obtain that uλ → 0 in L∞(Ω) as
λ→ 0+. �

Proposition 6.6. For λ ∈ (0,λ∗), let Uλ be the second solution of (1.1)λ constructed in
Section 5. Then Uλ is unbounded in L∞(Ω)∩H1

0 (Ω), and

lim
λ→0+

∥
∥Uλ

∥
∥= lim

λ→0+

∥
∥Uλ

∥
∥∞ =∞. (6.23)

Proof. First, we show that {Uλ : λ∈ (0,λ0)} is unbounded in L∞(Ω) for any λ0 ∈ (0,λ∗).
We proceed by contradiction. Assume to the contrary that there exists c0 > 0 such that

∥
∥Uλ

∥
∥∞ ≤ c0 <∞ ∀λ∈ (0,λ0

)
. (6.24)

Now, let ϕλ be a minimizer of μλ(Uλ) for λ∈ (0,λ0), that is,
∫

Ω
f ′
(
Uλ
)
ϕ2
λ = 1,

∥
∥ϕλ

∥
∥2 = μλ

(
Uλ
)
. (6.25)

By condition (f1) and (6.24), there exists a constant M independent of λ, such that
f ′(Uλ(x)) ≤M for all λ ∈ (0,λ0) and x ∈ Ω. Hence, by (6.25) and μλ(Uλ) < λ for all
λ∈ (0,λ0), we obtain that

1=
∫

Ω
f ′
(
Uλ
)
ϕ2
λ ≤M

∥
∥ϕλ

∥
∥2 =Mμλ

(
Uλ
)
<Mλ. (6.26)

This is a contradiction for all λ < 1/M. Hence, for any λ0 ∈ (0,λ∗), we have that {Uλ : λ∈
(0,λ∗)} is unbounded in L∞(Ω). From this result, it is to be seen that limλ→0+ ‖Uλ‖∞ =∞.

Now, we show that {Uλ : λ ∈ (0,λ0)} is unbounded in H1
0 (Ω) for any λ0 ∈ (0,λ∗). If

not, then there exists a constantM independent of λ such that
∥
∥Uλ

∥
∥≤M ∀λ∈ (0,λ0

)
. (6.27)
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Since Uλ is a solution of (1.1)λ, and by condition (f2) and (6.27), we have that

∥
∥Uλ

∥
∥2 =

∫

Ω
λ f
(
Uλ
)
Uλdx+

∫

Ω
λhUλdx ≤ λC

(∫

Ω
U2

λdx+
∫

Ω
U

p+1
λ dx

)
+ λ‖h‖2

∥
∥Uλ

∥
∥
2

≤ λC
(∥∥Uλ

∥
∥2 +

∥
∥Uλ

∥
∥p+1)+ λ‖h‖2

∥
∥Uλ

∥
∥
2 ≤ λC1,

(6.28)

where C1 is independent of λ. Without loss of generality, we may assume that q0 = 2 if
N = 2,3 and N/2 < q0 < 2∗/(p− 1) if N ≥ 4. By (3.8), (6.27), and the Sobolev embedding
theorem, we obtain that

∥
∥Uλ

∥
∥∞ ≤ C1

∥
∥Uλ

∥
∥
q0
+ λC2

(∥∥Uλ

∥
∥p
pq0

+‖h‖q0
)

≤ C1
∥
∥Uλ

∥
∥1−2/q0∞

∥
∥Uλ

∥
∥2/q0
2 + λC2

∥
∥Uλ

∥
∥p−2∗/q0∞

∥
∥Uλ

∥
∥2

∗/q0
2∗ + λC2‖h‖q0

≤ C3
∥
∥Uλ

∥
∥1−2/q0∞ + λC4

∥
∥Uλ

∥
∥1−(2∗−q0(p−1))/q0∞ + λC2‖h‖q0 .

(6.29)

This implies that

1≤ C3
∥
∥Uλ

∥
∥−2/q0∞ + λC4

∥
∥Uλ

∥
∥−(2∗−q0(p−1))/q0∞ + λC2

∥
∥h
∥
∥
q0

∥
∥Uλ

∥
∥−1∞ , (6.30)

where C2, C3, and C4 are constants independent of λ. Now, let λ → 0+ and by
limλ→0+ ‖Uλ‖∞ = +∞, then we obtain a contradiction. Hence, {Uλ : λ ∈ (0,λ∗)} is un-
bounded inH1

0 (Ω) and limλ→0+ ‖Uλ‖ = +∞. This completes the proof of Proposition 6.6.
�

In order to get bifurcation results, we need the following bifurcation theorem which
can be found in Crandall and Rabinowitz [6].

