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1. Introduction

Recently, in [1–4], Erbe, Kong, Jiang, Wang, and Weng considered the following singular
functional differential equations:

x′′ = −f(t, x(τ(t))), 0 < t < 1,

αx(t) − βx′(t) = μ(t), a ≤ t ≤ 0,

γx(t) + δx′(t) = ν(t), 1 ≤ t ≤ b,

(1.1)

where a = min{0, inf{τ(t) : 0 ≤ t ≤ 1}}, b = max{1, sup{τ(t) : 0 ≤ t ≤ 1}}, and the existence of
positive solutions to (1.1) is obtained. When τ(t) = t− r in (1.1), Agarwal and O’Regan in [5],
Lin and Xu in [6] discussed the existence of positive solutions to (1.1) also. We notice that the
nonlinearities f(t, u) in all the above-mentioned references depend on (t, u) ∈ (0, 1) × R.

The more difficult case is that the term f(t, ϕ) depends on (t, ϕ) ∈ (0, 1) × C([0, 1], R)
for second-order functional differential equations with delay. When f(t, ϕ) has no singularity
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at t = 0 and ϕ = θ, there are many results on the following (1.2) (see [7–9] and references
therein). Up to now, to our knowledge, there are fewer results on (1.2) when the term f(t, ϕ)
is allowed to possess singularity for the term f(t, ϕ) at t = 0 and ϕ = 0, which is of more actual
significance.

In this paper, motivated by above results, we consider the second-order initial-
boundary value problems:

x′′ = −f(t, xt

)
, 0 < t < 1,

x0 = 0,

x(1) = 0,

(1.2)

where f : (0, 1) × (C+ \ 0)→(0,∞) (C+ = {x ∈ C([−r, 0], R), x(t) ≥ 0, ∀t ∈ [−r, 0]}), xt = x(t +
u) (−r ≤ u ≤ 0). By Leray-Schauder fixed-point theorem, the existence of positive solutions to
(1.2) is obtained when f(t, ϕ) is singular at t = 0 and ϕ = 0.

For ϕ ∈ C([−r, 0], R) and x ∈ C([−r, 1], R), let ‖ϕ‖ = maxt∈[−r,0]|ϕ(t)| and ‖x‖ =
maxt∈[−r,1]|x(t)|. Then, C([−r, 0], R) and C([−r, 1], R) are Banach spaces. Let C+ = {x ∈
C([−r, 0], R), x(t) ≥ 0, ∀t ∈ [−r, 0]} and P = {x ∈ C([−r, 1], R), x(t) ≥ 0, ∀t ∈ [−r, 1]}.
Obviously, C+ and P are cones in C([−r, 0], R) and C([−r, 1], R), respectively. Now, we give a
new definition.

Definition 1.1. f(t, ϕ) is said to be singular at t = 0 for ϕ ∈ (C+ − {0}), when f(t, ϕ) satisfies
limt→0f(t, ϕ) = +∞ for ϕ ∈ (C+ − {0}) and f(t, ϕ) is said to be singular at ϕ = 0 for t ∈ (0, 1)
when f(t, ϕ) satisfies lim‖ϕ‖→0f(t, ϕ) = +∞ for t ∈ (0, 1).

And one defines some functions which one has to use in this paper.
Let

h(t) =

⎧
⎨

⎩

0, −r ≤ t ≤ 0,

t(1 − t), 0 ≤ t ≤ 1,

G(t, s) =

⎧
⎨

⎩

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,

(1.3)

where G(t, s) is a Green’s function. It is clear that G(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1) and
h(t)h(s) ≤ G(t, s) ≤ h(s) on [0, 1] × [0, 1].

We now introduce the definition of a solution to IBVP(1.2).

Definition 1.2. A function x is said to be a solution to IBVP(1.2) if it satisfies the following
conditions:

(1) x(t) is continuous and nonnegative on [−r, 1];
(2) x0 = 0, x(1) = 0;

(3) x′(t) and x′′(t) exist on (0, 1);

(4) h(t)|x′′(t)| is Lebesgue integrable on [0, 1];

(5) x′′(t) = −f(t, xt) for t ∈ (0, 1).



