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1. Introduction

In this paper, we consider the existence of nodal solutions to the semilinear fourth-order
equation:

u(4)(t) = f(t, u(t)), 0 < t < 1, (1.1)

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1.2)

where f : [0, 1] × R→R is continuous.
Owning to the importance of higher-order differential equations in physics, the

existence and multiplicity of the solutions to such problems have been studied by many
authors. They obtained the existence of solutions by the cone expansion or compression
fixed point theorem [1–6]; sub-sup solutionmethod [7–9]; critical point theory [10–13]; Morse
theory [14, 15]; and eta [16, 17]. There are also papers which study nodal solutions for elliptic
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equations [18, 19]. In particular, in [20], Han and Li obtained multiple positive, negative, and
sign-changing solutions by combining the critical point theory and the method of sub-sup
solutions for the (BVP) (1.2). The main result is as follows:

(H1) there exist a strict subsolution α and a strict supersolution β of (BVP) (1.2) with
α < β, α(0) = α(1) = α′′(0) = α′′(1) = 0, and β(0) = β(1) = β′′(0) = β′′(1) = 0;

(H2) f(t, u) is strictly increasing in u;
(H3) f(t, u) is locally Lipschitz continuous in u;
(H4) there exist μ ∈ (0, 1/2) and Λ > 0 such that 0 < F(t, u) =

∫1
0f(t, v)dv ≤ μuf(t, u)

for all |u| ≥ Λ and t ∈ [0, 1].

Theorem 1.1 (see [20]). Assume that (H1)–(H4) hold. Then, (BVP) (1.2) has at least four solutions.

Motivated by their ideas, we cannot help wondering if there are no strict subsolution
and supersolution of (BVP) (1.2), can we still get the nodal solutions just by critical point
theory? In this paper, we will use the admissible invariant sets and critical point theory to
settle this problem. But we should point out that in all theorems of our paper, the nonlinearity
f(t, u) is assumed to be odd in u, while no such symmetry is required in [20].

The paper is organized as follows: in Section 2, we give some preliminaries, including
the critical point theorems which will be used in our main results and some concepts
concerning the partially ordered Banach space. The main results and proofs are established
in Section 3.

2. Preliminaries

Let E be a Hilbert space and X ⊂ E a Banach space densely embedded in E. Assume that E
has a closed convex cone PE and that P := PE ∩X has interior points in X, that is, P = Ṗ ∪ ∂P
with Ṗ the interior and ∂P the boundary of P in X.

Let J ∈ C1(E,R) and J ′(u) = u − A(u) for u ∈ E. We use the following notation:
K = K(J) = {u ∈ E : J ′(u) = 0}, Jb = {u ∈ E : J(u) ≤ b}, Kc = {u ∈ E : J(u) = c, J ′(u) = 0},
K([a, b]) = {u ∈ E : J(u) ∈ [a, b], J ′(u) = 0} for a, b, c ∈ R. Let || · || and || · ||X denote the
norms in E and X, respectively.

Lemma 2.1 (see [21]). Assume E is a Hilbert space, and M is a closed convex set of E, J ′(u) =
u −A(u), and A(M) ⊂ M. Then, there exists a pseudogradient vector field W := −id + B for J , and
B(M) ⊂ M. Furthermore, if J is even, M = −M, thenW is odd.

Consider the pseudogradient flow σ on E associated with the vector fieldW = −id+B,

d

dt
σ(t, u) = −W(σ(t, u)), t ≥ 0;

σ(0, u) = u.

(2.1)

We see that σ is odd in u, if W is odd in u. Since u + λ(−W(u)) = (1 − λ)u + λB(u) ∈ M for
u ∈ M \K and 0 ≤ λ ≤ 1, the Brezis-Martin theorem [22] implies that σ(t,M) ⊂ M for t ≥ 0.

Definition 2.2 (see [21, 23]). With the flow σ, a subset M ⊂ E is called an invariant set if
σ(t,M) ⊂ M for t ≥ 0.
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Let us assume that

(Φ) K(J) ⊂ X, J ′(u) = u −A(u) for u ∈ E, A : X→X is continuous.

Under condition (Φ), we have σ(t, x) ∈ X for x ∈ X and σ is continuous in (t, x) ∈ R ×X.

