
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2008, Article ID 742030, 11 pages
doi:10.1155/2008/742030

Research Article
Critical Point Theory Applied to a Class of the
Systems of the Superquadratic Wave Equations

Tacksun Jung1 and Q-Heung Choi2

1 Department of Mathematics, Kunsan National University, Kunsan 573-701, South Korea
2 Department of Mathematics Education, Inha University, Incheon 402-751, South Korea

Correspondence should be addressed to Q-Heung Choi, qheung@inha.ac.kr

Received 22 July 2008; Accepted 25 December 2008

Recommended by Martin Schechter

We show the existence of a nontrivial solution for a class of the systems of the superquadratic
nonlinear wave equations with Dirichlet boundary conditions and periodic conditions with a
superquadratic nonlinear terms at infinity which have continuous derivatives. We approach the
variational method and use the critical point theory which is the Linking Theorem for the strongly
indefinite corresponding functional.

Copyright q 2008 T. Jung and Q.-H. Choi. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we consider the existence of a nontrivial solution for the following class of
the systems of the superquadratic wave equations with Dirichlet boundary condition and
periodic condition

utt − uxx = av + Fu(x, t, u, v), in
(
− π

2
,
π

2

)
× R,

vtt − vxx = bu + Fv(x, t, u, v), in
(
− π

2
,
π

2

)
× R,

u

(
± π

2
, t

)
= v

(
± π

2
, t

)
= 0,

u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t + π) = v(x, t) = v(−x, t) = v(x,−t),

(1.1)

where F : [−(π/2), π/2] × R × R × R → R is a superquadratic function at infinity which
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has continuous derivatives Fr(x, t, r, s), Fs(x, t, r, s)with respect to r, s, for almost any (x, t) ∈
(−(π/2), π/2) × R. Moreover, we assume that F satisfies the following conditions:

(F1) F(x, t, 0, 0) = Fx(x, t, 0, 0) = Ft(x, t, 0, 0) = 0; Fxx(x, t, 0, 0) = Ftt(x, t, 0, 0) = Fxt(x, t, 0,
0)=0, F(x, t, r, s) > 0 if (r, s)/= (0, 0), inf(x,t)∈(−(π/2),π/2)×R, |r|2+|s|2=R2F(x, t, r, s) > 0,

(F2) |Fr(x, t, r, s)| + |Fs(x, t, r, s)| ≤ c(|r|ν + |s|ν)∀x, t, r, s;
(F3) rFr(x, t, r, s) + sFs(x, t, r, s) ≥ μF(x, t, r, s)∀x, t, r, s;
(F4) |Fr(x, t, r, s)| + |Fs(x, t, r, s)| ≤ d(F(x, t, r, s)δ1 + F(x, t, r, s)δ2);

where c > 0, d > 0, R > 0, μ > 2, ν > 1 and 1/2 < δ1 ≤ δ2 ≤ 1/r, for some 1 < r < 2.
As the physical model for these systems we can find crossing two beams with

travelling waves, which are suspended by cable under a load. The nonlinearity u+ models
the fact that cables resist expansion but do not resist compression. Choi and Jung investigate
in [1–3] the existence andmultiplicity of solutions of the single nonlinear wave equation with
Dirichlet boundary condition.

Let us set

L(u, v) = (Lu, Lv), Lu = utt − uxx. (1.2)

Then, system (1.1) can be rewritten by

LU = ∇
(
1
2
(AU,U) + F(x, t, u, v)

)
,

U

(
± π

2
, t

)
=
(
0
0

)
,

U(x, t + π) = U(x, t) = U(−x, t) = U(x,−t),

(1.3)

where ∇ is the gradient operator, U = ( u
v ), A = ( 0 a

b 0 ) ∈ M2×2(R).
We note that

√
ab, −

√
ab are two eigenvalues of the matrix A = ( 0 a

b 0 ), and that

−
√
ab‖U‖2E ≤ (AU,U)R2 ≤

√
ab‖U‖2E, U = (u, v). (1.4)

Let λmn be the eigenvalues of the eigenvalue problem utt − uxx = λu in (−(π/2), π/2) × R,
u(±(π/2), t) = 0, u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t).