F. Jin and B. Yan 3

Furthermore, a solution x is said to be positive if x(t) > 0 on (0, 1).
Let x be a solution to IBVP(1.2). Then, it can be represented as

x(t) =

⎧
⎪⎨

⎪⎩

0, −r ≤ t ≤ 0,
∫1

0
G(t, s)f

(
s, xs

)
ds, 0 ≤ t ≤ 1.

(1.4)

It is clear that

x(t) =
∫1

0
G(t, s)f

(
s, xs

)
ds ≤

∫1

0
h(s)f

(
s, xs

)
ds for t ∈ [0, 1],

x(t) ≥ h(t)
∫1

0
h(s)f

(
s, xs

)
ds ≥ ‖x‖h(t) on [0, 1],

(1.5)

for all solutions, x, to IBVP(1.2), where ‖x‖ = max0≤t≤1x(t). For ξ ∈ R+, let ξ̃(u) ≡ ξ on [−r, 1]
throughout this paper. Obviously, ξ̃ ∈ C+([−r, 1], R) and ξ̃0 = ξ̃t for all t ∈ (0, 1].

Throughout this paper, we assume the following hypotheses hold.

(H1) f(t, ϕ) is continuous on (0, 1) × (C+ \ {0}).
(H2) There exists ε > 0, such that

f(t, ϕ) ≥ f
(
t, ε̃0

)
, for ‖ϕ‖ ≤ ε,

0 <

∫1

0
h(s)f

(
s, ε̃0

)
ds < ∞.

(1.6)

Lemma 1.3. Assume that (H1)-(H2) hold, then there exists a θ∗ > 0, such that

x(t) ≥ θ∗h(t), on [0, 1], (1.7)

for all solutions, x, to (1.2).

Proof. Suppose that the claim is false. (1.5) guarantees that there exists a sequence {xm(t)} of
solutions to IBVP(1.2) such that

lim
m→∞

∥∥xm

∥∥ = 0. (1.8)

Without loss of generality, we may assume that

ε ≥ ∥∥xm

∥∥ ≥ ∥∥xm+1
∥∥ ∀m ≥ 1. (1.9)

From (H1), (H2), and (1.5), it follows that

xm

(
1
2

)
=
∫1

0
G

(
1
2
, s

)
f(s, xms

)
ds

≥ h

(
1
2

)∫1

0
h(s)f(s, xms

)
ds

≥ h

(
1
2

)∫1

0
h(s)f(s, ε̃s

)
ds

> 0,

(1.10)

which contradicts the assumption that limm→∞‖xm‖ = 0 and hence the claim is true provided
θ∗ is suitably small.
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Remark 1.4. The following inequality
∫1

0
h(s)f(s, ε̃0)ds ≥ θ (1.11)

holds provided that θ < min{ε, θ∗} is sufficiently small, where θ∗ is in Lemma 1.3.
(H3) There exist a nonnegative continuous function k(·) defined on (0,1) and two

nonnegative continuous functions F1(ϕ), F2(ϕ) defined on, respectively, C+ \ {0}, C+, such
that

f(t, ϕ) ≤ k(t)
[
F1(ϕ) + F2(ϕ)

]
for (t, ϕ) ∈ (0, 1) × (

C+ \ {0}), (1.12)

where k(t), F1(ϕ), and F2(ϕ) satisfy
∫1

0
h(s)k(s)ds < ∞,

∫1

0
h(s)k(s)F1

(
θhs

)
ds < ∞, lim

‖ϕ‖→∞
|F2(ϕ)|
‖ϕ‖ = 0. (1.13)

Furthermore, F1(ϕ) is nonincreasing and F2(ϕ) is nondecreasing, that is,

F1(ϕ) ≥ F1(ϕ) forϕ(u) ≤ ϕ(u) on [−r, 0],
F2(ϕ) ≤ F2(ϕ) forϕ(u) ≤ ϕ(u) on [−r, 0]. (1.14)

Lemma 1.5 (see [7]). Let E be the Banach space and let X be any nonempty, convex, closed, and
bounded subset of E. If T is a continuous mapping of X into itself and TX is relatively compact, then
the mapping T has at least one fixed point (i.e., there exists an x ∈ X with x = Tx) .

