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1. Introduction

In a recent paper, Perera [1] studied the existence, multiplicity, and nonexistence of pos-
itive classical solutions of the p-Laplacian problem

−Δpu= λ f (x,u) inΩ,
u= 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in Rn, n ≥ 1, Δpu = div(|∇u|p−2∇u) is the p-
Laplacian of u, 1 < p <∞, λ > 0 is a parameter, and f is a Carathéodory function on
Ω× [0,∞) satisfying

∣
∣ f (x, t)

∣
∣≤ Ctp−1 ∀(x, t), (1.2)

where C denotes a generic positive constant. Assuming
( f1) ∃δ > 0 such that F(x, t) := ∫ t0 f (x,τ)dτ ≤ 0 when t ≤ δ,
( f2) ∃t0 > 0 such that F(x, t0) > 0,
( f3) limsup t→∞(F(x, t)/t

p)≤ 0 uniformly in x
and using variational methods, the author proved that there are λ < λ such that (1.1)
has no positive solution for λ < λ and at least two positive solutions u1 > u2 for λ≥ λ. A
similar result for the semilinear case p = 2 was proved by Maya and Shivaji [2].
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In the present paper we consider the corresponding (p,q)-Laplacian system

−Δpu= λFu(x,u,v) inΩ,
−Δqv = λFv(x,u,v) inΩ,

u= v = 0 on ∂Ω,
(1.3)

where 1 < p, q <∞ and F is a C1-function on Ω× [0,∞)× [0,∞) satisfying

∣
∣Ft(x, t,s)

∣
∣≤ Ctαsβ+1,

∣
∣Fs(x, t,s)

∣
∣≤ Ctα+1sβ ∀(x, t,s) (1.4)

for some α,β > 0 with (α+1)/p+ (β+1)/q = 1. We will extend the results of Perera [1] to
this system as follows.

Theorem 1.1. There is a λ such that (1.3) has no positive solution for λ < λ.

Theorem 1.2. Assume
(F1) ∃δ > 0 such that F(x, t,s)≤ 0 when tp + sq ≤ δ;
(F2) ∃t0,s0 > 0 such that F(x, t0,s0) > 0;
(F3) limsup |(t,s)|→∞

t,s>0
(F(x, t,s)/tα+1sβ+1)≤ 0 uniformly in x.

Then there is a λ such that (1.3) has at least two positive solutions for λ≥ λ.

2. Proofs of Theorems 1.1 and 1.2

The first eigenvalue of the problem

−Δpu= λ|u|α−1u|v|β+1 inΩ,

−Δqv = λ|u|α+1|v|β−1v inΩ,

u= v = 0 on ∂Ω,

(2.1)

where α,β > 0 with (α+1)/p+ (β+1)/q = 1 is positive and is given by

λ1 = inf
{∫

Ω

α+1
p

∣
∣∇u∣∣p + β+1

q

∣
∣∇v∣∣q : (u,v)∈W

1,p
0 (Ω)×W

1,q
0 (Ω),

∫

Ω

∣
∣u
∣
∣
α+1∣
∣v
∣
∣
β+1 = 1

} (2.2)

(see de Thélin [3]). If (1.3) has a positive solution (u,v), testing the two equations in (1.3)
by u and v, respectively, and using (1.4) give

∫

Ω

∣
∣∇u∣∣p = λ

∫

Ω
Fu(x,u,v)u≤ λC

∫

Ω
|u|α+1|v|β+1,

∫

Ω

∣
∣∇v∣∣q = λ

∫

Ω
Fv(x,u,v)v ≤ λC

∫

Ω
|u|α+1|v|β+1,

(2.3)

so
∫

Ω

α+1
p

∣
∣∇u∣∣p + β+1

q

∣
∣∇v∣∣q ≤ λC

∫

Ω
|u|α+1|v|β+1 (2.4)
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and hence λ≥ λ1/C by (2.2), proving Theorem 1.1.
To prove Theorem 1.2, set F(x, t,s)= 0 if t < 0 or s < 0, and consider the C1-functional

Φλ(u,v)=
∫

Ω

1
p

∣
∣∇u∣∣p + 1

q

∣
∣∇v∣∣q− λF(x,u,v) (2.5)

on the spaceW
1,p
0 (Ω)×W

1,q
0 (Ω) with the norm

∥
∥(u,v)

∥
∥= ‖u‖1 +‖v‖2, (2.6)

where

‖u‖1 =
(∫

Ω

∣
∣∇u∣∣p

)1/p

, ‖v‖2 =
(∫

Ω

∣
∣∇v∣∣q

)1/q

. (2.7)

If (u,v) is a critical point of Φλ, denoting by u− and v− the negative parts of u and v,
respectively, we have

0= (Φλ′(u,v),(u
−,v−)

)

=
∫

Ω

∣
∣∇u∣∣p−2∇u·∇u− +∣∣∇v∣∣q−2∇v·∇v−

− λ
(

Fu(x,u,v)u− +Fv(x,u,v)v−
)= ‖u−‖p1 +‖v−‖q2,

(2.8)

so u,v ≥ 0. Furthermore, u,v ∈ L∞(Ω)∩C1(Ω) by Anane [4] and DiBenedetto [5], so it
follows from the Harnack inequality that either u,v > 0 or u,v ≡ 0 (see Trudinger [6]).
Thus, nontrivial critical points of Φλ are positive solutions of (1.3).

