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1. Introduction

In this paper, we consider a nonstationary 1D flow of a compressible viscous and heat-
conducting micropolar fluid, being in a thermodynamical sense perfect and polytropic. In
[1–3], we considered the problem with homogeneous boundary conditions.

Here we study, as in [4, 5], the case of nonhomogeneous boundary conditions for
velocity and microrotation which is called in gas dynamics “problem on piston” (see [6]).
Assuming that the initial data are Hölder continuous on ]0, 1[ and transforming the original
problem into homogeneous one, we prove that, for each T > 0, the mass density, velocity,
microrotation velocity, and temperature are Hölder continuous on ]0, 1[×]0, T[. The proof
is based on a global-in-time existence theorem [5] and on a theory of parabolic equations
[7]. We use some ideas of Antontsev et al. [8] applied to the case of classical fluid with
homogeneous boundary conditions, results from [3] as well and some inequalities for Hölder
norms obtained by the Nirenberg-Gagliardo inequality.

2. Statement of the problem and its equivalent setting

Let ρ, v,ω, and θ denote, respectively, the mass density, velocity, microrotation velocity, and
temperature of the fluid in the Lagrangean description. Then the problem which we consider
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has the formulation as follows [1]:

∂ρ

∂t
+ ρ2

∂v

∂x
= 0, (2.1)

∂v

∂t
=

∂

∂x

(
ρ
∂v

∂x

)
−K

∂

∂x
(ρθ), (2.2)

ρ
∂ω

∂t
= A

[
ρ
∂

∂x

(
ρ
∂ω

∂x

)
−ω

]
, (2.3)

ρ
∂θ

∂t
= −Kρ2θ

∂v

∂x
+ ρ2

(
∂v

∂x

)2

+ ρ2
(
∂ω

∂x

)2

+ω2 +Dρ
∂

∂x

(
ρ
∂θ

∂x

)
(2.4)

in ]0, 1[×]0, T[, T > 0, where K,A, and D are positive constants. Equations (2.1)–
(2.4) are, respectively, local forms of the conservations laws for the mass, momentum,
momentum moment, and energy. We take the following nonhomogeneous initial and
boundary conditions:

ρ(x, 0) = ρ0(x) , (2.5)

v(x, 0) = v0(x), (2.6)

ω(x, 0) = ω0(x), (2.7)

θ(x, 0) = θ0(x), (2.8)

v(0, t) = μ0(t), v(1, t) = μ1(t), (2.9)

ω(0, t) = ν0(t), ω(1, t) = ν1(t), (2.10)
∂θ

∂x
(0, t) =

∂θ

∂x
(1, t) = 0, (2.11)

for x ∈ Ω =]0, 1[, t ∈]0, T[. Here ρ0, v0, ω0, θ0, μ0, μ1, ν0, and ν1 are given functions. We assume
the compatibility conditions

v0(0) = μ0(0), v0(1) = μ1(0), (2.12)

ω0(0) = ν0(0), ω0(1) = ν1(0), (2.13)
∂θ0
∂x

(0) =
∂θ0
∂x

(1) = 0, (2.14)

and the inequalities

0 < m ≤ ρ0(x) ≤ M, m ≤ θ0(x) ≤ M for x ∈ Ω, (2.15)

where m,M ∈ R+. We assume also that there exists a constant δ > 0 such that

l(t) =
∫1

0

1
ρ0(x)

dx +
∫ t

0

[
μ1(τ) − μ0(τ)

]
dτ ≥ δ, t ∈]0, T[. (2.16)
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In the previous work [5]we proved that for

μ0, μ1, ν0, ν1 ∈ H2(]0, T[),
ρ0, v0, ω0, θ0 ∈ H1(Ω),

(2.17)

the problems (2.1)–(2.4) have a unique generalized solution

(x, t) −→ (ρ, v,ω, θ)(x, t), (x, t) ∈ QT = Ω×]0, T[, (2.18)

ρ ∈ L∞(0, T ;H1(Ω)
) ∩H1(QT

)
, inf

QT

ρ > 0 , (2.19)

v,ω, θ ∈ L∞(0, T ;H1(Ω)
) ∩H1(QT

) ∩ L2(0, T ;H2(Ω)
)
, (2.20)

that satisfies (2.1)–(2.4) a.e. inQT and conditions (2.5)–(2.11) in the sense of traces. Moreover,

θ > 0 in QT. (2.21)

From embedding and interpolation theorems (e.g., [9]) one can conclude that from
(2.19) and (2.20) it follows:

ρ ∈ L∞(0, T ;C(Ω)) ∩ C
(
[0, T], L2(Ω)

)
, (2.22)

v,ω, θ ∈ L2(0, T ;C1(Ω)) ∩ C
(
[0, T],H1(Ω)

)
, (2.23)

v,ω, θ ∈ C
(
QT

)
. (2.24)

Now, instead of the velocity v and microrotation ω we introduce new functions V and W in
order to obtain a problem with the homogeneous boundary conditions.

