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1. Introduction

We are interested in the following N-dimension nonlinear fractional differential system:

Dgl X1 (t) + f] (t, .‘X'z(t), Dgl .‘X'z(t)) =0,

+ +

O<t<l1, (1.1)
Dy xn-1(8) + fvaa (t xn (B, Do xn (1)) =0,
Dgfo(t) + fN(t, X1 (i’), Dgfxl (t)) = O,
that is subject to the boundary conditions
x1(0) = x2(0) = --- = xn(0) = 0,
(1.2)

x1(1) =x2(1) =--- =xn(1) =0,
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where Dgi is the standard Riemann-Liouville fractional derivative of order a;, f; € C([0,1] x
Ry xR,Ry), 1<a;<2,4;>0,i=1,2,... Nandaj —pj-1 >1,i=1,2,...,N, po = pun.

Recently, fractional differential equations (in short FDEs) have been studied exten-
sively. The motivation for those works stems from both the development of the theory of
fractional calculus itself and the applications of such constructions in various sciences such
as physics, mechanics, chemistry, engineering, and so on. For an extensive collection of such
results, we refer the readers to the monographs by Samko et al. [1], Podlubny [2], Miller and
Ross [3], and Kilbas et al. [4].

Some basic theory for the initial value problems of FDE involving Riemann-Liouville
differential operator has been discussed by Lakshmikantham [5-7], El-Sayed et al. [8, 9],
Diethelm and Ford [10], and Bai [11], and so on. Also, there are some papers which deal
with the existence and multiplicity of solutions for nonlinear FDE boundary value problems
(in short BVPs) by using techniques of topological degree theory. For example, Su [12]
considered the BVP of the coupled system

D*u(t) = f(t,v(t), DFv(t)), 0<t<1,
DFfu(t) = g(tu(t),D"u(t)), 0<t<l, (1.3)
u(0) = u(1l) =v(0) =v(1) =0.

By using the Schauder fixed point theorem, one existence result was given.
In [13], Bai and Lii obtained positive solutions of the two-point BVP of FDE

Du(t) = f(tu(t), 0<t<l, 1<a<2, (1.4)
u(0) = u(1) =0

by means of Krasnosel’skii fixed point theorem and Leggett-Williams fixed point theorem.
Dy, is the standard Riemann-Liouville fractional derivative.
Zhang discussed the existence of solutions of the nonlinear FDE

‘Dg-u(t) = f(tu(t)), 0<t<l, 1<a<?2 (1.5)

with the boundary conditions

u(0)=v #£0, u(l)y=p #£0, (1.6)
u(0) +1/'(0) =0, u(l)+u'(1) =0, (1.7)

in [14, 15], respectively. Since conditions (1.6) and (1.7) are nonzero boundary values, the
Riemann-Liouville fractional derivative Df. is not suitable. Therefore, the author investigated
the BVPs (1.5)-(1.6) and (1.5)—(1.7) by involving in the Caputo fractional derivative °Dg..
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From above works, we can see a fact, although the BVPs of nonlinear FDE have been
studied by some authors, to the best of our knowledge, higher-dimension fractional equation
systems are seldom considered. Su in [12] studied the two-dimension system, however, the
Schauder fixed point theorem cannot ensure the solutions to be positive. Since only positive
solutions are useful for many applications, we investigate the existence and multiplicity of
positive solutions for BVP (1.1)-(1.2) in this paper. In addition, two examples are given to
demonstrate our results.

2. Preliminaries

For the convenience of the reader, we first recall some definitions and fundamental facts of
fractional calculus theory, which can be found in the recent literatures [1-4].

Definition 2.1. The fractional integral of order 7 > 0 of a function f : (0,0) — R s given by

. _ 1 f®
IN f(x) = (7 fo o t)l’T dt, x>0, (2.1)

provided that the integral exists, where I'(7) is the Euler gamma function defined by

I'(z) = f:o t=te7ldt, (z>0), (2.2)

for which, the reduction formula

F(z+1)=z[(z), T@1)=1, r(%) = /7, (2.3)
the Dirichlet formula
. w1, LT (W) .
fo 11 - et dr = TGro) (z,w ¢ Z;) (2.4)

hold.