Theorem B. Let X , Y be Banach space. Let (λ,x) ∈ R×X and let F be a continuously
differentiable mapping of an open neighborhood of (λ,x) into Y . Let the null space N(Fx(λ,
x)) = span{x0} be one-dimensional and codimR(Fx(λ,x)) = 1. Let Fλ(λ,x) 	∈ R(Fx(λ,x)).
If Z is the complement of span{x0} in X , then the solutions of F(λ,x) = F(λ,x) near (λ,x)
form a curve (λ(s),x(s))= (λ+ τ(s),x+ sx0 + z(s)), where s→ (τ(s),z(s))∈R×Z is a con-
tinuously differentiable function near s= 0 and τ(0)= τ′(0)= 0, z(0)= z′(0)= 0.

Proof of Theorems 1.1 and 1.2. First, we consider the case Ω = S \D. Theorem 1.1 now
follows from Lemmas 4.4, 4.5, 6.4, and Theorem 5.5. The conclusions (i) and (ii) of
Theorem 1.2 follow immediately from Lemma 4.5, and Propositions 6.5, 6.6. Now we
are going to prove that (λ∗,uλ∗) is a bifurcation point in C2,α(Ω)∩H2(Ω) by using an
idea in [13]. We also assume that h(x) is in Cα(Ω)∩L2(Ω) and define

F :R1×C2,α(Ω)∩H2(Ω)−→ Cα(Ω)∩L2(Ω) (6.31)

by

F(λ,u)= Δu−u+ λ f
(
u+
)
+ λh, (6.32)
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where C2,α(Ω)∩H2(Ω) and Cα(Ω)∩ L2(Ω) are endowed with the natural norm; then
they become Banach spaces. It can be easily verified that F(λ,u) is differentiable. From
Lemma 6.2 and Remark 6.3, we know that

Fu
(
λ,uλ

)
w = Δw−w+ λ f ′

(
uλ
)
w (6.33)

is an isomorphism ofR1×C2,α(Ω)∩H2(Ω) ontoCα(Ω)∩L2(Ω). It follows from implicit
function theorem that the solutions of F(λ,u)= 0 near (λ,uλ) are given by a continuous
curve.

Now we are going to prove that (λ∗,uλ∗) is a bifurcation point of F. We show first
that at the critical point (λ∗,uλ∗), Theorem B applies. Indeed, from Lemma 6.4, problem
(6.18) has a solution φ1 > 0 inΩ. By the standard elliptic regular theory, we have that φ1 ∈
C2,α(Ω)∩H2(Ω) if h ∈ Cα(Ω)∩ L2(Ω). Thus Fu(λ∗,uλ∗)φ = 0, φ ∈ C2,α(Ω)∩H2(Ω)
has a solution φ1 > 0. This implies that N(Fu(λ∗,uλ∗)) = span{φ1} = 1 is one dimen-
sional and codim R(Fu(λ∗,uλ∗))= 1 by the Fredholm alternative. It remains to check that
Fλ(λ∗,uλ∗) 	∈ R(Fu(λ∗,uλ∗)).

Assuming the contrary would imply existence of v 	≡ 0 such that

Δv− v+ λ∗ f ′
(
uλ∗
)
v = f

(
uλ∗
)
+h, v ∈H1

0 (Ω). (6.34)

From Fu(λ∗,uλ∗)φ1 = 0, we conclude that
∫
Ω( f (uλ∗(x)) + h(x))φ1(x)dx = 0. This is im-

possible because f (t) > 0, for t > 0, uλ∗(x) > 0, h(x)≥ 0, h(x) 	≡ 0 and φ1(x) > 0 for x ∈Ω.
Applying Theorem B, we conclude that (λ∗,uλ∗) is a bifurcation point near which the

solution of (1.1)λ forms a curve (λ∗ + τ(s),uλ∗ + sφ1 + z(s)) with s near s= 0 and τ(0)=
τ′(0) = 0, z(0) = z′(0) = 0. We claim that τ′′(0) < 0 which implies that the bifurcation
curve turns strictly to the left in (λ,u) plane. In order to obtain that τ′′(0) < 0, we need
the following lemma. �

Lemma 6.7. For R > 0, letΩR = {x = (y,z)∈Ω : |z| < R} = (ω×BR) \D, where BR = {z ∈
Rn : |z| < R}. Suppose conditions (f1)–(f6) hold, then

∫

Ω
f ′′
(
uλ∗
)
φ3
1dx < +∞. (6.35)

Proof. Since uλ∗(x)→ 0 as |x| →∞, and by conditions (f1) and (f3), we have that there is
R1 > 0 such that

0= Δφ1−φ1 + λ∗ f ′
(
uλ∗
)
φ1 ≤ Δφ1− 1

4
φ1 for y ∈ ω, |z| ≥ R1. (6.36)