Using Lemma 1.5, we present the existence of at least one positive solution to (1.2)
when f(t, ϕ) is singular at ϕ = 0 and t = 0 (notice the new Definition 1.1). To some extent, our
paper complements and generalizes these in [1–6, 8–10].

2. Main results

Theorem 2.1. Assume that (H1)–(H3) hold. Then, the IBVP(1.2) has at least one positive solution.

Proof. Since lim‖ϕ‖→∞(|F2(ϕ)|/‖ϕ‖) = 0, we can choose anN > ε such that

F2(ϕ) ≤ μ‖ϕ‖, for ‖ϕ‖ ≥ N, (2.1)

where the positive number μ satisfies

0 < μ

∫1

0
h(s)k(s)ds = σ < 1. (2.2)

Let

R =
∫1

0
h(s)k(s)F1

(
θhs

)
ds,

T =
∫1

0
h(s)k(s)F2

(
Ñs

)
ds,

M∗ =
R + T +N

1 − σ
.

(2.3)
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For each x ∈ P ⊆ C([−r, 1], R), we define x∗(t) by

x∗(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, −r ≤ t ≤ 0,
θh(t), if x(t) < θh(t) on (0, 1],
x(t), if θh(t) ≤ x(t) ≤ M∗ on (0, 1],
M∗, if x(t) > M∗ on (0, 1],

f∗(t, xt

)
= f

(
t, x∗

t

)
for t ∈ (0, 1).

(2.4)

It is obvious that f∗(t, xt) satisfies the hypotheses (H1)–(H3) and M∗ > N.
We now consider the modified initial-boundary value problem:

x′′ = −f∗(t, xt

)
, 0 < t < 1,

x0 = 0,

x(1) = 0.

(2.5)

We claim that for all solutions, x, to IBVP(2.5),

x(t) ≥ θh(t), on [−r, 1]. (2.6)

Suppose that the claim is false. Then there exists t′ ∈ (0, 1) such that

x(t′) < θh(t′). (2.7)

Since x(t) = h(t) on [−r, 0], there are the following three cases.

Case 1. x(t) < θh(t) for all t ∈ (0, 1).

The solution of IBVP(2.5) can be represented as (notice θ < min{ε, θ∗} Remark 1.4)

x(t) =
∫1

0
G(t, s)f∗(s, xs

)
ds

=
∫1

0
G(t, s)f

(
s, x∗

s

)
ds

≥
∫1

0
G(t, s)f

(
s, θhs

)
ds

≥ h(t)
∫1

0
h(s)f

(
s, ε̃s

)
ds (noticeH2)

=
∫1

0
h(s)f

(
s, ε̃0

)
ds

> θh(t), t ∈ (0, 1],

(2.8)

which contradicts (2.7).
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Case 2. There exists a t0 ∈ (0, 1) such that x(t0) > θh(t0) and ‖x‖ < θ.

In this case, we have

x(t) =
∫1

0
G(t, s)f∗(s, xs

)
ds

≥ h(t)
∫1

0
h(s)f

(
s, ε̃s

)
ds

= h(t)
∫1

0
h(s)f

(
s, ε̃0

)
ds

≥ θh(t), t ∈ (0, 1],

(2.9)

which contradicts (2.7).

Case 3. There exists a t0 ∈ (0, 1) such that x(t0) > θh(t0) and ‖x‖ ≥ θ.

From (1.5), we get

x(t) ≥ ‖x‖h(t) ≥ θh(t), t ∈ (0, 1], (2.10)

which contradicts (2.7).
So we have

x(t) ≥ θh(t) on [−r, 1]. (2.11)

To prove the existence of positive solutions to IBVP(2.5), we seek to transform (2.5)
into an integral equation via the use of Green’s function and then find a positive solution by
using Lemma 1.5.

Define a nonempty convex and closed subset of C([−r, 1], R) by

D =
{
x ∈ C

(
[−r, 1], R) : 0 ≤ x(t) ≤ M∗, t ∈ [0, 1], x(t) = 0, t ∈ [−r, 0]}. (2.12)

Then, we define an operator T : D→C([−r, 1], R) by

(Tx)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if − r ≤ t ≤ 0,
∫1

0
G(t, s)f∗(s, xs

)
ds, if 0 ≤ t ≤ 1.