Definition 2.2. The fractional derivative of order 7 > 0 of a continuous function f : (0,c0) — R
can be written as

r _ 1 aN'(r_f@ B
D0+f(x)—m<£> .[0 Wdt, n=|[r]+1, (2.5)

where [T] denotes the integer part of T, provided that the right side is pointwise defined on
(0, 00).
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Remark 2.3. The following properties are useful for our discussion:

ITIS f( =3 f(t), DIILf(t)=f(t), 7>0,0>0, feL[0,1],
IDLf)=f+at™ +et™ +-+cut™, ¢ €ER, i=12,...,n, (2.6)

17, : C[0,11 — C[0,1], DI, feC(0,1)nL[0,1], 7>0, feC[0,1].

In the following, we present the useful lemmas which are fundamental in the proof of
our main results.

Lemma 2.4 (see [16]). Let C be a convex subset of a normed linear space E and U be an open subset
of C with p* € U. Then every compact continuous map N : U — C has at least one of the following
two properties:

(A1) N has a fixed point;

(A2) there is an x € OU with x = (1 - \)p* + ANx, for some 0 < A < 1.
Definition 2.5. The map a is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that a : P — [0, o) is continuous and

a(tx+ (1 -t)y) >ta(x) + (1 -t)a(y), (2.7)

forall x,y € P,and t € [0, 1].

Let a and f be nonnegative continuous convex functionals on the cone P, ¢ be a
nonnegative continuous concave functional on P. Then for positive real numbers r > a and
L, one defines the following convex sets:

P(a,r;B,L) = {x €P:a(x) <r, f(x) <L},
P(a,r;B,L) = {x € P:a(x) <r, B(x) <L},

P(a,r;B,Lig,a) = (x € P:a(x) <7, f(x) <L, ¢(x)>al, 29

P(a,r;B,L;g,a) = {x € P:a(x) <1, f(x) <L, ¢(x)>a}.

The assumptions below about the nonnegative continuous convex functionals a, g will be
used as follows:

(B1) there exists M > 0 such that ||x|| < M max{a(x),p(x)}, forall x € P;
(B2) P(a,r;B,L) # @, forallr >0, L>0.

Lemma 2.6 (see [17]). Let P be a cone in a real Banach space E, r» > d > b > r; > 0, and
L, > Ly > 0. Assume that a and f are nonnegative continuous convex functionals satisfying (B1)
and (B2), ¢ is a nonnegative continuous concave functional on P such that ¢(y) < a(y), for all
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Yy € ﬁ(a, ri;B,L1) and T : 1_3((1, r; B, L) — ﬁ(a, r2; B, Ly), is a completely continuous operator.
Suppose

(C1) {y € P(ar,d; B, Lo; ¢5,b) : ¢(y) > b} # @, ¢(Ty) > b, for y € P(a, d; B, Lo; g5, b);
(C2) a(Ty) <r, p(Ty) < Ly, forall y € I_D(a, ri; B, L1);
(C3) ¢(Ty) > b, forall y € ﬁ(a, d; B, Ly; ¢, b) with a(Ty) > d.

Then T has at least three fixed points y1,va,ys € P(a,r2; B, Lo) with

y1 € P(a,r;B,L1),
ymelye 1_3(0(, 2; B, La; ¢, b) = ¢6(y) > b}, (2.9)

Y3 € ﬁ(a,rz;ﬁ,Lz) \ (ﬁ(a,rz;ﬂ,Lz; ¥,b) Uﬁ(a,rl;ﬂ, Ly)).

3. Related lemmas

Let X = X; x X5 x --+- x X§n with the norm

lx|| = max{||xi||xi :i=1,2,...,N}, forx=(x1,x,...,xn) €X, (3.1)

where X; = {x; € C[0,1] : D}"'x; € C[0,1]},i=1,2,...,N with

lIxilly, = llxill o + 1D x|, (3.2)
where || - ||, is the standard sup norm of the space C[0,1]. Throughout, we denote pg = pn
and xn+1 = x1. Then X is a Banach space (see [12]).