Notice that using (2.9) from (2.1) we get

∫1

0

dx

ρ(x, t)
= l(t), t ∈]0, T[, (2.25)

where the function l is defined by (2.16). We introduce the functions

v1(x, t) =
μ(t)
l(t)

∫x

0

dξ

ρ(ξ, t)
+ μ0(t), (2.26)

ω1(x, t) =
ν(t)
l(t)

∫x

0

dξ

ρ(ξ, t)
+ ν0(t) on QT, (2.27)

where μ(t) = μ1(t) − μ0(t) and ν(t) = ν1(t) − ν0(t). It is evident that

v1(0, t) = μ0(t), v1(1, t) = μ1(t),

ω1(0, t) = ν0(t), ω1(1, t) = ν1(t), t ∈]0, T[. (2.28)
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Inserting

V (x, t) = v(x, t) − v1(x, t), W(x, t) = ω(x, t) −ω1(x, t) (2.29)

into (2.1)–(2.4) we get the following equivalent system:

∂ρ

∂t
+ ρ2

∂V

∂x
+
μ

l
ρ = 0, (2.30)

∂V

∂t
=

∂

∂x

(
ρ
∂V

∂x

)
−K

∂

∂x
(ρθ) − ∂v1

∂t
, (2.31)

ρ
∂W

∂t
= A

[
ρ
∂

∂x

(
ρ
∂W

∂x

)
−ω1 −W

]
− ρ

∂ω1

∂t
, (2.32)

ρ
∂θ

∂t
= −Kρ2θ

∂V

∂x
−Kρθ

μ

l
+ ρ2

(
∂V

∂x

)2

+ 2ρ
∂V

∂x

μ

l
+
(
μ

l

)2

+ ρ2
(
∂W

∂x

)2

+ 2ρ
∂W

∂x

ν

l
+
(
ν

l

)2

+
(
W +ω1

)2 +Dρ
∂

∂x

(
ρ
∂θ

∂x

)
,

(2.33)

with the homogeneous boundary conditions

V (0, t) = V (1, t) = 0, W(0, t) = W(1, t) = 0, (2.34)

∂θ

∂x
(0, t) =

∂θ

∂x
(1, t) = 0 (2.35)

for t ∈]0, T[ and initial conditions

ρ(x, 0) = ρ0(x), V (x, 0) = V0(x), (2.36)

W(x, 0) = W0(x), θ(x, 0) = θ0(x), (2.37)

for x ∈ Ω, where

V0(x) = v0(x) −
μ(0)
l(0)

∫x

0

1
ρ0(ξ)

dξ − μ0(0),

W0(x) = ω0(x) − ν(0)
l(0)

∫x

0

1
ρ0(ξ)

dξ − ν0(0)

(2.38)

are known functions. In the article [5], we proved that the problems (2.30)–(2.37) have
a unique generalized solution (ρ, V,W, θ) in the domain QT with property (2.21) as well.
Moreover, we obtained that

v1, ω1 ∈ L∞(0, T ;H2(Ω)
)
,

∂v1

∂t
,
∂ω1

∂t
∈ L∞(0, T ;L2(Ω)

)
. (2.39)
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In the following Ck+α(QT ) (k ∈ N ∪ {0}, 0 < α < 1) is the Banach space of functions of
the class Ck(QT ), having kth derivatives Hölder continuous with the exponent α on QT ; the
norm is defined by

|f |k+α,QT =
k∑

m+j=0

∣∣Dm
x D

j
tf
∣∣
0,QT

+
∑

m+j=k

Hα(Dm
x D

j
tf
)
, (2.40)

where

Hα(f) = sup
y,z∈QT

∣∣f(y) − f(z)
∣∣

|y − z|α , (2.41)