Our main result is the following.

Theorem 1.1. Let F satisfy the conditions (F1), (F2), (F3), and (F4). Assume that

λ2mn − ab /= 0 ∀m,n with (m,n)/= (0, 0), (1.5)

a > 0, b > 0, (1.6)

√
ab < 1. (1.7)

Then, system (1.3) has a nontrivial solution (u, v).
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In Section 2, we obtain some results on the nonlinear term F. In Section 3, we approach
the variational method and recall the critical point theorem which is the linking theorem for
the strongly indefinite functional. This plays a crucial role to find a nontrivial solution. In
Section 4, we prove Theorem 1.1.

2. Some results on the nonlinear term F

The eigenvalue problem for u(x, t),

utt − uxx = λu in
(
− π

2
,
π

2

)
× R,

u

(
± π

2
, t

)
= 0, u(x, t + π) = u(x, t) = u(−x, t) = u(x,−t)

(2.1)

has infinitely many eigenvalues

λmn = (2n + 1)2 − 4m2 (m,n = 0, 1, 2, . . .), (2.2)

and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =
√
2

π
cos(2n + 1)x for n ≥ 0,

φmn =
2
π

cos 2mt· cos(2n + 1)x for m > 0, n ≥ 0.

(2.3)

Let Q be the square [−(π/2), π/2] × [−(π/2), π/2] andH0 the Hilbert space defined by

H0 =

{
u ∈ L2(Q) | u is even in x and t and

∫
Q

u = 0

}
. (2.4)

The set of functions {φmn} is an orthonormal basis in H0. Let us denote an element u, in H0,
by

u =
∑

hmnφmn. (2.5)

We define a subspace D of H0 as follows:

D =
{
u ∈

∑
hmnφmn :

∑
mn

λ2mnh
2
mn < +∞

}
. (2.6)

Then, this space is a Banach space with norm

‖u‖ =
[∑

λ2mnh
2
mn

]1/2
. (2.7)
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Let us set E = D × D. We endow the Hilbert space E with the norm

‖(u, v)‖2E = ‖u‖2 + ‖v‖2. (2.8)

We are looking for the weak solutions of (1.3) in D × D, that is, (u, v) such that u ∈ D, v ∈ D,
Lu = av + Fu(x, t, u, v), Lv = bu + Fv(x, t, u, v). Since |λmn| ≥ 1 for all m, n, we have the
following lemma.

Lemma 2.1. (i) ‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii) utt − uxx ∈ D implies u ∈ D.

Lemma 2.2. Suppose that c is not an eigenvalue of L : D → H0, Lu = utt − uxx, and let f ∈ H0.
Then, one has (L − c)−1f ∈ D.

Proof. Let λmn be an eigenvalue of L. We note that {λmn : |λmn| < |c|} is finite. Let

f =
∑

hmnφmn, (2.9)

then

(L − c)−1f =
∑ 1

λmn − c
hmnφmn. (2.10)

Hence, we have the inequality

∥∥(L − c)−1f
∥∥2 =

∑
λ2mn

1

(λmn − c)2
h2
mn ≤ C

∑
h2
mn (2.11)

for some C, which means that

∥∥(L − c)−1f
∥∥ ≤ C1‖f‖L2(Q), C1 =

√
C. (2.12)

By (F1) and (F3), we obtain the lower bound for F(x, t, u, v) in the term of |u|μ + |v|μ.