Define the cone P C X by
P={x=(x1,x,...,xn) € X:x;(t) >0, x;(0) =0, t€[0,1], i=1,2,...,N}. (3.3)
Lemma 3.1. If x € P, then ||xi||c < (1/T(1 + pi1))||D¥'xille, i=1,2,...,N.
Proof. For x = (x1,x2,...,xN) € P, we have
xl-(t) = 1(1)4:1 Dgf:lxi(t)
1 | DHxi(s) |
< T 45
T(pica) Jo (-s) 7+ (3.4)
1
< —||D¥ x|, i=1,2,...,N.
T(1+pina)

That iS, ”xl”oo < (1/r(1 + I’li—l))”DHlei”w/ i= 1121- .. rN- O
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It is well known that the solution for the system BVP (1.1)-(1.2) is equivalent to the
fixed point of the following integral system:

1
Tua(t) = f Gi(t,5) fi (s, x2(s), D xa(s)) ds,
0

1 O0<t<l, (3.5)
Tnaxn(t) = f Gn-1(t,8) fn-1(s, xn(s), DY xn (s))ds,
0

1

Tnxi(t) = f Gn(t,s)fn (s, x1(s), D) x1(s))ds,
0

for x € X, where

H1-8)"" = (t-5)%", 0<s<t<l,
Gi(t,s) = L ( )a‘_l (3.6)
T(ai) | (11 -s))™, 0<t<s<l.
Denote Tx := (T1x, . .. ,TN,lxN,Tle)T, we can see
Tixia () = 717 f; (1, x41(1), DM xi1 (1)) = I fi(t, xia1 (), D" xia (1)), (3.7)

i=1,2,...,N. For the Green functions G;(t,s),i=1,2,..., N, we can obtain

(1) Gi(t/ S) > 0/ for t,s € [011]/ Yi(S)Gi(S/ S) < Gi(t/ S) < Gi(sl S)/ for (tl S) € [9/1 - 6] X
[0,1],6 € (0,1/2), where

ai-1 a;-1
((1—9)(1—s)) _,x(}l_e_S) 0<s<r,
Yi(s) = (s(1-9))" (3.8)

9{1,‘-1

- <
pry r;<s<l,

here, r; € (0,1 - 0) is the unique solution of the equation

(1-0)(1-5)""—(1-0-5)""=(0(1-5))""; (3.9)

(il) maxe[o1] fé Gi(t,s)ds = (a; — 1)“""1/112”"1“(0(1 +1) = pi and minee1-9] fé Gi(t,s)ds =
0(1-6)""/T(a; + 1) =: pp».

Lemma 3.2. T : P — P is completely continuous.
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Proof. We divide the proof into three steps.

Step1. T : P — P.In fact, for any x € P, since f;(t, xi1(t), D”’ xip1(t)) > 0 for t € [0,1] and
Gi(t,s) > 0, for t,s € [0,1], Tixiz1(t) > O, for t € [0,1]. Moreover, G(0,s) = 0 implies that
Tixis (0) =0

Step 2. T is continuous on P, which is valid due to the continuity of the function f.

Step 3. We will show that T is relatively compact. For any given bounded set U C P, there

exists M > 0 such that ||x|| < M, for all x € U. We take x; = max{|fi(t,u,v)| : t € [0,1], |u| <
M, |v| < M}.Forx e U, lett,t; € [0,1] be such that t; < t,, we have

|Tixisa (t1) = Tixina (B2)] = |(t‘fi_1 )Ia‘fz(l xi+1(1), Db xii1 (1))