Definition 2.3 (see [21]). LetM ⊂ X be an invariant set under σ.M is said to be an admissible
invariant set for J if (a) M is the closure of an open set in X, that is, M = Ṁ ∪ ∂M; (b) if
un = σ(tn, v) for some v/∈M and un →u in E as tn →∞ for some u ∈ K, then un →u in X; (c)
if un ∈ K ∩M such that un →u in E, then un →u in X; (d) for any u ∈ ∂M \ K, σ(t, u) ∈ Ṁ
for t > 0.

Lemma 2.4 (see [24]). Let J ∈ C1(E,R) and (Φ) hold. Assume J is even, bounded from below,
J(0) = 0 and satisfies (PS) condition. Assume that the positive cone P is an admissible invariant set
for J and Kc ∩ ∂P = ∅ for all c < 0. Suppose there is a linear subspace F ⊂ X with dimF = n, such
that supF∩∂Bρ

J(u) < 0 for some ρ > 0, where Bρ = {u ∈ X : ||u||X ≤ ρ}. Then, J has at least n pairs
of critical points with negative critical values. More precisely,

(i) if infPJ ≤ infEJ , J has at least one pair of critical points in Ṗ ∪ (−Ṗ), and at least n − 1
pairs of critical points in X \ (P ∪ (−P));

(ii) if infEJ < infPJ , J has at least one pair of critical points in Ṗ ∪ (−Ṗ), and at least n pairs
of critical points in X \ (P ∪ (−P)).

Lemma 2.5 (see [21]). Let J ∈ C1(E,R) and (Φ) hold. Assume J is even, J(0) = 0, and J satisfies
(PS) condition. Assume that the positive cone P is an admissible invariant set for J andKc∩∂P = ∅ for
all c < 0. Suppose there exist linear subspaces F ⊂ X and H ⊂ E with dimF = n, codimH = k ≥ 1
(k = 0, resp.), n > k, such that for some ρ > 0, supF∩∂Bρ(0)J(u) < 0 and infHJ(u) > −∞. Then, J
has at least (n − k) ((n − 1), resp.) pairs of critical points in X \ (P ∪ (−P)) with negative critical
values.

Lemma 2.6 (see [21]). Let J ∈ C1(E,R) and (Φ) hold. Assume J is even, J(0) = 0 and J satisfies
(PS) condition. Assume that the positive cone P is an admissible invariant set for J andKc∩∂P = ∅ for
all c > 0. Suppose there exist linear subspaces F ⊂ X and H ⊂ E with dimF = n, codimH = k ≥ 1,
n > k + 1, such that for some ρ > γ > 0, supF∩∂Bρ(0)J(u) ≤ 0 and infH∩∂Bγ (0)J(u) > 0. Then for k ≥ 1
(k = 0, resp.), J has at least (n − k − 1) ((n − 1), resp.) pairs of critical points in X \ (P ∪ (−P)) with
positive critical values.

Lemma 2.7 (see [21, 25]). Assume J ∈ C1(E,R) is even, J(0) = 0, satisfies (Φ) and (PS)c condition
for c > 0. Assume that P is an admissible invariant set for J ,Kc ∩ ∂P = ∅ for all c > 0. E =

⊕∞
j=1Ej ,

where Ej are finite-dimensional subspaces of X, and for each k, let Yk =
⊕k

j=1Ej and Zk =
⊕∞

j=kEj .

Assume for each k there exist ρk > γk > 0 such that limk→∞ak < ∞, where ak = maxYk∩∂Bρk
(0)J(u),

bk = infZk∩∂Bγk
(0)J(u)→∞ as k→∞. Then, J has a sequence of critical points un ∈ X \ (P ∪ (−P))

such that J(un)→∞ as n→∞, provided Zk ∩ ∂Bγk(0) ∩ P = ∅ for large k.

Next, we need some basic concepts of ordered Banach spaces.

Definition 2.8. An ordered real Banach space is a pair (X, P), where X is a real Banach space
and P a closed convex subset of X such that (−P) ∩ P = {0} and R+ · P ⊂ P . The partial order
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on X is given by the cone P . For u, v ∈ X, we write

u ≤ v ⇐⇒ v − u ∈ P ;

u < v ⇐⇒ u ≤ v, but u/=v;

u 
 v ⇐⇒ v − u ∈ Ṗ .

