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1. Introduction

In recent years, the study of higher-order continuous and discrete boundary value problems
has been studied extensively in the literature (see [1–17] and their references). Most of the
results told us that the equations had at least single and multiple positive solutions.

Recently, some authors have dealt with the uniqueness of solutions for singular higher-
order continuous boundary value problems by using mixed monotone method, for example,
see [6, 14, 15]. However, there are few works on the uniqueness of solutions for singular dis-
crete boundary value problems.

In this paper, we state a unique fixed point theorem for a class of mixed monotone op-
erators, see [6, 14, 18]. In virtue of the theorem, we consider the existence and uniqueness
of solutions for the following singular higher-order continuous and discrete boundary value
problems (1.1) and (1.2) by using mixed monotone method. We first discuss the existence and
uniqueness of solutions for the following singular higher-order continuous boundary value
problem

y(n)(t)+λq(t)(g(y)+h(y))=0, 0<t<1, λ>0,

y(i)(0) = y(n−2)(1) = 0, 0 ≤ i ≤ n − 2,
(1.1)
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where n ≥ 2, q(t) ∈ C((0, 1), (0,+∞)), g : [0,+∞) → [0,+∞) is continuous and nondecreasing;
h : (0,+∞) → (0,+∞) is continuous and nonincreasing, and hmay be singular at y = 0.

Next, we consider the existence and uniqueness of solutions for the following singular
higher-order discrete boundary value problem

Δny(i)+λq(i+n−1)(g(y(i+n−1)) +h(y(i+n−1))) = 0, i ∈ N = {0, 1, 2, . . . , T − 1}, λ>0,

Δky(0) = Δn−2y(T + 1) = 0, 0 ≤ k ≤ n − 2,
(1.2)

where n ≥ 2,N+ = {0, 1, 2, . . . , T+n}, q(i) ∈ C(N+, (0,+∞)), g : [0,+∞) → [0,+∞) is continuous
and nondecreasing; h : (0,+∞) → (0,+∞) is continuous and nonincreasing, and h may be
singular at y = 0. Throughout this paper, the topology on N+ will be the discrete topology.

2. Preliminaries

Let P be a normal cone of a Banach space E, and e ∈ P with ‖e‖ ≤ 1, e /= θ. Define

Qe = {x ∈ P | x /= θ, there exist constants m,M > 0 such that me ≤ x ≤ Me}. (2.1)

Now we give a definition (see [18]).

Definition 2.1 (see [18]). Assume A : Qe ×Qe → Qe. A is said to be mixed monotone if A(x, y)
is nondecreasing in x and nonincreasing in y, that is, if x1 ≤ x2 (x1, x2 ∈ Qe) implies A(x1, y) ≤
A(x2, y) for any y ∈ Qe, and y1 ≤ y2 (y1, y2 ∈ Qe) implies A(x, y1) ≥ A(x, y2) for any x ∈ Qe.
x∗ ∈ Qe is said to be a fixed point of A if A(x∗, x∗) = x∗.

Theorem 2.2 (see [6, 14]). Suppose that A: Qe × Qe → Qe is a mixed monotone operator and ∃
a constant α, 0 ≤ α < 1, such that

A

(
tx,

1
t
y

)
≥ tαA(x, y), for x, y ∈ Qe, 0 < t < 1. (2.2)

Then A has a unique fixed point x∗ ∈ Qe. Moreover, for any (x0, y0) ∈ Qe ×Qe,

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (2.3)

satisfy

xn −→ x∗, yn −→ x∗, (2.4)

where ∥∥xn − x∗∥∥ = o
(
1 − rα

n)
,

∥∥yn − x∗∥∥ = o
(
1 − rα

n)
, (2.5)

0 < r < 1, r is a constant from (x0, y0).