and |·|0,QT
is the norm onC(QT );D

m
x andD

j
t are, respectively, themth derivatives with respect

to x and the jth derivatives with respect to t.Ck+α,m+β(QT ) (k,m ∈ N∪{0}, 0 < α, β < 1) is the
Banach space of functions which have kth derivatives with respect to x and mth derivatives
with respect to t Hölder continuous on QT . The norm is defined by

|f |k+α,m+β,QT =
k∑
l=0

|Dl
xf |0,QT +

m∑
j=1

∣∣Dj
tf
∣∣
0,QT

+Hα
x

(
Dk

xf
)
+H

β
t

(
Dk

xf
)
+Hα

x

(
Dm

t f
)
+H

β
t

(
Dm

t f
)
,

(2.42)

where

Hα
x(f) = sup

(x1,t),(x2,t)∈QT

∣∣f(x1, t
) − f

(
x2, t

)∣∣∣∣x1 − x2
∣∣α ,

H
β
t (f) = sup

(x,t1),(x,t2)∈QT

∣∣f(x, t1) − f
(
x, t2

)∣∣
∣∣t1 − t2

∣∣β .

(2.43)

By C ∈ R+ we denote a generic constant, having possibly different values at different
places. Also we use some inequalities for Hölder norms obtained by the following Nirenberg-
Gagliardo interpolation inequality

|f |1/μ ≤ |f |(ν−μ)/(ν−λ)1/λ |f |(μ−λ)/(ν−λ)1/ν , (2.44)

where μ, ν, λ ∈ R and λ ≤ μ ≤ ν. Here, for bounded domain D ⊂ Rn and f : D → R the norm
|f |q is defined by

|f |q =
{
‖f‖Lq(D), q > 0,
|f |k+β,D, q < 0,

(2.45)

where k = [−n/q] and β = −n/q − k (e.g., [8, page 27]). Some of our considerations are very
similar or identical to that of [8] or [3]. In these cases we omit proofs or details of proofs,
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making reference to correspondent pages of the book [8] or article [3]; we use the notation
‖·‖ = ‖·‖L2 .

3. The main results

The aim of this paper is to prove the following regularity result.

Theorem 3.1. Let the functions

μ0, μ1, ν0, ν1 ∈ C2([0, T]), (3.1)

ρ0 ∈ C1+α(Ω), v0, ω0, θ0 ∈ C2+α(Ω), 0 < α < 1 (3.2)

satisfy the compatibility conditions

d

dx

(
ρ0

dv0

dx

)
−K

d

dx

(
ρ0θ0

)
=

⎧⎪⎪⎨
⎪⎪⎩

dμ0(0)
dt

, for x = 0

dμ1(0)
dt

, for x = 1,

(3.3)

A

[
d

dx

(
ρ0

dω0

dx

)
− ω0

ρ0

]
=

⎧⎪⎪⎨
⎪⎪⎩

dν0(0)
dt

, for x = 0

dν1(0)
dt

, for x = 1,

(3.4)

and (2.12)–(2.16). Then the generalized solution of the problems (2.1)–(2.11) has the properties

ρ ∈ C1+α(QT ), v, ω, θ ∈ C2+α,1+α/2(QT ), 0 < α < 1. (3.5)

Notice that because of (3.1) and (3.2)we have

V0,W0 ∈ C2+α(Ω)
, l ∈ C3([0, T]), (3.6)

and for t = 0 we can easily conclude that

v1
∣∣
t=0, ω1

∣∣
t=0,

∂v1

∂t

∣∣∣∣
t=0

,
∂ω1

∂t

∣∣∣∣
t=0

∈ C2+α(Ω)
. (3.7)

Now, (2.12), (2.13), (3.3), and (3.4) become the following compatibility conditions for the
problems (2.30)–(2.37)

V0(0) = V0(1) = 0, W0(0) = W0(1) = 0, (3.8)



Nermina Mujaković 7

d

dx

(
ρ0

dV0

dx

)
−K

d

dx

(
ρ0θ0

)
=

⎧⎪⎪⎨
⎪⎪⎩

dμ0(0)
dt

, for x = 0

dμ1(0)
dt

, for x = 1,

(3.9)

d

dx

(
ρ0

dW0

dx

)
− W0

ρ0
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν0(0)
ρ0

+A−1dν0(0)
dt

, for x = 0

ν1(0)
ρ0

+A−1dν1(0)
dt

, for x = 1.
(3.10)

In this paper, we will prove the following result first.