. (2.2)

If P has nonempty interior, then it is called a solid cone. If every ordered interval is
bounded, then P is called a normal cone. An operatorA : D(A)→X is called order preserving
(in the literature sometimes increasing) if

u ≤ v =⇒ Au ≤ Av; (2.3)

strictly order preserving if

u < v =⇒ Au < Av; (2.4)

and strongly order preserving if

u < v =⇒ Au 
 Av. (2.5)

3. Main results

In this section, we will employ the abstract results in Section 2 to establish some existence
theorems on sign-changing solutions of (BVP) (1.2). Firstly, we give some lemmas to change
(BVP) (1.2) to a variational problem. Let C[0, 1] be the usual real Banach space with the norm
‖u‖C = maxt∈[0,1]|u(t)| for all u ∈ C[0, 1]. We can easily verify that

C0[0, 1] = {u ∈ C[0, 1] : u(0) = u(1) = 0} (3.1)

is also a Banach space with respect to || · ||C. Let

P = {u ∈ C0[0, 1] : u(t) ≥ 0 ∀t ∈ [0, 1]}, (3.2)

then P is a normal solid cone in C0[0, 1] and

Ṗ = {u ∈ C0[0, 1] : u(t) > 0 ∀t ∈ (0, 1)}. (3.3)

By L2[0, 1], we denote the usual real Hilbert space with the inner product (u, v) =
∫1
0u(t)v(t)dt

for all u, v ∈ L2[0, 1].
It is well known that the solution of (BVP) (1.2) in C4[0, 1] is equivalent to the solution

of the following integral equation in C[0, 1]:

u(t) =
∫1

0
G(t, s)

∫1

0
G(s, τ)f(τ, u(τ))dτ ds, t ∈ [0, 1], (3.4)
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where G(t, s) is the Green’s function of the linear boundary value problem −u′′(t) = 0 for all
t ∈ [0, 1] subject to u(0) = u(1) = 0, that is,

G(t, s) =

⎧
⎨

⎩

s(1 − t), 0 ≤ s ≤ t ≤ 1;

t(1 − s), 0 ≤ t ≤ s ≤ 1.
(3.5)

Define operators T,Af : C[0, 1]→C[0, 1] by

Tu(t) =
∫1

0
G(t, s)u(s)ds,

Afu(t) = f(t, u(t)).

(3.6)

Since T : C[0, 1]→C0[0, 1], (3.4) is equivalent to the following operator equation in C0[0, 1]:

u = T2Afu. (3.7)

Remark 3.1. It is easy to see that
(i) G : [0, 1] × [0, 1]→ [0, 1] is nonnegative continuous;
(ii)max(t,s)∈[0,1]×[0,1]G(t, s) = 1/4;
(iii) Af : C[0, 1]→C[0, 1] is bounded and continuous.

Lemma 3.2 (see [20]). T : L2[0, 1]→C0[0, 1] is a linear completely continuous operator and also
a linear completely continuous operator from L2[0, 1] to L2[0, 1]. In addition, T : C0[0, 1]→C0[0, 1]
is strongly order-preserving.

From the definition of T , we can obtain that Tu/= 0 for all u ∈ L2[0, 1] with u/= 0.
Therefore, Tu1 /= Tu2 for all u1, u2 ∈ L2[0, 1] with u1 /=u2. It is well known that all eigenvalues
of T are

{λk}k∈N =
1

k2π2
, (3.8)

which have the corresponding orthonormal eigenfunctions

{ek}k∈N =
{√

2 sin kπt
}
k∈N, (3.9)

and λ1 > λ2 > · · · > λk > · · · > 0 ∀k ∈ N.

Lemma 3.3 (see [10]). (i) The operator equation

u = T2Afu (3.10)
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has a solution in C[0, 1] if and only if the operator equation

v = TAfTv (3.11)

has a solution in L2[0, 1].
(ii) The uniqueness of the solution for these two above equations is also equivalent.

Remark 3.4. From the proof of Lemma 3.3 [10], it is very clear if u ∈ L2[0, 1] is a solution for
(3.11), then Tu ∈ C0[0, 1] is a solution for (3.7). Furthermore, if u ∈ C0[0, 1] is a solution
for (3.11), then Tu ∈ C0[0, 1] is a solution for (3.7) with the same sign, which follows from
Lemma 3.2.

Lemma 3.5 (see [10]). Let Ψ(u) =
∫1
0

∫u(t)
0 f(t, v)dv dt, u ∈ C[0, 1]. Then,

(i) Ψ is Fréchet differentiable on C[0, 1] and (Ψ′(u))(w) = (Af,w) for all u,w ∈ C[0, 1];

(ii) Ψ ◦ T is Fréchet differentiable on L2[0, 1] and (Ψ ◦ T)′(v) = TAfTv for all v ∈ L2[0, 1].