Theorem 2.3 (see [6, 14, 18]). Suppose that A: Qe ×Qe → Qe is a mixed monotone operator and ∃ a
constant α ∈ (0, 1) such that (2.2) holds. If x∗

λ
is a unique solution of equation

A(x, x) = λx, (λ > 0) (2.6)

inQe, then ‖x∗
λ
− x∗

λ0
‖ → 0, λ → λ0. If 0 < α < 1/2, then 0 < λ1 < λ2 implies x∗

λ1
≥ x∗

λ2
, x∗

λ1 /=x∗
λ2
, and

lim
λ→+∞

∥∥x∗
λ

∥∥ = 0, lim
λ→0+

∥∥x∗
λ

∥∥ = +∞. (2.7)
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3. Uniqueness positive solution of differential equations (1.1)

This section discusses singular higher-order boundary value problem (1.1). Throughout this
section, we let G(t, s) be the Green’s function to −y′′ = 0, y(0) = y(1) = 0, we note that

G(t, s) =

⎧⎨
⎩
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,
(3.1)

and one can show that

G(t, t)G(s, s) ≤ G(t, s) ≤ G(t, t), for G(t, s) ≤ G(s, s), (t, s) ∈ [0, 1] × [0, 1]. (3.2)

Suppose that y is a positive solution of (1.1). Let

x(t) = y(n−2)(t), (3.3)

from y(i)(0) = y(n−2)(1) = 0, 0 ≤ i ≤ n−2, and Taylor Formula, we define operator T : C(2)[0, 1] →
C(n)[0, 1], by

y(t) = Tx(t) =
∫ t

0

(t − s)n−3

(n − 3)!
x(s)ds, for 3 ≤ n,

y(t) = Tx(t) = x(t), for n = 2..

(3.4)

Then we have

x(2)(t) + λf(t, Tx(t)) = 0, 0 < t < 1, λ > 0,

x(0) = x(1) = 0.
(3.5)

Then from (3.4), we have the next lemma.

Lemma 3.1. If x(t) is a solution of (3.5), then y(t) is a solution of (1.1).

Further, if y(t) is a solution of (1.1), imply that x(t) is a solution of (3.5).
Let P = {x ∈ C[0, 1] | x(t) ≥ 0, for all t ∈ [0, 1]}. Obviously, P is a normal cone of Banach

space C[0, 1].

Theorem 3.2. Suppose that there exists α ∈ (0, 1) such that

g(tx) ≥ tαg(x), (3.6)

h
(
t−1x

) ≥ tαh(x), (3.7)

for any t ∈ (0, 1) and x > 0, and q ∈ C((0, 1), (0,∞)) satisfies
∫1

0

[
sn−1(n − 2s)

]−α
q(s)ds < +∞. (3.8)

Then (1.1) has a unique positive solution y∗
λ
(t).And moreover, 0 < λ1 < λ2 implies y∗

λ1
≤ y∗

λ2
, y∗

λ1 /=y∗
λ2
.

If α ∈ (0, 1/2), then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (3.9)
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Proof. Since (3.7) holds, let t−1x = y, one has

h(y) ≥ tαh(ty). (3.10)

Then

h(ty) ≤ 1
tα
h(y), for t ∈ (0, 1), y > 0. (3.11)

Let y = 1. The above inequality is

h(t) ≤ 1
tα
h(1), for t ∈ (0, 1). (3.12)

From (3.7), (3.11), and (3.12), one has

h
(
t−1x

) ≥ tαh(x), h

(
1
t

)
≥ tαh(1), h(tx) ≤ 1

tα
h(x), h(t) ≤ 1

tα
h(1), for t ∈ (0, 1), x > 0.

(3.13)

Similarly, from (3.6), one has

g(tx) ≥ tαg(x), g(t) ≥ tαg(1), for t ∈ (0, 1), x > 0. (3.14)

Let t = 1/x, x > 1, one has

g(x) ≤ xαg(1), for x ≥ 1. (3.15)

Let e(t) = G(t, t) = t(1 − t), and we define

Qe =
{
x ∈ C[0, 1] | 1

M
G(t, t) ≤ x(t) ≤ MG(t, t), t ∈ [0, 1]

}
, (3.16)

whereM > 1 is chosen such that

M > max

{[
λg(1)

∫1

0
q(s)ds + λh(1)

∫1

0

(
sn−1(n − 2s)

n!