Lemma 2.3. Assume that F satisfies the conditions (F1) and (F3). Then, there exist a0, b0 ∈ R with
a0 > 0 such that

F(x, t, r, s) ≥ a0
(|r|μ + |s|μ) − b0, ∀x, t, r, s. (2.13)

Proof. Let r, s be such that r2 + s2 ≥ R2. Let us set ϕ(ξ) = F(x, t, ξr, ξs) for ξ ≥ 1. Then,

ϕ(ξ)
′
= rFr(x, t, ξr, ξs) + sFs(x, t, ξr, ξs) ≥

μ

ξ
ϕ(ξ). (2.14)
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Multiplying by ξ−μ, we get

(ξ−μϕ(ξ))
′ ≥ 0, (2.15)

hence ϕ(ξ) ≥ ϕ(1)ξμ for ξ ≥ 1. Thus, we have

F(x, t, r, s) ≥ F

(
x, t,

Rr√
r2 + s2

,
Rs√
r2 + s2

)(√
r2 + s2

R

)μ

≥ c0

(√
r2 + s2

R

)μ

≥ a0(|r|μ + |s|μ) − b0

(2.16)

for some a0, b0,where c0 = inf{F(x, t, r, s) | (x, t) ∈ Q, r2 + s2 = R2}.

Lemma 2.4. Assume that F satisfies the conditions (F1), (F2), and (F3). Then,

(i)
∫
QF(x, t, 0, 0)dx dt = 0,

∫
QF(x, t, u, v)dx dt > 0 if (u, v)/= (0, 0),

grad(
∫
QF(x, t, u, v))dx dt = o(‖(u, v)‖E) as (u, v) → (0, 0);

(ii) there exist a0 > 0, μ > 2 and b1 ∈ R such that

∫
Q

F(x, t, u, v)dx dt ≥ a0‖(u, v)‖μLμ − b1 ∀(u, v) ∈ E, (2.17)

(iii) (u, v) → grad(
∫
QF(x, t, u, v))dx dt is a compact map;

(iv) if
∫
Q[uFu(x, t, u, v)+vFv(x, t, u, v)]dx dt−2∫QF(x, t, u, v)dx dt = 0, then grad(

∫
QF(x,

t, u, v)dx dt) = 0;

(v) if ‖(un, vn)‖E → +∞ and (
∫
Q[unFu(x, t, un, vn) + vnFv(x, t, un, vn)]dx dt − 2

∫
QF(x, t,

un, vn)dx dt)/‖(u, v)‖E → 0, then, there exists ((uhn , vhn))n and w ∈ E such that

grad(
∫
QF(x, y, un, vn)dx dt)

‖(uhn , vhn)‖E
−→ w,

(uhn , vhn)
‖(uhn , vhn)‖E

⇀ (0, 0). (2.18)

Proof. (i) It follows from (F1) and (F2), since 1 < ν;
(ii) by Lemma 2.3, for U = (u, v) ∈ E,

∫
Q

F(x, t,U)dx dt ≥ a0‖U‖μLμdx dt − b1, (2.19)

where b1 ∈ R, thus, (ii) holds;
(iii) it is easily obtained with standard arguments;
(iv) it is implied by (F3) and the fact that F(x, t, u, v) > 0 for (u, v)/= (0, 0);
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(v) by Lemma 2.3 and (F3), forU = (u, v),

∫
Q

[uFu(x, t, u, v) + vFv(x, t, u, v)]dx dt − 2
∫
Q

F(x, t, u, v)dx dt

≥ (μ − 2)
∫
Q

F(x, t, u, v)dx dt ≥ (μ − 2)(a0‖U‖μLμ − b1).
(2.20)

By (F2),

∥∥∥∥∥grad
(∫

Q

F(x, t, u, v)dx dt

)∥∥∥∥∥
E

≤ C′‖FU(x, t,U)‖Lr ≤ C′′‖|U|ν‖Lr (2.21)

for some 1 < r < 2 and suitable constants C′,C′′. To get the conclusion it suffices to estimate
‖|U|ν/‖U‖E‖Lr in terms of ‖U‖μLμ/‖U‖E. If μ ≥ rν, then this is a consequence of Hölder
inequality. If μ < rν, by the standard interpolation arguments, it follows that ‖|U|ν/‖U‖E‖Lr ≤
C(‖U‖μLμ/‖U‖E)ν/μ‖U‖lE, where l is such that l = −1 + ν/μ. Thus, we prove (v).