Choose E = L2[0, 1] and X = C0[0, 1] to be our Hilbert space and Banach space,
respectively. Define a functional J : E→R:

J(u) =
1
2
‖u‖2 −Ψ(Tu), u ∈ E. (3.12)

Then, according to Lemma 3.5, we have

J ′(u) = u − TAfTu ∀u ∈ E. (3.13)

Hence, Lemma 3.3 implies that the operator equation u = T2Afu has a solution in X if and
only if the functional J has a critical point in E. Thus, (BVP) (1.2) has been transformed into
a variational problem.

We refer the following assumption:
(f1) f : [0, 1] × R→R is continuous and increasing in u.

Lemma 3.6. Under (f1), (Φ) is satisfied, and A := TAfT : C0[0, 1]→C0[0, 1] is strongly order-
preserving.

Proof. The proof is similar to [20], and we omit it here.

Lemma 3.7. Under (f1),M = P is an admissible invariant set for J .

Proof. We know that A : C0[0, 1]→C0[0, 1] is strongly order-preserving, so does B given
in Lemma 2.1. The Brezis-Martin theory implies that P and −P are invariant sets under the
negative pesudogradient flow of J . Requirement (a) is satisfied automatically. For (d), we
note that for all v ∈ P \ {0}, we have B(v) ∈ Ṗ , similar to the proof in [23], σ(t, ∂P) ∈ Ṗ . To
prove (b), let un = σ(tn, v) for some v ∈ X \ (P ∪ (−P)), so un ∈ X = C0[0, 1], let tn →∞ be a
sequence such that un →u in E = L2[0, 1] for some u ∈ K(J) ⊂ X = C0[0, 1], then un →u in
X = C0[0, 1]. For (c), if un ∈ K(J) ∩ (P ∪ (−P)) ⊂ X, then J ′(un) = 0, if un →u in E = L2[0, 1],
for J ∈ C1(E,R), then J ′(u) = 0 and u ∈ K(J) ⊂ X = C0[0, 1], so un →u in X = C0[0, 1] , and
the proof is completed.
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Lemma 3.8 (see [15]). Any bounded sequence {un} ⊂ L2[0, 1] such that J ′(u)→ 0 as n→∞ has a
convergent subsequence.

Next, we make more assumptions:

(f2) lim|u|→∞f(t, u)/u < π4, uniformly for t ∈ [0, 1];

(f3) lim|u|→ 0f(t, u)/u > k4π4, uniformly for t ∈ [0, 1] and some k ≥ 2;

(f4) f(t, u) is odd in u.

Theorem 3.9 (sublinear nonlinearity). Under (f1)–(f4), (BVP) (1.2) has at least one pair of one-
sign solutions u1 > 0, −u1 < 0, and at least k − 1 pairs of nodal solutions ui for i = 2, . . . , k.

Proof. It is easy to see that J ∈ C1(E,R) and (Φ) holds. P is an admissible invariant set for J ,
and Kc(J) ∩ ∂P = ∅ for c /= 0. Also, J is even, J(0) = 0. By (f2), there exist δ > 0, Λ > 0 such
that F(t, u) ≤ (1/2)(π4 − δ)u2 + Λ for all u ∈ R, then

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu(t))dt

≥ 1
2
||u||2 − 1

2
(π4 − δ)

∫1

0
(Tu)2dt −Λ

≥ 1
2
||u||2 − π4 − δ

2π4
||u||2 −Λ

=
δ

2π4
||u||2 −Λ ≥ −Λ.

(3.14)

So J is coercive, bounded from below, and satisfies (PS) condition.
Take F =

⊕k
i=1{ei}; from (f3), there exist η > 0, δ1 > 0 such that |s| < η, F(t, s) ≥

(1/2)(k4π4 + δ1)s2, choose ρ = 4η, then |u| ≤ ρ ⇒ |Tu| = |∫10G(t, s)u(s)ds| ≤ (1/4)|u| ≤ η, and

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≤ 1
2
||u||2 − 1

2
(k4π4 + δ1)

∫1

0
(Tu)2dt

≤ 1
2
||u||2 − k4π4 + δ1

2k4π4
||u||2 = − δ1

2k4π4
||u||2 < 0,

(3.15)

so supF∩∂Bρ
J(u) < 0 for ρ > 0 small. Result follows from Lemma 2.4.

Next, we consider an asymptotically linear problem:

(f5) lim|u|→∞f(t, u)/u ∈ (k4π4, (k + 1)4π4), uniformly for t ∈ [0, 1];

(f6) lim|u|→ 0f(t, u)/u ∈ (l4π4, (l + 1)4π4), uniformly for t ∈ [0, 1].