(2.13)
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From (H1)–(H3) and the definition of T , we have, for every x ∈ D,

(Tx)(t) ∈ C[−r, 1], (Tx)(t) ≥ 0 on [0, 1], (2.14)

(Tx)(t) =
∫1

0
G(t, s)f∗(s, xs

)
ds

≤
∫1

0
h(s)f∗(s, xs

)
ds

≤
∫1

0
h(s)f

(
s, x∗

s

)
ds

≤
∫1

0
h(s)k(s)

[
F1

(
x∗
s

)
+ F2(x∗

s

)]
ds

≤
∫1

0
h(s)k(s)

[
F1

(
θhs

)
+ F2

(
x∗
s

)]
ds

≤
∫1

0
h(s)k(s)F1

(
θhs

)
ds +

∫1

0
h(s)k(s)F2

(
x∗
s

)
ds

≤ R +
∫1

0
h(s)k(s)F2

(
x∗
s

)
ds

≤ R +
∫1

0
h(s)k(s)F2

(
M̃∗

s

)
ds

≤ R +
∫1

0
h(s)k(s)μM∗ds

≤ R + σM∗

≤ M∗, t ∈ (0, 1].

(2.15)

Together with the definition of D, we get T(D) ⊂ D.
Also,

(Tx)′(t) = −
∫ t

0
sf∗(s, xs

)
ds +

∫1

t

(1 − s)f∗(s, xs)ds (2.16)

is continuous in (0,1), and

(Tx)′′(t) = −f∗(t, xt

) ≤ 0 in (0, 1). (2.17)

From H3 and (2.15), we can get

∫1

0
h(t)

∣∣(Tx)′′(t)
∣∣dt =

∫1

0
h(t)f∗(t, xt

)
dt

≤ M∗ < +∞,

(2.18)

which implies that h(t)|(Tx)′′(t)| is integrable on [0, 1].
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Now, we claim that T(D) is equicontinuous on [−r, 1]. We will prove the claim. For
any x ∈ D, we have

(Tx)(t) =
∫1

0
G(t, s)f∗(s, xs

)
ds

≤
∫1

0
G(t, s)k(s)

[
F1

(
θhs

)
+ F2

(
M̃∗

s

)]
ds

= U(t), 0 ≤ t ≤ 1.

(2.19)

Since U(t) is continuous on [0, 1] and U(0) = U(1) = 0, then for any ε0 > 0, there is a
δ ∈ (0, 1/4) such that

0 ≤ (Tx)(t) ≤ U(t) <
ε0
2
, t ∈ [0, 2δ] ∪ [1 − 2δ, 1]. (2.20)

By (2.6), we have, for t ∈ [δ, 1 − δ],

∣∣(Tx)′(t)
∣∣ ≤

∣∣∣∣ −
∫ t

0
sf∗(s, xs

)
ds +

∫1

t

(1 − s)f∗(s, xs

)
ds

∣∣∣∣

≤
∫1−δ

0
sf∗(s, xs

)
ds +

∫1

δ

(1 − s)f∗(s, xs

)
ds

≤
∫1−δ

0
sk(s)

[
F1

(
θhs

)
+ F2

(
M̃∗

s

)]
ds +

∫1

δ

(1 − s)k(s)
[
F1

(
θhs

)
+ F2

(
M̃∗

s

)]
ds

≤ 1
δ

∫1−δ

0
(1−s)sk(s)[F1

(
θhs

)
+F2

(
M̃∗

s

)]
ds+

1
δ

∫1

δ

s(1−s)k(s)[F1
(
θhs

)
+F2

(
M̃∗

s

)]
ds

≤ 2
δ

∫1

0
h(s)k(s)

[
F1

(
θhs

)
+ F2

(
M̃∗

s

)]
ds

=
2
δ
K

= L,

(2.21)

where K =
∫1
0h(s)k(s)[F1(θhs) + F2(M̃∗

s)]ds < ∞ is a constant number.
Put δ1 = ε0/L, then for t1, t2 ∈ [δ, 1 − δ], |t1 − t2| < δ1,