Theorem 3.2. Under the assumptions of Theorem 3.1 the problems (2.30)–(2.37) have a generalized
solution (ρ, V,W, θ) in QT with the properties

ρ ∈ C1+α(QT ), V,W, θ ∈ C2+α,1+α/2(QT

)
, 0 < α < 1. (3.11)

Moreover,

v1, ω1 ∈ C2+α,1+α/2(QT

)
. (3.12)

Theorem 3.1 is an immediate consequence of this result. In the proof of Theorem 3.2 we
apply, as in [3], the method of the book [8], where Theorem 3.1 was proved for the classical
fluid (ω = 0) with homogeneous boundary conditions.

In that what follows, we assume that the conditions (2.12)–(2.16) and (3.1)–(3.4) are
fulfilled.

4. Some properties of the solution (ρ, V,W, θ) and functions v1 and ω1

Lemma 4.1. It holds

∂2v1

∂t2
,
∂2ω1

∂t2
∈ L2(0, T ;L2(Ω)

)
. (4.1)

Proof. Using (2.30) from (2.26) and (2.27) we get

∂v1

∂t
=
[(

μ

l

)′
+
(
μ

l

)2]∫x

0

1
ρ
dξ +

μ

l
V + μ′

0, (4.2)

∂ω1

∂t
=
[(

ν

l

)′
+
μν

l2

]∫x

0

1
ρ
dξ +

ν

l
V + ν′0. (4.3)

After differentiating (4.2) with respect to t, squaring, integrating over Ω and taking into
account (2.25), (2.30), (3.1), and (3.6) we get

∥∥∥∥∂
2v1

∂t2
(t)

∥∥∥∥
2

≤ C

(
1 + ‖V (t)‖2 +

∥∥∥∥∂V∂t (t)
∥∥∥∥
2)

. (4.4)
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With the help of (2.20) for V we conclude that

∫T

0

∥∥∥∥∂
2v1

∂t2
(τ)

∥∥∥∥
2

dτ ≤ C

(
1 +

∫T

0
‖V (τ)‖2dτ +

∫T

0

∥∥∥∥∂V∂t (τ)
∥∥∥∥
2

dτ

)
≤ C. (4.5)

From (4.3) follows the same estimation for ∂2ω1/∂t
2.

Lemma 4.2. The inclusions

∂ρ

∂t
,
∂V

∂t
,
∂W

∂t
,
∂θ

∂t
∈ L∞(0, T ;L2(Ω)

) ∩ L2(0, T ;H1(Ω)
)

(4.6)

hold true.

Proof. Using (2.22) for ρ and (2.20) for V from (2.30) we get immediately that ∂ρ/∂t ∈
L∞(0, T ;L2(Ω)). Differentiating (2.30)with respect to x, using the inequalities

|f |2 ≤ C‖f‖∥∥f ′∥∥ ≤ C
∥∥f ′∥∥2

,

∣∣f ′∣∣2 ≤ C
∥∥f ′∥∥∥∥f ′′∥∥ ≤ C

∥∥f ′′∥∥2
(4.7)

(valid for a function f or its derivative vanishing at x = 0 and x = 1), (2.22) and (3.1) we
obtain

∥∥∥∥ ∂2ρ

∂x∂t
(t)

∥∥∥∥
2

≤ C

(∫1

0

∣∣∣∣∂ρ∂x (t)
∣∣∣∣
2∣∣∣∣∂V∂x

∣∣∣∣
2

dx +
∫1

0

∣∣∣∣∂
2V

∂x2

∣∣∣∣
2

dx +
∣∣∣∣μl

∣∣∣∣
2∫1

0

∣∣∣∣∂ρ∂x
∣∣∣∣
2

dx

)

≤ C

(∥∥∥∥∂ρ∂x (t)
∥∥∥∥
2∥∥∥∥∂

2V

∂x2
(t)

∥∥∥∥
2

+
∥∥∥∥∂

2V

∂x2
(t)

∥∥∥∥
2

+
∥∥∥∥∂ρ∂x (t)

∥∥∥∥
2)

.

(4.8)

Taking into account (2.20) and (2.19)we get

∫T

0

∥∥∥∥ ∂2ρ

∂x∂t
(τ)

∥∥∥∥
2

dτ ≤ C. (4.9)

After differentiating (2.31) with respect to the time variable, multiplying by ∂V/∂t and
integrating by parts over Ω we obtain

1
2
d

dt

∥∥∥∥∂V∂t (t)
∥∥∥∥
2

+
∫1

0
ρ

(
∂2V

∂x∂t

)2

dx

= −
∫1

0

∂ρ

∂t

∂V

∂x

∂2V

∂x∂t
dx +K

∫1

0

∂ρ

∂t
θ
∂2V

∂x∂t
dx +K

∫1

0
ρ
∂θ

∂t

∂2V

∂x∂t
dx −

∫1

0

∂2v1

∂t2
∂V

∂t
dx.