Theorem 3.10 (asymptotically linear case). Under (f1), (f4), (f5), and (f6), (BVP) (1.2) has at
least n pairs of nodal solutions provided k > l + 2 or l > k + 1. Here, n = k − l − 2, if k > l + 2; and
n = l − k − 1, if l > k + 1.
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Proof. Take k4π4 < b1 ≤ b2 < (k + 1)4π4 and Λ > 0 such that for |u| ≥ Λ, b1 ≤ f(t, u)/u ≤ b2.
Now let {un} be a (PS) sequence for J(u). Writing un = vn + wn with vn ∈ Ek =

⊕k
i=1{ei},

wn ∈ E⊥
k
, and taking inner product of J ′(un) and vn −wn, we see that

o(1) · ||un|| =
〈
J ′(un), vn −wn

〉

=
〈
un, vn −wn

〉 −
∫1

0
f(t, Tun)(Tvn − Twn)dt

=
〈
vn +wn, vn −wn

〉 −
∫

|Tun|≥Λ

f(t, Tun)
Tun

(
(Tvn)

2 − (Twn)
2)dt

−
∫

|Tun|<Λ
f(t, Tun)(Tvn − Twn)dt

≤ ||vn||2 − ||wn||2 − b1

∫

|Tun|≥Λ
(Tvn)

2dt + b2

∫

|Tun|≥Λ
(Twn)

2dt

−
∫

|Tun|<Λ
f(t, Tun)(Tvn − Twn)dt

= ||vn||2 − ||wn||2 − b1

∫1

0
(Tvn)

2dt + b1

∫

|Tun|<Λ
(Tvn)

2 + b2

∫1

0
(Twn)

2dt

− b2

∫

|Tun|<Λ
(Twn)

2dt −
∫

|Tun|<Λ
f(t, Tun)(Tvn − Twn)dt

≤ ||vn||2 − ||wn||2 − b1
k4π4

||vn||2 + b2

(k + 1)4π4
||wn||2 + b1

∫

|Tun|<Λ
(Tvn)

2dt

− b2

∫

|Tun|<Λ
(Twn)

2dt −
∫

|Tun|<Λ
f(t, Tun)(Tvn − Twn)dt

≤
(
1 − b1

k4π4

)
||vn||2 +

(
b2

(k + 1)4π4
− 1

)
||wn||2 + b1b2

b2 − b1

∫

|Tun|<Λ
|Tun|2dt

+
(∫

|Tun|≤Λ
|f(t, Tun)|2dt

)1/2(∫

|Tun|<Λ
(Tvn − Twn)

2dt

)1/2

≤
(
1 − b1

k4π4

)
||vn||2 +

(
b2

(k + 1)4π4
− 1

)
||wn||2 + b1b2

b2 − b1
Λ2 + C

(∫1

0
|Tun|2dt

)1/2

≤
(
1 − b1

k4π4

)
||vn||2 +

(
b2

(k + 1)4π4
− 1

)
||wn||2 + b1b2

b2 − b1
Λ2 + C||un||

≤ −a||un||2 + C||un|| + C1.

(3.16)

So {un} is bounded, where a = min{b1/k4π4 − 1, 1 − b2/(k + 1)4π4} > 0. Then, J(u) satisfies
the (PS) condition.

If k > l + 2, let F =
⊕k

i=1{ei}, andH =
⊕∞

i=l+2{ei}, then dimF = k, and codimH = l + 1.
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From (f6), we know that there exist δ > 0, and η > 0 such that

1
2
(l4π4 + δ)u2 ≤ F(t, u) ≤ 1

2
((l + 1)4π4 − δ)u2 for |u| ≤ η. (3.17)

Then, for ||u|| ≤ (1/4)η, |Tu| ≤ η, we can obtain, when u ∈ H,

J(u) =
1
2
||u||2 − 1

2

∫1

0
F(t, Tu)dt

≥ 1
2
||u||2 − 1

2
((l + 1)4π4 − δ)

∫1

0
(Tu)2dt

≥ 1
2
||u||2 − (l + 1)4π4 − δ

2(l + 2)4π4
||u||2

=
(
1
2
− (l + 1)4π4 − δ

2(l + 2)4π4

)
||u||2 > 0.