- I3 fz(t1/x1+1(tl) Dfixi1(t)) = I3 fi(t2, xi1 (£2), Dy xina (£2))] |

< |tici_l _tgi_ |1—-( ) f (1 S)al fI(S xi1(8), D0+x1+1(s))ds
|1—~( ) f (tZ_S) f1(5 x1+1(5) D xl+1(S )ds

t
1_.( ) J‘ (tl_s)% fl(s xir1(s), D le(S))dS

< t —1_tdi—1
_F(ai+1)|1 2

b ) (ty—s)"'ds + J‘t1 (b= 8)" = (1 - 5)™" |ds]
F((Xi) h 0
=t G HT ) =0 ke —0
1

. (3.10)
Notice that

D{ Tixinn () = I fi(1, xi41 (1), DFixiyr (1)) - DY 970 = I5H7 £i(t, xia1 (8), DM xia (1)),
(3.11)

one gets

|Dﬂl "Tixi (h) — ng;l Tixia (t2) |

162 £i(1, i1 (1), D¥cia (1)) (D 477 = D57

— [ fi(t, xia (B1), DFixina (1)) = Igt "7 fi(ta, xia (f2), DFixinn (£2))] |
Ki ai—pi-1—1 tai*ﬂi—1*1|

<t |4
Sat@-wnn "

. t ty
S A [ th—s “i_”i'l_lds+f ty — s) M (g — )M gg
et | ICR (=) = (s
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Ki

- t"‘i—#ifl—l _ tai_,ui—l—l
T (a; — i) (t 1 )
! I (a; _1:' 1+ 1) (" =) —0, astr-t —0,
1 1—

(3.12)

wherei =1,2,..., N, we can see that TU is an equicontinuous set. Now, we proof that T is
uniformly bounded. For any x € U,

|Tixxian ()| = [t 5 £i (1, %01 (1), Db xia (1)) = I fi (8, xi1 (), Dl xia (£)) |

1
< F(lai) fo (1= 8)%"" fi(s, xi21(5), Dly, x141(5) ) ds

1 ' a;i—-1 : . Hi .
T fo (= )% (5, %101 (5), D 101 (5) ) s

<2 o
TI(+1)

|Dg: Tixisa (8)| = |15 £i (1, Xie (1), DM (1) D #5971 = I i i (£), DFixia (1)) |

K ['(a;) Ki Jt i pia—1
< + t—s)% M1 ds
al (o) T(ai—pic1)  T(ai—pic) Jo (£=5)

i (20 — pic1) c o
- cxil'(vci —Hi-1 t+ 1) ’

(3.13)

where i = 1,2,...,N. That is, TU is uniformly bounded. Thus, T is relatively compact. By
means of the Arzela-Ascoli theorem, T : P — P is completely continuous. O

4. The existence of one positive solution

Theorem 4.1. f there exist a;, b;,c; € C([0,1],R,),i=1,2,..., N satisfying

i T(ai+1) ol (i — pio +1
18: ]|, + |||, <min o T(a +_ ),al (@i = pi +1) , (4.1)
“ . (a; — 1)“‘_1 2a; — pi
such that
filt,x,y) < ai(t) + bi(t)x + ci(t)y. (4.2)

Then the BVP (1.1)-(1.2) has at least one positive solution.
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Proof. Lemma 3.2 indicates that T : P — P is completely continuous.
Fori=1,2,...,N,let

Q> { (=) e,
i > MmaXxX - P ’
a;r<ai+1>—<ai—1> el + i)

Qai — ptia) ||| o } (4.3)
ail (@i = picy +1) = Qai = i) ([[0i ], + llei]l.)

Q:max{Q,ﬁi:l,Z,...,N}.

Define Q = {x = (x1,%2,...,xn) € Pt [|xi|lx, < Qi, i =1,2,...,N}, then ||x|| < Q. ForVx € 0Q,
llxillx, = Qi- Thus, [|xil < Qi and [|Dg;" xile < Qi:

[ Toxiar (8] = f Gilt, ) fi(5, Xin1 (), Dl xis1 (5)) ds

f Gt ) [as(s) + bu(o) i1 (5) + ()DL xin (5)] s

(@i -1)""
< [||ai bi i AT (a;+1)
< Qe+ (ol + Nl )@ i 5y < @
| DL Tixxiaa (8)| = |15 £i (1, %41 (1), DM (1)) DY #5971 = I5H7 £ (4, i (£), DFixia (1)) |