(4.10)
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Applying (4.6) and (2.22) for ρ, (2.24) for θ, (4.7) for ∂V/∂x and the Young inequality with a
parameter ε > 0 we obtain

∣∣∣∣
∫1

0

∂ρ

∂t

∂V

∂x

∂2V

∂x∂t
dx

∣∣∣∣ ≤ ε

∫1

0
ρ

(
∂2V

∂x∂t

)2

dx + C

∥∥∥∥∂
2V

∂x2
(t)

∥∥∥∥
2

, (4.11)

∣∣∣∣K
∫1

0

∂ρ

∂t
θ
∂2V

∂x∂t
dx

∣∣∣∣ ≤ C + ε

∫1

0
ρ

(
∂2V

∂x∂t

)2

dx, (4.12)

∣∣∣∣K
∫1

0
ρ
∂θ

∂t

∂2V

∂x∂t
dx

∣∣∣∣ ≤ ε

∫1

0
ρ

(
∂2V

∂x∂t

)2

dx + C

∥∥∥∥∂θ∂t (t)
∥∥∥∥
2

, (4.13)

∣∣∣∣
∫1

0

∂2v1

∂t2
∂V

∂t
dx

∣∣∣∣ ≤ C

(∥∥∥∥∂
2v1

∂t2
(t)

∥∥∥∥
2

+
∥∥∥∥∂V∂t (t)

∥∥∥∥
2)

. (4.14)

For sufficiently small ε > 0 from (4.10) and (4.11)–(4.14) it follows that for t ∈]0, T[we have

∥∥∥∥∂V∂t (t)
∥∥∥∥
2

+
∫ t

0

∥∥∥∥ ∂2V

∂x∂t
(τ)

∥∥∥∥
2

dτ ≤ C

(
1 +

∥∥∥∥∂V∂t (0)
∥∥∥∥
2

+
∫ t

0

∥∥∥∥∂θ∂t (τ)
∥∥∥∥
2

dτ +
∫ t

0

∥∥∥∥∂
2V

∂x2
(τ)

∥∥∥∥
2

dτ

+
∫ t

0

∥∥∥∥∂
2v1

∂t2
(τ)

∥∥∥∥
2

dτ +
∫ t

0

∥∥∥∥∂V∂t (τ)
∥∥∥∥
2

dτ

)
.

(4.15)

Taking into account (3.2), (3.6), and (3.7) from (2.31) we can easily conclude that

∥∥∥∥∂V∂t (0)
∥∥∥∥ =

∥∥∥∥ρ′0V ′
0 + ρ0V

′′
0 −Kρ′0θ0 −Kρ0θ

′
0 −

∂v1

∂t
(0)

∥∥∥∥ ≤ C, (4.16)

and using (2.20) and (4.1) we get that inclusion (4.6) is satisfied for the function V . In the
similar way from (2.32) and (2.33) we obtain (4.6) for W and θ.

Now, taking into account (4.6) and (2.20), we can introduce the following inequalities
for

η ∈ {V,W, θ} (4.17)

derived in [3] by the Nirenberg-Gagliardo inequality (2.44).
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Lemma 4.3 (see [3, Lemmas 2.2–2.4]). For 0 < α < 1 and ε > 0, the function η satisfies the
inequalities

∣∣∣∣∂η∂x
∣∣∣∣
0,QT

≤ C|η|a2+α,1+α/2,QT
, (4.18)

∣∣∣∣∂η∂x
∣∣∣∣
α,α/2,QT

≤ C

(
ε|η|2+α,1+α/2,QT + sup

QT

∣∣∣∣∂η∂t
∣∣∣∣ + 1

)
, (4.19)

∣∣∣∣∂η∂x
∣∣∣∣
α,QT

≤ C|η|d2+α,1+α/2,QT

(|η|2+α,1+α/2,QT + 1
)1−d

, (4.20)

where a = 1/(3 + 2α) and d = α/(2 − α). For 0 < α ≤ 1/2 it holds

∣∣∣∣∂η∂x
∣∣∣∣
α,α/2,QT

≤ C|η|b2+α,1+α/2,QT
, (4.21)

where b = (1 + 2α)/(3 + 2α).