Lemma 2.5. Assume that F satisfies the conditions (F1), (F2), (F3), and (F4). Then, there exist ϕ,
ψ : [0,+∞] → R continuous and such that ψ(s)/s → 0 as s → 0, ϕ(s) > 0 if s > 0,

(i) ‖grad∫QF(x, t, u, v)dx dt‖2E ≤ ψ(
∫
QF(x, t, u, v)dx dt), ∀(u, v) ∈ E,

(ii)
∫
Q[uFu(x, t, u, v) + vFv(x, t, u, v)]dx dt − 2

∫
QF(x, t, u, v)dx dt ≥ ϕ(u, v), ∀(u, v) ∈ E.

Proof. (i) By (F4), for all U = (u, v) ∈ E,

∥∥∥∥∥grad
(∫

Q

F(x, t,U)dx dt

)∥∥∥∥∥
E

≤ ‖FU(x, t,U)‖Lr

≤ C1
∥∥F(x, t,U)δ1 + F(x, t,U)δ2

∥∥
Lr

≤ C2
(∥∥F(x, t,U)δ1

∥∥
Lr +

∥∥F(x, t,U)δ2
∥∥
Lr

)

≤ C3
(∥∥F(x, t,U)δ1

∥∥
L1/δ1 +

∥∥F(x, t,U)δ2
∥∥
L1/δ2

)

≤ C4
(‖F(x, t,U)‖δ1

L1 + ‖F(x, t,U)‖δ2
L1

)

= C5

((∫
Q

F(x, t,U)dx dt

)δ1

+

(∫
Q

F(x, t,U)dx dt

)δ2)
,

(2.22)

where 1 < r < 1/δ1, 1/δ2 < 2, C1, C2, C3, C4 and C5 are constants. Since δ1, δ2 > 1/2, we
prove (i).
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(ii) By (F3),

∫
Q

[uFu(x, t, u, v) + vFv(x, t, u, v)]dx dt − 2
∫
Q

F(x, t, u, v)dx dt

≥ (μ − 2)
∫
Q

F(x, t,U)dx dt ≥ (μ − 2)
(
a0‖U‖μLμ − b1

)
.

(2.23)

Thus, we prove (ii).

3. Variational approach and linking theorem

Nowwe are looking for the weak solutions of system (1.3). We shall approach the variational
method and recall the linking theorem for the strongly indefinite functional. We observe that
the weak solutions of (1.3) coincide with the critical points of the corresponding functional

I : E −→ R ∈ C1,1,

I(U) =
1
2

∫
Q

LU·Udxdt − 1
2

∫
Q

(AU,U)R2dx dt −
∫
Q

F(x, t, u, v)dx dt.
(3.1)

Now, we recall the linking theorem for strongly indefinite functional (cf. [4]).

Lemma 3.1 (linking theorem). Let E be a real Hilbert space with E = E1 ⊕ E2 and E2 = E⊥
1 . one

supposes that

(I1) I ∈ C1(E,R), satisfies (P.S.)∗ condition;

(I2) I(u) = 1/2(Lu, u) + bu, where Lu = L1P1u + L2P2u and Li : Ei → Ei is bounded and
self-adjoint, i = 1, 2;

(I3) b
′
is compact;

(I4) there exists a subspace Ẽ ⊂ E and sets S ⊂ E, T ⊂ Ẽ and constants α > w such that:

(i) S ⊂ E1 and I|S ≥ α;

(ii) T is bounded and I|∂T ≤ w;

(iii) S and ∂T link.

Then, I possesses a critical value c ≥ α.

Let E−, E0, E+ be the subspace of E on which the functional U �→ (1/2)
∫
QLU·U is

positive definite, null, negative definite, and E−, E0 and E+ are mutually orthogonal. Let P+

be the projection for E onto E+, P 0 the one from E onto E0, and P− the one from E onto E−.
Let (En)n be a sequence of closed subspaces of E with the conditions

En = E−
n ⊕ E0 ⊕ E+

n, where E+
n ⊂ E+, E−

n ⊂ E−∀n,
(E+

n and E−
n are subspaces of E),dimEn < +∞, En ⊂ En+1,∪n∈NEn is dense in E.