1 ! ,1, F(zx,-) ai—pi1—1
< mjo (1- fz(s Xi+1 5) D x1+1(s))ds F(ai _#i—l)t i

j (t = 8" £ (s, xiaa (5), Dl i (5)) ds

r(“l Hi- 1)
||az|| + (billee + lleill )i Naillo, + (Uil + lleill) Qs
oL (o — pic1) T(a;—pica +1)

(2ai = pic1)
= [||ai b; ; ; ;
e, + el + el )@ o) s <o

(4.4)

indicate that ||Tixi1|lx, < Qi, and then ||Tx| = max{||Tixinallx, : i = 1,2,...,N} < Q. Take
p* = 0in Lemma 2.4, for any x € 0Q, x = A\Tx(0 < A < 1) does not hold. Hence, the operator
T has at least a fixed point, then the BVP (1.1)-(1.2) has at least one positive solution. O

Example 4.2. Consider the problem
DYPxi(t) + fi(t,x2(t), Dy/*xa (1)) =0, 0<t<1,

D32xy(t) + falt, x1 (), DY Pxi(8) =0, 0<t<1, (4.5)
xl(O) = xl(l) = XQ(O) = XQ(l) = O,
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where

filt,u,v) = %Or<§> = %r<%> <1 + 1“2(1—\//;;)>t + %r(%) <1 + %)tz
+ %F(%)\/Eu+ %F(%)tw‘lv,

3 L1 T@N, 1 TR, s, Lo
fz(t,u,v)—4\/5 2<1+1,(1/3)>t+4<2+21,(1/3))t+2t u+4t v,

(4.6)

5 3 1 1
a1_3/ “2—2, #1_4/ ‘u2—3.

Choose
10_./2 1
al(t) = 3r<§) + §r<

ar(t) = S/ +

(e %)P, b= gr(5)ve a®=gr(3)e

5I'(2/3)
<2+ 2T(1/3)

1 2 - 1 1/3 - 1 2/3
1 >t ’ bz(t) = Zt ’ Cz(t) = 4t .
(4.7)

It is easy to check that (4.1) holds. Thus, by Theorem 4.1, the BVP (4.5) has at least one positive
solution. In fact, x(t) = (£/2(1 - t),+/2(1 - t)) " is such a solution.

5. The existence of triple positive solutions

Let the nonnegative continuous convex functionals a, f and the nonnegative continuous
concave functional ¢ be defined on the cone P by

a(x) =max {||xi]| , :i=1,2,...,N},
p(x) =max {||Dh ' x|, :i=1,2,...,N}, 51)

¢(x) =min {egltgif}elxi(t)' ti= 1,2,...,N}.

Obviously, « and p satisfy (B1) and (B2), ¢(x) < a(x), for all x € P.
For simplicity, we denote

1-0

Zai — Ui—
pis = Yi(s)Gi(s, s)ds, Pis Hi1
0

- aiF(ai —Hi-1 + 1),

(5.2)
1

G:zmax{m

1= 1,2,...,N}.
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Theorem 5.1. Assume that there exist constants oL > b/6 > b > ol > 0 such that bI'(p; + 1) < 0L,
fori=1,2,...,N. Suppose

(H1) fi(t,u,v) <min{oL/pn,L/pis}, (t,u,v) € [0,1] x [0,0L] x [-L,L];
(H2) fi(t,u,v) >b/pn, (t,u,v) € [0,1] x [b,b/0] x [-L,L];

(H3) fi(t,u,v) <min{ol/pu,l/pis}, (t,u,v) € [0,1] x [0,01] x [-1,1];
(H4) fi(t,u,v) >b/pis, (t,u,v) € [6,1-0] x [b,0L] x [-L, L].