)−α
q(s)ds

]1/(1−α)
,

[
λg(1)

∫1

0
G(s, s)

(
sn−1(n − 2s)

n!

)α

q(s)ds + λh(1)
∫1

0
G(s, s)q(s)ds

]−1/(1−α)}
.

(3.17)

First, from (3.4) and (3.16), for any x ∈ Qe, we have the following.
When 3 ≤ n,

1
M

tn−1(n − 2t)
n!

≤
∫ t

0

1
M

G(s, s)
(t − s)n−3

(n − 3)!
ds ≤ Tx(t)

≤
∫ t

0
MG(s, s)

(t − s)n−3

(n − 3)!
ds ≤ M

tn−1(n − 2t)
n!

≤ M, for t ∈ [0, 1],

(3.18)
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when n = 2,

1
M

tn−1(n − 2t)
n!

≤ Tx(t) = x(t) ≤ M
t(n − 2t)

n!
≤ M, for t ∈ [0, 1], (3.19)

then

1
M

tn−1(n − 2t)
n!

≤ Tx(t) ≤ M
tn−1(n − 2t)

n!
≤ M, for t ∈ [0, 1]. (3.20)

For any x, y ∈ Qe, we define

Aλ(x, y)(t) = λ

∫1

0
G(t, s)q(s)[g(Tx(s)) + h(Ty(s))]ds, for t ∈ [0, 1]. (3.21)

First, we show that Aλ : Qe ×Qe → Qe.
Let x, y ∈ Qe, from (3.14), (3.15), and (3.20), we have

g(Tx(t)) ≤ g(M) ≤ Mαg(1), for t ∈ (0, 1), (3.22)

and from (3.13), we have

h(Ty(t)) ≤ h

(
1
M

tn−1(n − 2t)
n!

)
≤
[
tn−1(n − 2t)

n!

]−α
h

(
1
M

)

≤ Mα

[
tn−1(n − 2t)

n!

]−α
h(1), for t ∈ (0, 1).

(3.23)

Then, from (3.2), (3.21), (3.22) and (3.23), we have
On the other hand, for any x, y ∈ Qe, from (3.13) and (3.14), we have

g(Tx(t)) ≥ g

(
1
M

tn−1(n − 2t)
n!

)
≥
(
tn−1(n − 2t)

n!

)α

g

(
1
M

)
≥
(

tn−1(n − 2t)
n!

)α
1

Mα
g(1),

h(Ty(t)) ≥ h(M) = h

(
1

1/M

)
≥ 1
Mα

h(1), for t ∈ (0, 1).

(3.24)

Thus, from (3.2), (3.21) and (3.24), we have

Aλ(x, y)(t)

≥ λG(t, t)

{∫1

0
G(s, s)q(s)M−α

[
sn−1(n − 2s)

n!

]α

g(1)ds +
∫1

0
G(s, s)q(s)M−αh(1)ds

≥ 1
M

G(t, t), for t ∈ [0, 1].

(3.25)

So, Aλ is well defined and Aλ(Qe ×Qe) ⊂ Qe.
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Next, for any l ∈ (0, 1), one has

Aλ

(
lx, l−1y

)
(t) = λ

∫1

0
G(t, s)q(s)

[
g(lTx(s)) + h

(
l−1Ty(s)

)]
ds

≥ λ

∫1

0
G(t, s)q(s)

[
lαg(Tx(s)) + lαh(Ty(s))

]
ds

= lαAλ(x, y)(t), for t ∈ [0, 1].

(3.26)

So the conditions of Theorems 2.2 and 2.3 hold. Therefore, there exists a unique x∗
λ
∈ Qe

such that Aλ(x∗, x∗) = x∗
λ
. It is easy to check that x∗

λ
is a unique positive solution of (3.5) for

given λ > 0. Moreover, Theorem 2.3 means that if 0 < λ1 < λ2, then x∗
λ1
(t) ≤ x∗

λ2
(t), x∗

λ1
(t)/=x∗

λ2
(t)

and if α ∈ (0, 1/2), then

lim
λ→0+

∥∥x∗
λ

∥∥ = 0, lim
λ→+∞

∥∥x∗
λ

∥∥ = +∞. (3.27)

Next, from Lemma 3.1 and (3.4), we get that y∗
λ
= Tx∗

λ
is a unique positive solution

of (1.1) for given λ > 0. Moreover, if 0 < λ1 < λ2, then y∗
λ1
(t) ≤ y∗

λ2
(t), y∗

λ1
(t)/=y∗

λ2
(t) and if

α ∈ (0, 1/2), then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (3.28)

This completes the proof.