∣∣(Tx)
(
t1
) − (Tx)

(
t2
)∣∣ ≤ L

∣∣t1 − t2
∣∣ < ε0. (2.22)

Set δ0 = min{δ, δ1}. Then for t1, t2 ∈ [0, 1], |t1 − t2| < δ0, and

∣∣(Tx)
(
t1
) − (Tx)

(
t2
)∣∣ < ε0. (2.23)

Since (Tx)(t) = 0 on t ∈ [−r, 0], the above inequality holds for t ∈ [−r, 1].
Thus, T(D) is a relative compact subset of D. That is, T : D→D is a compact operator.
We are now going to prove that the mapping T is continuous on D.



F. Jin and B. Yan 9

Let {xn(t)}∞n=0 ⊂ D be arbitrarily chosen and let xn(t) converge to x0(t) uniformly on
[−r, 1] as n→∞. Now, we claim that x∗

n(t) converge to x∗
0(t) uniformly as n→∞. From the

definition of x∗(t), we get

x∗
n(t) =

xn(t) + θh(t)
2

+
|xn(t) − θh(t)|

2
, t ∈ [−r, 1],

x∗
0(t) =

x0(t) + θh(t)
2

+
|x0(t) − θh(t)|

2
, t ∈ [−r, 1].

(2.24)

Thus,

∣
∣x∗

n(t) − x∗
0(t)

∣
∣ =

∣
∣
∣
∣
xn(t) + θh(t)

2
+
|xn(t) − θh(t)|

2
− x0(t) + θh(t)

2
− |x0(t) − θh(t)|

2

∣
∣
∣
∣

≤
∣
∣
∣
∣
xn(t) − x0(t)

2
+
|xn(t) + θh(t)| − |x0(t) + θh(t)|

2

∣
∣
∣
∣

≤
∣
∣∣∣
xn(t) − x0(t)

2

∣
∣∣∣ +

∣
∣∣∣
|xn(t) + θh(t)| − |x0(t) + θh(t)|

2

∣
∣∣∣

≤
∣∣∣∣
xn(t) − x0(t)

2

∣∣∣∣ +
∣∣∣∣
xn(t) − x0(t)

2

∣∣∣∣

=
∣∣xn(t) − x0(t)

∣∣, t ∈ [−r, 1],

(2.25)

that is, the claim is true.
Since f(t, ϕ) is continuous with respect to ϕ for t ∈ (0, 1), we have

lim
n→∞

G(t, s)f∗(s, xns

)
= G(t, s)f∗(s, x0s

)
on [0, 1], (2.26)

for each fixed t ∈ [0, 1]. From the definition of f∗ and (H3), we know that

0 ≤ f∗(t, xnt

) ≤ k(t)
[
F1

(
θht

)
+ F2

(
M̃∗

t

)]
, (2.27)

and hence

0 ≤ G(t, s)f∗(s, xns

) ≤ h(s)k(s)
[
F1

(
θhs

)
+ F2

(
M̃∗

s

)]
, for (t, s) ∈ (0, 1) × (0, 1), (2.28)

where h(s)k(s)[F1(θhs)+F2(M̃∗
s)] is a Lebesgue integrable function defined on [0, 1] because

of (H3). Consequently, we apply the dominated convergence theorem to get

lim
n→∞

∣∣(Txn

)
(t) − (

Tx0
)
(t)

∣∣ = lim
n→∞

max
t∈[0,1]

∣∣∣∣

∫1

0
G(t, s)

[
f∗(s, xns

) − f∗(s, x0s
)]
ds

∣∣∣∣

≤
∫1

0
max
t∈[0,1]

G(t, s) lim
n→∞

∣∣[f∗(s, xns

) − f∗(s, x0s
)]∣∣ds

= 0,

(2.29)

which shows that the mapping T is continuous on D.
Then from Lemma 1.5, we get that there exists at least one positive solution, x, to

IBVP(2.5) in D. The solution can be represented by (1.4), where f is replaced with f∗. So,
(2.6) holds. Furthermore, from the definition of D, we can get

x(t) ≤ M∗. (2.30)

Thus, the solution of IBVP(2.5) is also the one of (1.2). The proof is complete.
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3. Application

Example 3.1. Consider the singular IBVP(3.1):

x′′ +
1

tα(
∫0
−rx(t + u)du)

β
+ sin(πt) +

[
max

{
x(t + u) : −r ≤ u ≤ 0

}]γ = 0, 0 < t < 1,

x0 = 0,

x(1) = 0,

(3.1)

where α > 0, β > 0, 0 < γ < 1, α + β < 1.