Then the BVP (1.1)-(1.2) has at least three positive solutions x = (x1,x2,...,xXn), ¥ = (Y1,Y2,---,
Yn),and z = (z1, za, ..., zN) such that

0<xi(t)<ol, 0<yi(t)<oL, ol<z(t)<oL, te]0,1],
IDg xill, <L D6 will o <L, ~1< Dy 'zi(t) <L, te[0,1], (5.3)
yi(t)>b, zi(t)<b, te[0,1-0], fori=1,2,...,N.

Proof. Lemma 3.2 has showed that T : P — P is completely continuous. Now, we will verify
that all the conditions of Lemma 2.6 are satisfied. The proof is based on the following steps.

Step 1. We will show that (H1) implies T : P(a,oL; B, L) — P(a,0L; B, L).
In fact, for x € P(a, oL; B, L), a(x) < oL, p(x) < L, and then ||x;i||o, < 0L, ||D "Xillw < L,
i=1,2,...,N.Inview of (H1), we have

”(sz+1)” —maXJ Gi(t, S)fz(s xis1(s), D x1+1(5))d~9

< max t,u,v max G;(t,s)ds
= (tu0)e01]x[0,0L]x LL]fI( ) f (ts)

< ok -pi1 = 0L,
Pi1

| (DF= Tixis1) ||, = max|Ig: fi(1, xi41 (1), D¥ixi41 (1))

0<t<1
DR =I5 (X (F), DFxia (1)) | (5.4)

ma t,u,v
 (tu,v)el0,1]x [OUL LL]f( )

I'(a;
-max[ 1 I (1—S)ai_1ds—(a) poimpial
ost<t | T'(a;) Jo T'(ai - pi1)

+— | (t-s)"Hlgs
r(az Hi- 1) 4[

L
< —-puu=L.
= pia Pi4

Then a(Tx) < oL and (Tx) < L, thatis, Tx € P(a,oL; B, L).
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Step 2. To check the condition (C1) in Lemma 2.6, we choose x*(t) = ((b/0)t"~, (b/0)tH", ...,
(b/0)t'N1), t € [0,1]. It is easy to see that

b
a(x max { max | =t :
() = {te[Ol] 0

b
i=1,2,... = —
1 <y /N} 9/

b,
eDgJ”’ :

te[0,1]

B(x*) = max {max

i=1,2,...,N} =max{gr(1+‘ui) :i=1,2,...,N} <L,

bt"i :

i:1,2,...,N} :mm{eef" i:1,2,...,N} > b.

x*) =min4{ min
- g1,

(5.5)

Consequently, {x € I_D(a,b/G;ﬂ, L;¢,b) : ¢p(x) > b} # @. Forany x € ﬁ(a,b/@; B, L;y,b), from
(H2), one gets

min_|Tixiq (t)| = mm f Gi(t,s)fi(s, xiz1(s), D x(s))ds

te[6,1-0]
1
> fi(t,u,v) - min I Gi(t,s)ds (5.6)
(tuv)e[Ol] [bb/e] [-L,L] te[6,1-61 J
b
>—-pp=Db,
pi2 Pi2

then we can obtain ¢(Tx) > b.

Step 3. It is similar to Step 1 that we can prove T : I_D(a, ol;p,1) — I_J(a, ol; B,1) by condition
(H3), that is, (C2) in Lemma 2.6 holds.

Step 4. We verify that (C3) in Lemma 2.6 is satisfied. For x € P(a, 0L; , L; s, b) with a(Tx) >
b/6, we have

tmln |Tx1+1(t)| J‘ Yl(s (s, S)fz(s xi+1(8), D0+x1+1 5))ds
€lo

1-0
2 i(5)Gi(s, s)d ; 5.7
“Jo Y(S)G (s S) s (tu,v)€[0,1 Ig]li[bcrL 1x[- LL]f <t " v) ( )
b
> Pz — = b
pis Pi3

Thus, ¢(Tx) > b, (C3) in Lemma 2.6 is satisfied.