Example 3.3. Consider the following singular boundary value problem:

y(n)(t) + λ
(
μya(t) + y−b(t)

)
= 0, t ∈ [0, 1],

y(i)(0) = y(n−2)(1) = 0, 0 ≤ i ≤ n − 2,
(3.29)

where λ, a, b > 0, μ ≥ 0, max{a, b} < 1/(n − 1).
Applying Theorem 3.2, let α = max{a, b} < 1/(n − 1), q(t) = 1, g(y) = μya, h(y) = y−b,

then

g(ty) ≥ tαg(y), h
(
t−1

) ≥ tαh(y),∫1
0

[
sn−1(n − 2s)

]−α
ds < +∞.

(3.30)

Thus all conditions in Theorem 3.2 are satisfied. We can find (3.29) has a unique positive so-
lution y∗

λ
(t). In addition, 0 < λ1 < λ2 implies y∗

λ1
≤ y∗

λ2
, y∗

λ1 /=y∗
λ2
. If α = max{a, b} ∈ (0, 1/2),

then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (3.31)
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4. Uniqueness positive solution of difference equations (1.2)

This section discusses singular higher-order boundary value problem (1.2). Throughout this
section, we let K(i, j) be Green’s function to −Δ2y(i) + u(i + 1) = 0, i ∈ N, y(0) = y(T + 1) = 0,
we note that

K(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

j(T + 1 − i)
T + 1

, 0 ≤ j ≤ i − 1,

i(T + 1 − j)
T + 1

, i ≤ j ≤ T + 1,
(4.1)

and one can show that

K(i, i) ≥ K(i, j), K(j, j) ≥ K(i, j), K(i, j) ≥ K(i, i)
T + 1

, for 0 ≤ i ≤ T + 1, 1 ≤ j ≤ T. (4.2)

Suppose that y is a positive solution of (1.2). Let

x(i) = Δn−2y(i), for 0 ≤ i ≤ T + 1. (4.3)

From Δiy(0) = Δn−2y(T + 1) = 0, 0 ≤ i ≤ n − 2, and Δmy(i − 1) = Δm−1y(i) −Δm−1y(i − 1), so we
define operator T , by

Tx(i) = y(i + n − 1) =
i+1∑
l=1

Cn−2
i−l+n−1x(l), for 0 ≤ i ≤ T. (4.4)

Then

Δ2x(i) + λF(i + n − 1, Tx(i)) = 0, 0 ≤ i ≤ T − 1, λ > 0,

x(0) = x(T + 1) = 0.
(4.5)

Lemma 4.1. If x(i) is a solution of (4.5), then y(i) is a solutionn of (1.2).

Proof. Since we remark that x(i) is a solution of (4.5), if and only if

x(i) =
T∑
j=1

K(i, j)λF(j + n − 1, Tx(j)), for 0 ≤ i ≤ T + 1. (4.6)

Let

Tx(i) = y(i + n − 1), for 0 ≤ i ≤ T. (4.7)

From (4.4) we find Δiy(0) = Δn−2y(T + 1) = 0, 0 ≤ i ≤ n − 2, and x(i) = Δn−2y(i), so that y(i) is
a solution of (1.2).