5. The proofs of Theorems 3.1 and 3.2

The conclusions of Theorems 3.1 and 3.2 are immediate consequences of the following
lemmas.

Lemma 5.1. It holds

ρ, V,W, θ ∈ C1/2,1/2(QT

)
. (5.1)

Moreover,

v1, ω1 ∈ C1+1/2,1+1/2(QT

)
. (5.2)

Proof. Taking into account (4.6) we get inclusion (5.1) for the functions V,W , and θ in the
same way as for ρ in (see [8, pages 54-55]). Using (3.1), (3.6), and (5.1) from (2.26), (2.27),
(4.2), and (4.3)we get (5.2) immediately.

Lemma 5.2. For 0 < α < 1 and γ = min{1/2, α} it holds

∂ρ

∂x
∈ Cγ,γ(Q̇T

)
. (5.3)

Proof. With the help of (5.1), (5.2), and (3.2) we obtain (5.3) in the similar way as in (see [8,
pages 57-58]).
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Lemma 5.3. For 0 < α < 1, γ = min{1/2, α}, a = 1/(3 + 2α), and b = (1 + 2γ)/(3 + 2γ) the
inequalities

|V |2+γ,1+γ/2,QT ≤ C
(
1 + |θ|1+γ,γ/2,QT

)
, (5.4)

|W |2+γ,1+γ/2,QT ≤ C, (5.5)

|θ|2+γ,1+γ/2,QT ≤ C
(
|V |a2+γ,1+γ/2,QT

+ |V |b2+γ,1+γ/2,QT
+ |V |a+b2+γ,1+γ/2,QT

+ |V |2a2+γ,1+γ/2,QT
+ 1

)
(5.6)

hold true.

Proof. We write (2.31), (2.32), and (2.33) in the form

∂V

∂t
− ρ

∂2V

∂x2
− ∂ρ

∂x

∂V

∂x
= −K∂ρ

∂x
θ −Kρ

∂θ

∂x
− ∂v1

∂t
,

∂W

∂t
−Aρ

∂2W

∂x2
−A

∂ρ

∂x

∂W

∂x
+A

W

ρ
= −Aω1

ρ
− ∂ω1

∂t
,

∂θ

∂t
−Dρ

∂2θ

∂x2
−D

∂ρ

∂x

∂θ

∂x
= −Kρθ

∂V

∂x
−Kθ

μ

l
+ ρ

(
∂V

∂x

)2

+ 2
∂V

∂x

μ

l
+
1
ρ

(
μ

l

)2

+ ρ

(
∂W

∂x

)2

+ 2
∂W

∂x

ν

l
+
1
ρ

(
ν

l

)2

+
1
ρ

(
W +ω1

)2
,

(5.7)

and we consider them as parabolic equations for V,W , and θ, respectively, with Hölder
continuous coefficients with exponent γ = min{1/2, α}. Taking into account the compatibility
conditions (3.8)–(3.10), (2.14), and |fg|α,α/2 ≤ |f |0|g|α,α/2 + |f |α,α/2|g|0, from a parabolic theory
(see [7, Theorems 5.2 and 5.3]) we conclude that the solutions V,W , and θ satisfy the
following inequalities

|V |2+γ,1+γ/2,QT ≤ C

(∣∣∣∣∂ρ∂x
∣∣∣∣
γ,γ/2,QT

|θ|0,QT +
∣∣∣∣∂ρ∂x

∣∣∣∣
0,QT

|θ|γ,γ/2,QT + |ρ|γ,γ/2,QT

∣∣∣∣∂θ∂x
∣∣∣∣
0,QT

+ |ρ|0,QT

∣∣∣∣∂θ∂x
∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣∂v1

∂t

∣∣∣∣
γ,γ/2,QT

+
∣∣V0

∣∣
2+γ,Ω

)
,

(5.8)