(3.18)

So, choose γ = (1/4)η, then infH∩∂Bγ (0)J(u) > 0.
From (f5), we can get there exist θ > 0, Λ > 0 such that

1
2
(k4π4 + θ)u2 −Λ ≤ F(t, u) ≤ 1

2
((k + 1)4π4 − θ)u2 + Λ ∀u ∈ R. (3.19)

Then, when u ∈ F, we have

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≤ 1
2
||u||2 − 1

2
(k4π4 + θ)

∫1

0
(Tu)2dt + Λ

≤ 1
2
||u||2 − k4π4 + θ

2k4π4
||u||2 + Λ

= − θ

2k4π4
||u||2 + Λ.

(3.20)

Choose ρ large enough such that ρ > γ > 0, and supF∩∂Bρ(0)J(u) ≤ 0, result follows from
Lemma 2.6.

If l > k + 1, let F =
⊕l

i=1{ei}, H =
⊕∞

i=k+2{ei}, then dimF = l, codimH = k + 1. From
(3.17), when u ∈ F,

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≤ 1
2
||u||2 − 1

2
(l4π4 + δ)

∫1

0
(Tu)2dt
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≤ 1
2
||u||2 − l4π4 + δ

2l4π4
||u||2

= − δ

2l4π4
||u||2 < 0.

(3.21)

When u ∈ H, we know from (3.19),

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≥ 1
2
||u||2 − 1

2
((k + 1)4π4 − θ)

∫1

0
(Tu)2dt −Λ

≥ 1
2
||u||2 − (k + 1)4π4 − θ

2(k + 2)4π4
||u||2 −Λ

=
(
1
2
− (k + 1)4π4 − θ

2(k + 2)4π4

)
||u||2 −Λ ≥ −Λ,

(3.22)

which means infHJ(u) > −∞, then result follows from Lemma 2.5.

Next, we consider a superlinear problem. Assume that
(f7) there is μ > 2 such that 0 < μF(t, u) ≤ f(t, u)u for |u| large;
(f8) there are p > μ, C > 0 such that F(t, u) ≤ C|u|p for |u| large.

Theorem 3.11 (superlinear nonlinearity). Under (f1), (f4), (f7), and (f8), (BVP) (1.2) has
infinitely many nodal solutions.

Proof. From condition (f7) by the standard argument, J satisfies (PS)c condition for every
c ∈ R. Let Zk =

⊕∞
i=k{ei}. From (f8), we obtain |F(t, u)| ≤ C|u|p + C1 for all u ∈ R. Define

βk = supu∈Zk,||Tu||=1|Tu|, it is very clear βk < ∞ and 0 < βk+1 ≤ βk, so βk → β ≥ 0 and β /= ±∞. So
if u ∈ Zk,

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≥ 1
2
||u||2 −

∫1

0
(C|Tu|p + C1)dt

≥ 1
2
||u||2 − Cβ

p

k
||Tu||p − C1

≥ 1
2
||u||2 − C

β
p

k

(k2π2)p
||u||p − C1.

(3.23)

Choosing rk = (4Cβp
k
)1/(2−p)(k2π2)p/(p−2), we obtain, if u ∈ Zk and ||u|| = rk,

J(u) ≥ (k2π2)2p/(p−2)

4(4Cβp
k
)2/(p−2)

− C1 −→ ∞, if k −→ ∞. (3.24)
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Let Yk =
⊕k

i=1{ei}. From (f7), after integrating, we obtain the existence of C2 > 0 such
that F(t, u) ≥ C2|u|μ for |u| ≥ R. Hence, we have F(t, u) ≥ C2|u|μ − C3 for u ∈ R and C3 > 0 is
constant. Therefore, when u ∈ Yk,

J(u) =
1
2
||u||2 −

∫1

0
F(t, Tu)dt

≤ 1
2
||u||2 −

∫1

0

(
C2|Tu|μ − C3

)
dt

≤ 1
2
||u||2 − C||Tu||μ + C3

≤ 1
2
||u||2 − C

(k2π2)μ
||u||μ + C3.

(3.25)

Noting μ > 2, choose ρk > rk > 0 large enough, such that J(u)|u∈Yk∩∂Bρk
< 0, and

lim
k→∞

max
u∈Yk∩∂Bρk

J(u) < ∞. (3.26)

Result follows from Lemma 2.7.

Remark 3.12. If there exist no strict supsolution and supersolution required in [20], just only
using the functional J to get the critical point [10, 11], then we just know that (BVP) (1.2) has
solutions, even we can know the sign of the critical point of the functional J because Tu is not
strongly order-preserving in L2[0, 1]. In our paper, using admissible invariant sets in C0[0, 1],
we can settle the problem.
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