Further, if y(i) is a solution of (1.2), imply that x(i) is a solution of (4.5).
Let P = {x ∈ C(N+, [0,+∞)) | x(i) ≥ 0, for all i ∈ N+}. Obviously, P is a normal cone of

Banach space C(N+, [0,+∞)).
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Theorem 4.2. Suppose that there exists α ∈ (0, 1) such that

g(tx) ≥ tαg(x),

h
(
t−1x

) ≥ tαg(x),
(4.8)

for any t ∈ (0, 1) and x > 0, and q ∈ C(N+, (0,∞)).
Then (1.2) has a unique positive solution y∗

λ
(i). And moreover, 0 < λ1 < λ2 implies y∗

λ1
≤ y∗

λ2
,

y∗
λ1 /=y∗

λ2
. If α ∈ (0, 1/2), then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (4.9)

Proof. The proof is the same as that of Theorem 3.2, from (4.12) and (4.13), one has

h
(
t−1x

) ≥ tαh(x), h

(
1
t

)
≥ tαh(1), h(tx) ≤ 1

tα
h(x), h(t) ≤ 1

tα
h(1), for t ∈ (0, 1), x > 0;

g(tx) ≥ tαg(x), g(t) ≥ tαg(1), for t ∈ (0, 1), x > 0.
(4.10)

g(tx) ≥ tαg(x), g(t) ≥ tαg(1), for t ∈ (0, 1), x > 0. (4.11)

Let t = 1/x, x > 1, one has

g(x) ≤ xαg(1), for x ≥ 1. (4.12)

Let e(i) = K(i, i)/(T + 1), and we define

Qe =
{
x ∈ P | 1

M
e(i) ≤ x(i) ≤ Me(i), for 0 ≤ i ≤ T + 1

}
, (4.13)

whereM > 1 is chosen such that

M > max

{[
λ(T + 1)g(1)

T∑
j=1

q(j + n − 1)

(
j+1∑
l=1

Cn−2
j−l+n−1

)α

+ λ(T + 1)1+αh(1)
T∑
j=1

K−α(j, j)q(j + n − 1)

]1/(1−α)
;

[
λg(1)

T∑
j=1

q(j + n − 1)
(
K(j, j)
T + 1

)α

+ λh(1)
T∑
j=1

q(j + n − 1)

(
j+1∑
l=1

Cn−2
j−l+n−1

)−α]−1/(1−α)}
.

(4.14)

From (4.4) and (4.13), for any x ∈ Qe, we have

1
M

e(j) ≤ Tx(j) =
j+1∑
l=1

Cn−2
j−l+n−1x(l) ≤ Me(j)

j+1∑
l=1

Cn−2
j−l+n−1, for 0 ≤ j ≤ T. (4.15)
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For any x, y ∈ Qe, we define

Aλ(x, y)(i) = λ
T∑
j=1

K(i, j)q(j + n − 1)[g(Tx(j)) + h(Ty(j))], for 0 ≤ i ≤ T + 1. (4.16)

First we show that Aλ : Qe ×Qe → Qe.
Let x, y ∈ Qe, from (4.11) and (4.12), we have

g(Tx(j))≤g
(
Me(j)

j+1∑
l=1

Cn−2
j−l+n−1

)
≤g

(
M

j+1∑
l=1

Cn−2
j−l+n−1

)
≤Mα

(
j+1∑
l=1

Cn−2
j−l+n−1

)α

g(1), for 1≤ j ≤ T ,

(4.17)

and from (4.10), we have

h(Ty(j)) ≤ h

(
1
M

e(j)
)

≤ e−α(j)h
(

1
M

)
≤ Mαe−α(j)h(1), for 1 ≤ j ≤ T. (4.18)

Then, from (4.2) and the above, we have

Aλ(x, y)(i) ≤ λK(i, i)
T∑
j=1

q(j + n − 1)[g(Tx(j)) + (T + 1)h(Ty(j))]

≤ e(i)Mαλ(T + 1)

[
g(1)

T∑
j=1

q(j + n − 1)

(
j+1∑
l=1

Cn−2
j−l+n−1

)α

+ h(1)
T∑
j=1

e−α(j)q(j + n − 1)

]

≤ e(i)Mαλ(T + 1)

[
g(1)

T∑
j=1

q(j + n − 1)

(
j+1∑
l=1

Cn−2
j−l+n−1

)α

+ h(1)
T∑
j=1

(
K(j, j)
T + 1

)−α
q(j + n − 1)

]

≤ Me(i), for 0 ≤ i ≤ T + 1.