It is well known that the Dirichlet equation Δw− (1/4)w = −wp in S has a positive
ground-state solution, denoted by w (see [14] and the references there). We can mod-
ify the proof in Hsu [11] and obtain that for any ε > 0 with 0 < ε < 1/4 + λ1, there exist
constants Cε > 0 and R2 > 0 such that

w(y,z)≤ Cεϕ(y)exp

(

−
√

1
4
+ λ1− ε|z|

)

for y ∈ ω, |z| ≥ R2, (6.37)
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where ϕ is the first positive eigenfunction of the Dirichlet problem−Δϕ= λ1ϕ in ω. Now,
let ε = (1/2)λ1. Since Δw− (1/4)w =−wp ≤ 0 in S, hence by the maximum principle we
obtain that there exist constants C1 > 0 and R3 > 0 such that

φ1(x)≤ C1ϕ(y)exp
(
−1
2

√
1+2λ1|z|

)
for y ∈ ω, |z| ≥ R3. (6.38)

By condition (f6), (3.9), (6.38), and uλ∗(x)→ 0 as |x| →∞, we have that there exist con-
stants C2 > 0 and R0 ≥ R1 +R2 +R3 such that D ⊂⊂ ω×BR0 and

f ′′
(
uλ∗
)≤ C2u

q1−1
λ∗

u−1λ∗ (x)φ
2
1(x)≤ C2

for x = (y,z)∈Ω \ΩR0 , (6.39)

where 0 < q1 < 4/(N − 2) if N ≥ 3, q1 > 0 if N = 2.
By the strong maximum principle and modifying the proof in Lemma 3.6(i), we have

that u−1λ∗ φ1 ∈ C1(Ω) and u−1λ∗ φ1 > 0 on Ω. Therefore, there exists C3 > 0 such that

u−1λ∗ (x)φ1(x)≤ C3 for x ∈ΩR0 . (6.40)

Since uλ∗ ≡ 0 on U = ∂D
⋃
(∂ω× BR0 ) and uλ∗ is uniformly continuous on ΩR0 , and by

conditions (f5) and (f6), there exist δ > 0 and C4 such that

f ′′
(
uλ∗
)≤ C4u

q1−1
λ∗ for x ∈ Uδ ,

f ′′
(
uλ∗
)≤ C4 for x ∈ΩR0 \Uδ ,

(6.41)

where Uδ = Uδ
⋂
ΩR0 , U

δ is a δ-tubular neighborhood of U, 0 < q1 < 4/(N − 2) if N ≥ 3,
q1 > 0 if N = 2.

From (6.38)–(6.41) and the Hölder inequality, we derive that
∫

Ω
f ′′
(
uλ∗
)
φ3
1dx =

∫

Uδ

f ′′
(
uλ∗
)
φ3
1dx+

∫

ΩR0\Uδ

f ′′
(
uλ∗
)
φ3
1dx+

∫

Ω\ΩR0

f ′′
(
uλ∗
)
φ3
1dx

≤
∫

Uδ

C4u
q1−1
λ∗ φ3

1dx+
∫

ΩR0\Uδ

C4φ
3
1dx+

∫

Ω\ΩR0

C2u
q1−1
λ∗ φ3

1dx

≤ C3C4

∫

Uδ

u
q1
λ∗φ

2
1dx+C5 +C2

2

∫

Ω\ΩR0

u
q1
λ∗φ1dx

≤ C6 +C2
2

∥
∥uλ∗

∥
∥q1
q1+2

∥
∥φ1

∥
∥
(q1+2)/2

≤ C.
(6.42)

�

Since λ= λ∗ + τ(s), u= uλ∗ + sφ1 + z(s) in

−Δu+u− λ f (u)− λh= 0, u > 0, u∈ C2,α(Ω)∩H2(Ω). (6.43)

Differentiating (6.43) in s twice, we have

−Δuss +uss− λ f ′(u)uss− 2λs f ′(u)us− λ f ′′(u)
(
us
)2− λss

(
f (u) +h

)= 0. (6.44)
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Setting here s = 0 and using the facts that τ′(0) = 0, us = φ1(x) and u = uλ∗ as s = 0, we
obtain

−Δuss +uss− λ∗ f ′
(
uλ∗
)
uss− λ∗ f ′′

(
uλ∗
)
φ2
1− τ′′(0)

(
f
(
uλ∗
)
+h
)= 0. (6.45)

Multiplying Fu(λ∗,uλ∗)φ1 = 0 by uss and (6.45) by φ1, integrating and subtracting the
result, and by (6.35), we obtain

∫

Ω
λ∗ f ′′

(
uλ∗
)
φ3
1dx+ τ′′(0)

∫

Ω

(
f
(
uλ∗
)
+h
)
φ1dx = 0, (6.46)

which immediately gives τ′′(0) < 0. Thus

uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗,

Uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗,
(6.47)

and we complete the proof of Theorem 1.2 for Ω= S \D.
With the same argument, we also have that Theorems 1.1 and 1.2 hold forΩ=RN \D.
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