|W |2+γ,1+γ/2,QT ≤
(∣∣∣∣1ρ

∣∣∣∣
0,QT

∣∣ω1
∣∣
γ,γ/2,QT

+
∣∣∣∣1ρ

∣∣∣∣
γ,γ/2,QT

∣∣ω1
∣∣
0,QT

+
∣∣∣∣∂ω1

∂t

∣∣∣∣
γ,γ/2,QT

+
∣∣W0

∣∣
2+γ,Ω

)
,

(5.9)
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|θ|2+γ,1+γ/2,QT ≤ C

(
|ρθ|0,QT

∣∣∣∣∂V∂x
∣∣∣∣
γ,γ/2,QT

+ |ρθ|γ,γ/2,QT

∣∣∣∣∂V∂x
∣∣∣∣
0,QT

+ |θ|γ,γ/2,QT

+
∣∣∣∣ρ∂V∂x

∣∣∣∣
0,QT

∣∣∣∣∂V∂x
∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣ρ∂V∂x

∣∣∣∣
γ,γ/2,QT

∣∣∣∣∂V∂x
∣∣∣∣
0,QT

+
∣∣∣∣∂V∂x

∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣1ρ

∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣ρ∂W∂x

∣∣∣∣
0,QT

∣∣∣∣∂W∂x
∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣∂W∂x

∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣ρ∂W∂x

∣∣∣∣
γ,γ/2,QT

∣∣∣∣∂W∂x
∣∣∣∣
0,QT

+
∣∣∣∣Wρ

∣∣∣∣
0,QT

|W |γ,γ/2,QT

+
∣∣∣∣Wρ

∣∣∣∣
γ,γ/2,QT

|W |0,QT +
∣∣∣∣ω

2
1

ρ

∣∣∣∣
γ,γ/2,QT

+
∣∣θ0∣∣2+γ,Ω

)
.

(5.10)

Using the inequalities

|f |0,QT ≤ |f |γ,γ/2,QT ≤ |f |γ,γ,QT , (5.11)

and (3.6), (3.2), and (5.1)–(5.3), from (5.8)-(5.9)we get easily (5.4) and (5.5). With the help of
(4.18), (4.21) for η = W and (5.5) from (5.10) it follows

|θ|2+γ,1+γ/2,QT ≤ C

(∣∣∣∣∂V∂x
∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣∂V∂x

∣∣∣∣
0,QT

+
∣∣∣∣∂V∂x

∣∣∣∣
γ,γ/2,QT

∣∣∣∣∂V∂x
∣∣∣∣
0,QT

+
∣∣∣∣∂V∂x

∣∣∣∣
2

0,QT

+ 1
)
.

(5.12)

Using (4.18) and (4.21) for η = V we get (5.6) immediately.

Lemma 5.4. For γ from Lemma 5.2 the estimations

|V |2+γ,1+γ/2,QT ≤ C, (5.13)

|θ|2+γ,1+γ/2,QT ≤ C, (5.14)

|ρ|1+γ,QT ≤ C, (5.15)

|v1|2+γ,1+γ/2,QT ≤ C, |ω1|2+γ,1+γ/2,QT ≤ C (5.16)

hold true.

Proof. For η = θ and 0 < α < 1 from (4.19)we can conclude that

|θ|1+α,α/2,QT ≤ C
(|θ|2+α,1+α/2,QT + 1

)
, (5.17)

and from (5.4) it follows

|V |2+γ,1+γ/2,QT ≤ C
(|θ|2+γ,1+γ/2,QT + 1

)
. (5.18)
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Inserting (5.6) on the right-hand side of (5.18)we obtain

|V |2+γ,1+γ/2,QT ≤ C
(|V |a2+γ,1+γ/2,QT

+ |V |b2+γ,1+γ/2,QT
+ |V |a+b2+γ,1+γ/2,QT

+ |V |2a2+γ,1+γ/2,QT
+ 1

)
,

(5.19)

where a, b, a + b, 2a ∈]0, 1[. Applying the Young inequality with a parameter ε > 0 we obtain

|V |2+γ,1+γ/2,QT ≤ C
(
ε|V |2+γ,1+γ/2,QT + 1

)
, (5.20)

and hence (5.13). Using this result from (5.6) follows (5.14). From (2.30)we get

∣∣∣∣∂ρ∂t
∣∣∣∣
γ,QT

≤ ∣∣ρ2∣∣0,QT

∣∣∣∣∂V∂x
∣∣∣∣
γ,QT

+
∣∣ρ2∣∣γ,QT

∣∣∣∣∂V∂x
∣∣∣∣
0,QT

+
∣∣∣∣μl ρ

∣∣∣∣
γ,QT

. (5.21)

Using (4.20) and (5.13) for V , the inequality |ρ|γ,QT ≤ |ρ|γ,γ,QT , (5.1) and (3.1) we obtain