Therefore, the operator T has three points x,y, z € I_D(a, oL; B, L) with

x € P(a,0l;p,1),  yePlaoL;p,L;yb),
_ (5.8)
z € P(a,0L;B,L) \ (P(a,0L; B,L; 5, b) U P(a, 0l; ,1)).
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Then the BVP (1.1)-(1.2) has three positive solutions x, v, z € P(a,0L; , L) such that
0<x(t)<ol, 0<yi(t)<oL, ol<z(t)<oL, tel0,1],
IDh x|, <1, Db 'will <L, -1<Dh7zi(t) <L, te[o,1], (5.9)
vi(t) >b, z(t)<b, te[0,1-0], fori=1,2,...,N. 0
Example 5.2. Consider the problem
DY 2xi (1) + fi(t, x2(t), DY *x2(t)) =0, 0<t<1,
D/*x:(t) + fo(t, x1(t), Dy/*x1(£)) =0, 0<t<1, (5.10)
xl(O) = xl(l) = XQ(O) = XQ(l) = O,
where
'<1>t u?> o L [O 56]
2 10> 10° 25|’
filtyu,0) = 4 <1>t+213749u2+ﬂ+ 3136 3136 213749 15_6 3]
n 2 24890 10° 62500 625 24890 25"
<1>f+ 1070313 9| € [3, +o0]
(\2 31250 10°” el
'<1>fJr u? . v? . [0 56]
5/ 100 10" T
Faltyu,0) = 4 <1>f+14740614u2+v_2+ 3136 3136 14740614 [% 3]
S 5 2489000 1010 625000 625 2489000 25|
1\" 2359 o?
(5) 100 ~ 1010 we el
(5.11)

Here, we have a1 =3/2, ap =7/4, 1 =1/2, up = 1/4. By choosing 6 = 1/4 and the definition

ofocand pij,i=1,2,j=1,2,3,4, one gets

O'zmax{

(3/2 _ 1)3/2—1 8
= = = 0.28,
P 527 (3/2+1) 93w

1 1 1 !
T(1+1/2)' T(1+1/4) } TT1+1/2) (/27

=1.12,
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1/ -1/9% 1
P2=""TE2+1) 2vBr

3/4 2 (341 1-v3/6
P13 = 11(5)Gi(s,8)ds = — \/ sds + — ——sds=0.12,
1/4 VT J1/s 2 1/4

B 3-1/4 88
P = B T(B/2-1/4+1)  150(1/4)

= 0.16,

=~ 1.61,

P21 = 018, P22 = 012, P23 = 006, P24 = 1.53.

(5.12)
Taking I =2, b =3, and L = 1000, we have
. oL L
fi(t,u,v) < min {—, —} =~ 621.11, for (t,u,v) € [0,1] x [0,1120] x [-1000, 1000],
P11 P14
b 13
fit,u,v) > — =16.67, for (t,u,v) € [—, —| x [3,1120] x [-1000, 1000],
P13 4" 4
fit,u,v) < min{il,i} =124, for (t,u,v) € [0,1] x [ 56] [-3,3],
P11 pia ' 25
b
fi(t, u,v) > ,D_ ~18.75, for (t,u,v) € [0,1] x [3,12] x [-1000,1000],
12
(5.13)

that is, f; satisfies the conditions (H1)-(H4) of Theorem 5.1. Similarly, we can show that f,
satisfies (H1)—(H4). Thus, by Theorem 5.1, the BVP (5.10) has at least three positive solutions
x = (x1,x2), ¥ = (y1,y2), and z = (z1, z2) such that

0<x;(t) <224, 0<y;(t) <1120, 224<z(t) <1120, te[0,1],i=1,2,

Il <2, [ID2xll, <2, DYl <1000, [ID2yal),, < 1000

-2 < D}/*z1(t) £1000, -2 < D}/*z5(t) <1000, te€ [0,1], (5.14)

1
yi(i’) > 3, Zi(t) <3, te [Z, Z], i=1,2.

Remark 5.3. The particular case N = 2 has been studied by [12] for the existence of one
solution, our paper generalizes [12] for the obtaining of one and three positive solutions.
For N =1, we develop [13-15] by the nonlinear terms f; involved in the y;-order Riemann-
Liouville derivative explicitly.
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