(3.2)

Let PEn be the orthogonal projections from E onto En.
Let us prove that the functional I satisfies the linking geometry.
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Lemma 3.2. Assume that the conditions (1.5), (1.6), and (1.7) hold. Then, for any F with (F1), (F2),
(F3), and (F4),

(i) there exist a small number ρ > 0 and a small ball Bρ ⊂ E+ with radius ρ such that if
U ∈ ∂Bρ, then

α = inf I(U) > 0, (3.3)

(ii) there is an e ∈ E+, R > ρ and a large ball DR with radius R > 0 such that if

W =
(
DR ∩ (

E0 ⊕ E−)) ⊕ {re | 0 < r < R}, (3.4)

then

sup
U∈∂W

I(U) ≤ 0. (3.5)

Proof. (i) By (1.7) and (i) of Lemma 2.4, we can find a small number ρ such that, for U ∈ E+,

I(U) =
1
2

∫
Q

LU·U − 1
2

∫
Q

(AU,U)R2 −
∫
Q

F(x, t, u, v)dx dt

≥ 1
2

(
1 −

√
ab

λ00

)
‖U‖2E − 0

(‖U‖E
)
.

(3.6)

Since
√
ab < 1 = λ00, there exist a small number ρ > 0 and a small ball Bρ ⊂ E+ with radius ρ

such that if U ∈ ∂Bρ, then inf I(U) > 0. Thus, the assertion (1) holds;
(ii) let us choose an element e ∈ E+. LetU/= (0, 0) ∈ E0 ⊕E− ⊕ {re | r > 0}. We note that

if U ∈ E+, then
∫
Q

(LU·U − (AU,U)R2)dx dt ≥ τ1‖U‖2E,

if U ∈ E−, then
∫
Q

(LU·U − (AU,U)R2)dx dt ≤ −τ2‖U‖2E
(3.7)

for some τ1 > 0, τ2 > 0. Let us choose a sequence (Un)n,Un = (un, vn)/= (0, 0) ∈ E0 ⊕ E− ⊕ {re |
r > 0} such that ‖Un‖E → ∞. Let us set Ŭn = Un/‖Un‖E. By Lemma 2.3, we have that

I(Un)
‖Un‖2E

≤ ‖L −A‖‖P+Ŭn‖2E − a0‖Ŭn‖μLμ‖Un‖μ−2E +
b0

‖Un‖2
− τ2‖P−Ŭn‖2E

= ‖L −A‖r
2‖e‖2E
‖Un‖2E

− a0‖Ŭn‖μLμ‖Un‖μ−2E +
b0

‖Un‖2
− τ2‖P−Ŭn‖2E.

(3.8)
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Since ‖Un‖E → ∞, two possible cases arise. For the case ‖Ŭn‖Lμ → 0 it follows that Ŭn ⇀ 0,
hence P+Ŭn → 0 and P 0Ŭn → 0. Thus ‖P−Ŭn‖E → 1. Hence

lim sup
n→∞

I(un)
‖Un‖2E

≤ −τ2. (3.9)

For the case ‖Ŭn‖Lμ ≥ ε > 0 (3.6) implies

lim
n→∞

I(un)
‖Un‖2E

= −∞. (3.10)

Thus, we can choose a large number R > 0 and a large ball DR ⊂ E0 ⊕ E− with radius R > 0
such that if W = DR ∩ (E0 ⊕ E−)) ⊕ {re | 0 < r < R}, then supU∈∂WI(U) ≤ 0. So the assertion
(ii) holds.

We shall prove that the functional I satisfies the (P.S.)∗c condition with respect to (En)n
for any c ∈ R.

Lemma 3.3. Assume that the conditions (1.5), (1.6), and (1.7) hold. Then, for any F with (F1), (F2),
(F3), and (F4), the functional I satisfies the (P.S.)∗c condition with respect to (En)n for any real number
c.