∣∣∣∣∂ρ∂t
∣∣∣∣
γ,QT

≤ C, (5.22)

and with the help of (5.3)we get (5.15). Notice that from (5.15) follows

∫x

0
ρ−1dξ ∈ Cγ,γ/2(QT

)
, (5.23)

and using (5.13) and (3.1) from (4.2) and (2.26)we obtain

∣∣∣∣∂v1

∂t

∣∣∣∣
γ,γ/2,QT

≤
∣∣∣∣
(
μ

l

)′
+
(
μ

l

)2∫x

0

1
ρ
dξ

∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣μl V

∣∣∣∣
γ,γ/2,QT

+
∣∣μ′

0

∣∣
γ/2,]0,T[ ≤ C,

∣∣∣∣∂
2v1

∂x2

∣∣∣∣
γ,γ/2,QT

≤
∣∣∣∣ μlρ

∣∣∣∣
γ,γ/2,QT

∣∣∣∣∂ρ∂x
∣∣∣∣
0,QT

+
∣∣∣∣ μlρ

∣∣∣∣
0,QT

∣∣∣∣∂ρ∂x
∣∣∣∣
γ,γ/2,QT

+
∣∣∣∣μl

∣∣∣∣
γ,]0,T[

≤ C.

(5.24)

Taking into account (5.2) it is evident that the inequality

∣∣v1
∣∣
2+γ,1+γ/2,QT

≤ C (5.25)

is satisfied. From (2.27) and (4.3) follows the same estimation for the function ω1.

Now, from the above estimations we derive the conclusion that if α ≤ 1/2 then α = γ
and Lemmas 5.1–5.4 are the proofs of Theorems 3.2 and 3.1. If α > 1/2 we have

V,W, θ, v1, ω1 ∈ C2+1/2,1+1/4(QT

)
, ρ ∈ C1+1/2(QT

)
. (5.26)
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Lemma 5.5. For 1/2 < α < 1 we have

ρ, V,W, θ ∈ Cα,α(QT

)
, (5.27)

v1, ω1 ∈ C1+α,1+α(QT

)
, (5.28)

∂ρ

∂x
∈ Cα,α(Q̇T

)
. (5.29)

Proof. Inclusions (5.27) follows directly from (5.26). Using this result from (2.26), (2.27), (4.2),
and (4.3) we get (5.28). Estimation (5.29) is proved in (see [8, pages 57-58]).

Lemma 5.6. For 1/2 < α < 1 the estimations

|V |2+α,1+α/2,QT ≤ C, (5.30)

|W |2+α,1+α/2,QT ≤ C, (5.31)

|θ|2+α,1+α/2,QT ≤ C, (5.32)

|ρ|1+α,QT ≤ C. (5.33)

|v1|2+α,1+α/2,QT ≤ C, |ω1|2+α,1+α/2,QT ≤ C (5.34)

are true.

Proof. We consider (2.31)–(2.33) again as parabolic equations for V,W , and θ, respectively,
with Hölder continuous coefficients with exponent α. In the same way as before from (5.8)
and (5.9) we get

|V |2+α,1+α/2,QT ≤ C
(
1 + |θ|2+α,1+α/2,QT

)
, (5.35)

|W |2+α,1+α/2,QT ≤ C, (5.36)

and with the help of (5.26) from (5.10) we obtain

|θ|2+α,1+α/2,QT ≤ C

(
1 +

∣∣∣∣∂V∂x
∣∣∣∣
α,α/2,QT

)
. (5.37)

Inserting (5.37) in (5.35), using (4.19) and (5.26) for the function V , we obtain (5.30). With
the help of (4.19) and (5.30) from (5.37) it follows (5.32). In the same way as before we get

∣∣∣∣∂ρ∂t
∣∣∣∣
α,QT

≤ ∣∣ρ2∣∣α,QT

∣∣∣∣∂V∂x
∣∣∣∣
0,QT

+
∣∣ρ2∣∣0,QT

∣∣∣∣∂V∂x
∣∣∣∣
α,QT

+
∣∣∣∣μl ρ

∣∣∣∣
α,QT

. (5.38)

Because of (5.27), (5.30), and (4.20) for η = V we obtain

∣∣∣∣∂ρ∂t
∣∣∣∣
α,QT

≤ C, (5.39)
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and using (5.29) we have (5.33). Taking into account (5.33) in the same way as in Lemma 5.4
we get (5.34).
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