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1. Introduction

In a recent paper, Perera [1] studied the existence, multiplicity, and nonexistence of pos-
itive classical solutions of the p-Laplacian problem

—Apu=Af(xu) inQ,
u=0 onoQ, (L1)

where Q) is a smooth bounded domain in R”, n > 1, Ayu = div(|VulP~2Vu) is the p-
Laplacian of 4, 1 < p < o, A >0 is a parameter, and f is a Carathéodory function on
Q % [0, c0) satisfying

| fot)| <CP™' V(x,1), (1.2)

where C denotes a generic positive constant. Assuming

(f1) 36 >0 such that F(x,t) := fgf(x,r)dr <0whent <9,

(f2) 3ty > 0 such that F(x,t,) >0,

(f3) limsup,_ ., (F(x,t)/t?) < 0 uniformly in x
and using variational methods, the author proved that there are A < A such that (1.1)
has no positive solution for A < A and at least two positive solutions u; > u, for A > A A
similar result for the semilinear case p = 2 was proved by Maya and Shivaji [2].



2 Boundary Value Problems
In the present paper we consider the corresponding (p,q)-Laplacian system

—Apu = AF,(x,u,v) inQ,
—Agv = AF,(x,u,v) inQ, (1.3)
u=v=0 onoQ,

where 1 < p, g < o0 and F is a C!-function on Q X [0, ) X [0, o) satisfying
|Ei(x,t,5) | < Ct*sPHL, | Fy(x,t,5)| < Ct*"'sP WV (x,t,5) (1.4)

for some «, 3 > 0 with (a+1)/p + (f+1)/q = 1. We will extend the results of Perera [1] to
this system as follows.

TareoreM 1.1. There is a A such that (1.3) has no positive solution for A < A.

THEOREM 1.2. Assume
(F1) 38 > 0 such that F(x,t,s) < 0 when t? +s1 < §;
(F,) 3ty,s0 > 0 such that F(x,to,s0) > 0;
(F3) limsup |(t,s)\6m(F(x, t,s)/t* 1 sPH) < 0 uniformly in x.
t,8>

Then there is a A such that (1.3) has at least two positive solutions for A > A.
2. Proofs of Theorems 1.1 and 1.2
The first eigenvalue of the problem

—Apu=Aul*Tuly/F inQ,
—Aqv=)tlu|"‘“|v|ﬁ’1v inQ, (2.1)
u=v=0 onodQ,

where a, 8 >0 with (a+1)/p+ (f+1)/q = 1 is positive and is given by
Alzinf” “TTIWW P 917 (uyv) € WP (Q) x Wh(Q),
Q

JQ|u|a+1|v|ﬁ+1:1}

(see de Thélin [3]). If (1.3) has a positive solution (u,v), testing the two equations in (1.3)
by u and v, respectively, and using (1.4) give

(2.2)

J |Vu\p=/lf Fu(x,u,v)usACJ lu| %t |y |PHL
Q Q Q (2.3)

J |vV|‘1:AI Fv(x,u,v)vsACJ 1y B,
Q Q Q

SO

1 +l
J CasyL VN ; |vV|‘1gAcJ 41y |1 (2.4)
Q Q
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and hence A = 1,/C by (2.2), proving Theorem 1.1.
To prove Theorem 1.2, set F(x,t,s) = 0if t < 0 or s < 0, and consider the C'-functional

@A(u,v)=J’Q%|Vu|p+$|Vv|q—)LF(x,u,v) (2.5)

on the space W&"D(Q) X W&’q(Q) with the norm
1G]] = llully + vl (2.6)

where

lull, = (j0|w|")w, vl = (jQWN)W. 27)

If (u,v) is a critical point of @), denoting by u~ and v~ the negative parts of u and v,
respectively, we have

0= (Oy (u,v),(u",v))
=J | Vul? 2 Vu-Vu + | Vv| T V-V (2.8)
Q
— MFy (5,1, v) ™ + Fy(xyu,v)v7) = Nl 11 + v 114,

so u,v > 0. Furthermore, u,v € L*(Q) N C!(Q) by Anane [4] and DiBenedetto [5], so it
follows from the Harnack inequality that either u,v >0 or u,v = 0 (see Trudinger [6]).
Thus, nontrivial critical points of @, are positive solutions of (1.3).

By (1.4),

|F(x,t,5) | < Clt|* s ¥ (x,t,5) € QX R xR, (2.9)

Let y = 1/(max {a, 3} +1). By (F3), there is an M, > 0 such that
VAI atl | f+l
|(t,5)] = My = F(x,t,s) < ﬁltl |s|PTL. (2.10)
Combining (2.9) and (2.10) gives

A
AF(x,1,5) < %Itl"‘“lslﬁ“ +C V(x%5s) (2.11)
for some C) > 0. Hence,

D) (u,v) = J )’<‘a+*1 |V14|P+ﬁi+1 | Vv|T - h|u|"‘“|v\ﬁ“) -G
Q p q 2 (2.12)

= 8(ull? + IvIl9) — (),

where § = min {(a+1)/p,(f+1)/q}y/2 and p denotes the Lebesgue measure in R". So
®) is bounded from below and coercive. This yields a global minimizer (u,v;) since @,
is weakly lower semicontinuous.



4 Boundary Value Problems

LemMA 2.1. There is a A such that inf ®) < 0, and hence (u1,v1)#(0,0), for A > A

Proof. Taking a sufficiently large compact subset Q' of Q and (ug,vo) € WOI’P Q)
XWé’q(Q) such that uy = ty, vo = spon Q" and 0 < uy < ),0 < vy < sp on Q\Q', where t,
so are as in (F,), we have

JQF(x, Uo, Vo) = JQ,F(x, £0,50) — Ctgﬂsgﬂ‘u(Q\Q') >0, (2.13)

s0 @) (uo, o) < 0 for A large enough. O

Now we fix 1 > A and obtain a critical point (u,v,) with @, (u,,v2) >0 via the moun-
tain pass lemma, which will complete the proof since ®;(0,0) = 0 > ®y(u1,v1).

LEMMA 2.2. The origin is a strict local minimizer of ©,.

Proof. Set Q,, = {x € Q: lu(x)|” + [v(x)|? > 8}. By (F1), F(x,u,v) <0 on Q\Q,, and
hence

1
Dy (u,v) = ||u||f+a||v||§’—/1jQ F(x,u,v). (2.14)

1
p
By (2.9), Young’s and Holder’s inequalities, and the Sobolev imbedding,

+1 +1
F(x,u,v)sCJ ] <+ | B+ scj atl o Bl
Quy Qv P q

Qu (2.15)

< Cu(Qu) P ul? + Q) w119,

where r =np/(n—p)if p<n,r>pif p=nands=nqg/(n—q)ifqg<n,s>qif qg=>n.
Since

1
y(ou,v)sgjn ul? + 119 < Culll + V1) — 0 asl(wy) —0,  (2.16)

the conclusion follows from (2.14) and (2.15). O

Since @, is coercive, every Palais-Smale sequence is bounded and hence contains a
convergent subsequence as usual. So the mountain pass lemma now gives a critical point
(t42,v2) of @) at the level

c:=inf max Dy (u,v) >0, (2.17)
yel (uv)ey([0,1])

where T = {y € C([0,1], Wy?(Q) x W5 9(€)) : (0) = (0,0),y(1) = (u1,v1)} is the class
of paths joining the origin to (u1,v;) (see Rabinowitz [7]).
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