By (1.4),

∣
∣F(x, t,s)

∣
∣≤ C|t|α+1|s|β+1 ∀(x, t,s)∈Ω×R×R. (2.9)

Let γ = 1/(max{α,β}+1). By (F3), there is anMλ > 0 such that

∣
∣(t,s)

∣
∣≥Mλ =⇒ F(x, t,s)≤ γλ1

2λ
|t|α+1|s|β+1. (2.10)

Combining (2.9) and (2.10) gives

λF(x, t,s)≤ γλ1
2
|t|α+1|s|β+1 +Cλ ∀(x, t,s) (2.11)

for some Cλ > 0. Hence,

Φλ(u,v)≥
∫

Ω
γ
(
α+1
p

∣
∣∇u∣∣p + β+1

q

∣
∣∇v∣∣q− λ1

2
|u|α+1|v|β+1

)

−Cλ

≥ δ
(‖u‖p1 +‖v‖q2

)−Cλμ(Ω),
(2.12)

where δ =min{(α+ 1)/p, (β + 1)/q}γ/2 and μ denotes the Lebesgue measure in Rn. So
Φλ is bounded from below and coercive. This yields a global minimizer (u1,v1) since Φλ

is weakly lower semicontinuous.
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Lemma 2.1. There is a λ such that infΦλ < 0, and hence (u1,v1) �=(0,0), for λ≥ λ.

Proof. Taking a sufficiently large compact subset Ω′ of Ω and (u0,v0) ∈ W
1,p
0 (Ω)

×W1,q
0 (Ω) such that u0 = t0, v0 = s0 onΩ′ and 0≤ u0 ≤ t0,0≤ v0 ≤ s0 onΩ\Ω′, where t0,

s0 are as in (F2), we have
∫

Ω
F
(

x,u0,v0
)≥

∫

Ω′
F
(

x, t0,s0
)−Ctα+10 s

β+1
0 μ(Ω\Ω′) > 0, (2.13)

so Φλ(u0,v0) < 0 for λ large enough. �

Now we fix λ≥ λ and obtain a critical point (u2,v2) with Φλ(u2,v2) > 0 via the moun-
tain pass lemma, which will complete the proof since Φλ(0,0)= 0 >Φλ(u1,v1).

Lemma 2.2. The origin is a strict local minimizer ofΦλ.

Proof. Set Ωu,v = {x ∈ Ω : |u(x)|p + |v(x)|q > δ}. By (F1), F(x,u,v) ≤ 0 on Ω\Ωu,v and
hence

Φλ(u,v)≥ 1
p
‖u‖p1 +

1
q
‖v‖q2 − λ

∫

Ωu,v

F(x,u,v). (2.14)

By (2.9), Young’s and Hölder’s inequalities, and the Sobolev imbedding,

∫

Ωu,v

F(x,u,v)≤ C
∫

Ωu,v

|u|α+1|v|β+1 ≤ C
∫

Ωu,v

α+1
p
|u|p + β+1

q
|v|q

≤ C
(

μ
(

Ωu,v
)1−(p/r)‖u‖p1 +μ

(

Ωu,v)
1−(q/s)‖v‖q2

)

,

(2.15)

where r = np/(n− p) if p < n, r > p if p ≥ n and s = nq/(n− q) if q < n, s > q if q ≥ n.
Since

μ
(

Ωu,v
)≤ 1

δ

∫

Ωu,v

|u|p + |v|q ≤ C
(‖u‖p1 +‖v‖q2

)−→ 0 as ‖(u,v)−→ 0, (2.16)

the conclusion follows from (2.14) and (2.15). �

Since Φλ is coercive, every Palais-Smale sequence is bounded and hence contains a
convergent subsequence as usual. So the mountain pass lemma now gives a critical point
(u2,v2) of Φλ at the level

c := inf
γ∈Γ

max
(u,v)∈γ([0,1])

Φλ(u,v) > 0, (2.17)

where Γ = {γ ∈ C([0,1],W
1,p
0 (Ω)×W

1,q
0 (Ω)) : γ(0) = (0,0),γ(1) = (u1,v1)} is the class

of paths joining the origin to (u1,v1) (see Rabinowitz [7]).
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