(4.19)

On the other hand, for any x, y ∈ Qe, from (4.10) and (4.12), we have

g(x(j)) ≥ g

(
1
M

e(j)
)

≥ eα(j)
1

Mα
g(1), for 1 ≤ j ≤ T, (4.20)

h(y(j)) ≥ h

(
Me(j)

j+1∑
l=1

Cn−2
j−l+n−1

)
≥ M−α

(
j+1∑
l=1

Cn−2
j−l+n−1

)−α

h(1), for 1 ≤ j ≤ T. (4.21)

Thus, from (4.2) and (4.16), we have

Aλ(x, y)(i) ≥ λe(i)

[
T∑
j=0

q(j + n − 1)g(Tx(j)) +
T∑
j=0

q(j + n − 1)h(Ty(j))

]

≥ λe(i)M−α
[
g(1)

T∑
j=0

q(j)
(
K(i, i)
T + 1

)α

+ h(1)
T∑
j=0

q(j + n − 1)

(
j+1∑
l=1

Cn−2
j−l+n−1

)−α]

≥ 1
M

e(i), for 0 ≤ i ≤ T + 1.

(4.22)
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So, Aλ is well defined and Aλ(Qe ×Qe) ⊂ Qe.
Next, for any l ∈ (0, 1), one has

Aλ

(
lx, l−1y

)
(i) = λ

T∑
j=1

K(i, j)q(j + n − 1)
[
g(T(lx)(j)) + h

(
T
(
l−1

)
y(j)

)]

= λ
T∑
j=1

K(i, j)q(j + n − 1)
[
g(lTx(j)) + h

(
l−1Ty(j)

)]

≥ λ
T∑
j=1

K(i, j)q(j + n − 1)
[
lαg(Tx(j)) + lαh(Ty(j))

]
ds

= lαAλ(x, y)(i), for 0 ≤ i ≤ T + 1.

(4.23)

So the conditions of Theorems 2.2 and 2.3 hold. Therefore, there exists a unique x∗
λ
∈ Qe such

that Aλ(x∗, x∗) = x∗
λ
. It is easy to check that x∗

λ
is a unique positive solution of (4.5) for given

λ > 0. Moreover, Theorem 2.3 means that if 0 < λ1 < λ2, then x∗
λ1
(t) ≤ x∗

λ2
(t), x∗

λ1
(t)/=x∗

λ2
(t) and

if α ∈ (0, 1/2), then

lim
λ→0+

∥∥x∗
λ

∥∥ = 0, lim
λ→+∞

∥∥x∗
λ

∥∥ = +∞. (4.24)

Next, on using Lemma 3.1, from (4.5), we get that y∗
λ
= Tx∗

λ
is a unique positive solution

of (1.2) for given λ > 0. Moreover, if 0 < λ1 < λ2, then y∗
λ1
(t) ≤ y∗

λ2
(t), y∗

λ1
(t)/=y∗

λ2
(t) and if

α ∈ (0, 1/2), then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (4.25)

This completes the proof.

Example 4.3. Consider the following singular boundary value problem:

Δny(i − 1) + λ
(
μya(i) + y−b(i)

)
= 0, i ∈ N,

Δiy(0) = Δn−2y(1) = 0, 0 ≤ i ≤ n − 2,
(4.26)

where λ, a, b > 0, μ ≥ 0, max{a, b} < 1.
Let q(i) = 1, g(y) = μya, h(y) = y−b, α = max{a, b} < 1, then

g(ty) ≥ tαg(y), h
(
t−1y

) ≥ tαh(y), (4.27)

thus all conditions in Theorem 4.2 are satisfied. We can find (4.26) has a unique positive so-
lution y∗

λ
(t). In addition, 0 < λ1 < λ2 implies y∗

λ1
≤ y∗

λ2
, y∗

λ1 /=y∗
λ2
. If α = max{a, b} ∈ (0, 1/2),

then

lim
λ→0+

∥∥y∗
λ

∥∥ = 0, lim
λ→+∞

∥∥y∗
λ

∥∥ = +∞. (4.28)
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