4. Conclusion

Equation (3.1) has at least one positive solution.
Now, we will check that (H1)–(H3) hold in (3.1).

In IBVP(3.1), f(t, ϕ) = (1/tα[
∫0
−rϕ(u)du]

β
) + sin(πt) + [max{ϕ(u) : −r ≤ u ≤ 0}]γ . It is

clear that f : (0, 1] × C+→(0,∞) is continuous and singular at t = 0 and ϕ = 0. For (H3), we
choose

k(t) =
1
tα
, F1(ϕ) =

1

[
∫0
−rϕ(u)du]

β
, F2(ϕ) =

[
max

{
ϕ(u) : −r ≤ u ≤ 0

}]γ + 1, (4.1)

when α > 0, β > 0, 0 < γ < 1, α + β < 1; by simple computation, we can get

∫1

0
h(s)k(s)ds < ∞,

∫1

0
h(s)k(s)F1

(
s, θhs

)
ds < ∞ for 0 < θ < +∞, lim

‖ϕ‖→∞
|F2(ϕ)|
‖ϕ‖ = 0.

(4.2)

It is obvious that F1(ϕ) is nonincreasing and F2(ϕ) is nondecreasing.
Now, we check (H2). For any ε > 0, ϕ ∈ C+, ‖ϕ‖ ≤ ε (notice the definition of ‖·‖), we

have

0 ≤
[∫0

−r
ϕ(u)du

]β
≤
[∫0

−r
εdu

]β
= (rε)β, (4.3)

f(t, ϕ) − f
(
t, ε̃0

)
=

1
tα

⎡

⎣ 1

[
∫0
−rϕ(u)du]

β
− 1

(rε)β

⎤

⎦ +
(‖ϕ‖)γ − (ε)γ

≥ 1

[
∫0
−rϕ(u)du]

β
− 1

(rε)β
+
(‖ϕ‖)γ − (ε)γ (notice (3.4)

)

≥ 1

(‖ϕ‖r)β
+
(‖ϕ‖)γ −

[
1

(rε)β
+ (ε)γ

]
.

(4.4)

We define

g(x) =
1

(rx)β
+ (x)γ , forx ∈ (0,+∞). (4.5)
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Now, we will prove that there exists ε > 0 such that g(·) is decreasing on (0, ε].
Obviously,

g ′(x) =
γrβx1+β − βx1−γ

rβx1−γx1+β
. (4.6)

Put g1(x) = γrβx1+β − βx1−γ , then

g1(0) = 0,

g1
′(x) = γ(1 + β)(rx)β − (1 − γ)βx−γ ,

lim
t→0+

g1
′(x) = −∞.

(4.7)

From the continuity of g1′(x), we can find ε > 0 such that g1′(x) < 0 on (0, ε]. Then,
g ′(x) < 0 on (0, ε]. That is, g(x) is decreasing on (0, ε].

Furthermore, we have

∫1

0
h(s)f

(
s, ε̃s

)
ds =

∫1

0
s(1 − s)f(s, ε̃s)ds

=
∫1

0
s(1 − s)

⎡

⎣ 1
sα

1

[
∫0
−rεdu]

β
+ ε + sin(πs)

⎤

⎦ds

=
∫1

0
s1−α(1 − s)

1

(rε)β
ds +

∫1

0
s(1 − s)εds +

∫1

0
s(1 − s) sin(πs)ds.

(4.8)

Thus,

0 <

∫1

0
h(s)f

(
s, ε̃s

)
ds < ∞, (4.9)

which implies that (H2) holds.
So, from Theorem 2.1, IBVP(3.1) has at least one positive solution.
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