Proof. Let c ∈ R and (hn) be a sequence in N such that hn → +∞,(Un)n be a sequence such
that

Un = (un, vn) ∈ Ehn , ∀n, I(Un) −→ c, PEhn
∇I(Un) −→ 0. (3.11)

We claim that (Un)n is bounded. By contradiction we suppose that ‖Un‖E → +∞ and set
Ûn = Un/‖Un‖E. Then

〈PEhn
∇I(Un), Ûn〉 = 〈∇I(Un), Ûn〉

= 2
I(Un)
‖Un‖E −

∫
Q∇F(x, t,Un)·Undx dt − 2

∫
QF(x, t,Un)dx dt

‖Un‖E −→ 0,
(3.12)

hence

∫
Q∇F(x, t,Un)·Undx dt − 2

∫
QF(x, t,Un)dx dt

‖Un‖E −→ 0. (3.13)

By (v) of Lemma 2.4,

grad
∫
QF(x, t,Un)dx dt

‖Un‖E converges (3.14)



10 Boundary Value Problems

and Ûn ⇀ 0. We get

PEhn
∇I(Un)

‖Un‖E = PEhn
LÛn −AÛn −

PEhn
grad(

∫
QF(x, t,Un)dx dt)

‖Un‖E −→ 0, (3.15)

so (PEhn
LÛn −AÛn)n converges. Since (Ûn)n is bounded and L − A is a compact mapping,

up to subsequence, (Ûn)n has a limit. Since Ûn ⇀ (0, 0), we get Ûn → (0, 0), which is a
contradiction to the fact that ‖Ûn‖E = 1. Thus (Un)n is bounded. We can now suppose that
Un ⇀ U for some U ∈ E. Since the mapping U �→ grad(

∫
QF(x, t,U)dx dt) is a compact

mapping, grad(
∫
QF(x, t,Un)dx dt) → grad(

∫
QF(x, t, u, v)dx dt). Thus, (PEhn

(LUn −AUn))n
converges. Since L −A is a compact operator and (Un)n is bounded, we deduce that, up to a
subsequence, (Un)n converges to some U strongly with ∇I(U) = lim∇I(Un) = 0. Thus, we
prove the lemma.

4. Proof of Theorem 1.1

Assume that the conditions (1.5), (1.6), and (1.7) hold and F satisfies (F1), (F2), (F3), and (F4).
We note that I(0, 0) = 0. By (iii) of Lemma 2.4, U �→ grad(

∫
QF(x, t, u, v)dx dt) is a compact

mapping. By Lemma 3.2, there exists a small number ρ > 0 and a small ball Bρ ⊂ E+ with
radius ρ such that if U ∈ ∂Bρ, then α = inf I(U) > 0, and there is an e ∈ E+, R > ρ > 0 and a
large ball DR with radius R > 0 such that if

W = (DR ∩ (E0 ⊕ E−)) ⊕ {re | 0 < r < R}, (4.1)

then

sup
U∈∂W

I(U) ≤ 0. (4.2)

Let us set β = supWI. We note that β < +∞. Let (En)n be a sequence of subspaces of E
satisfying (3.2). Clearly E0 ⊂ En for all n, and ∂Bρ and ∂W link. We have, for all n ∈ N,

sup
∂W∩En

I < inf
∂Bρ∩En

I. (4.3)

Moreover, by Lemma 3.3, In = I|En
satisfies the (P.S.)∗c condition for any c ∈ R. Thus by

Lemma 3.1 (linking theorem), there exists a critical point Un for In with

α ≤ inf
∂Bρ∩En

I ≤ I(Un) ≤ sup
W∩En

I ≤ β. (4.4)

Since In satisfies the (P.S.)∗c condition, we obtain that, up to a subsequence, Un → U, with
U a critical point for I such that α ≤ I(U) ≤ β. Hence, U/= (0, 0). Thus, system (1.5) has a
nontrivial solution. Thus Theorem 1.1 is proved.
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