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1. Introduction

Consider the Dirichlet problem

LeWP @) N (@),
Lu=f, felLP(Q),

(1.1)

where Q is a sufficiently regular open subset of R"” (n > 3), p €]1,+oo[, L is the uniformly
elliptic second-order linear differential operator defined by

n az n a
L:_Zlaiim+zlaia_xi+a (12)
ij= i=

with coefficients a;; = aj; € L*(Q), i,j=1,...,n.

It is well known that if Q is bounded, the above problem has been largely studied
by several authors under various hypotheses of discontinuity on the leading coefficients
and considering the case p = 2. In particular, some W??2-bounds for the solutions of the
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problem (1.1) and related existence and uniqueness theorems have been obtained. Among
the other results on this subject, we quote here the classical result of [1], where the author
assumed that the a;;’s belong to W' (Q). This result was later generalized in different ways,
supposing that the derivatives of the leading coefficients belong to some wider spaces. More
recently, a relevant contribution to the theory has been given in [2-5], where the coefficients
a;; are assumed to be in the class VMO and p €]1, +oo[; observe here that VMO contains the
class W(Q).

If the set Q is unbounded, under assumptions similar to those required in [1], problem
(1.1) has for instance been studied in [6] with p = 2, and in [7] with p €]1, +oo[. Instead, in
[8, 9], the leading coefficients satisfy restrictions similar to those in [2, 3].

In [10], we extended some results of [8, 9] to a weighted case. More precisely, we
denoted by p a weight function belonging to a suitable class and such that

igfp >0, lim p(x) = +oo. (1.3)

|x|—+c0
Then we considered the problem

2p oLp
ueW;m(Q)nNw, (Q),
Lu=f, felLf(Q),

(1.4)

where s € R, Wf P(Q), I/({/:p(Q), and L (Q) are some weighted Sobolev spaces and the weight
functions are a suitable power of p. We obtained that the operator L has closed range and that
for the problem (1.4) a uniqueness result holds.

In this paper, we study again the problem (1.4). We state a regularity result which
allows us to obtain the solvability of the problem.

A similar weighted case was studied in [11] with the leading coefficients satisfying
hypotheses of Miranda’s type and when p = 2.

2. Weight functions and weighted spaces

Let G be any Lebesgue measurable subset of R” and let X(G) be the collection of all Lebesgue
measurable subsets of G. Let F € X(G). Denote by |F| the Lebesgue measure of F, by yr the
characteristic function of F, and by © (F) the class of restrictions to F of functions ¢ € CZ (R")
with F nsupp ¢ C F. Moreover, if X(F) is a space of functions defined on F, we denote by
Xioc(F) the class of all functions g : F—R such that {g € X(F) for any ¢{ € ©(F). Finally,
for any x € R" and r € R,, we put B(x,r) = {y € R" : |y —x| < r}, B, = B(0,r), and
F(x,r) = FNB(x,r).

Let Q be an open subset of R”. We introduce a class of weight functions defined on Q.
Denote by #(£2) the set of all measurable functions p : Q—R, such that

Y 'py) <p(x) <yply), YyeQ VxeQ(y,py)), (2.1)

where y € R, is independent of x and y.

We note that the class of all functions p : Q—R, which are Lipschitz continuous in £
with Lipschitz coefficient < 1 is contained in «# () (see [12]).

For p € 4(Q), we put

SP={zeaQ:}Ci§;p(x)=O}. (2.2)
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It is known that

pELL(Q),  pleLF(Q\S)), (23)

loc

(see [12, 13]).
We assign an unbounded open subset € of R”.
From now on, let p; be a function such that p; € #4(R") and

igf p1>0, |xl|Lr£1wp1 (x) = +oo. (2.4)
For example,
pr:xeR" —1+alx|, ae€]01[. (2.5)
We put
P = Plos (2.6)

and note that p™ € L*(Q).
For any a €]0,1] and x € R”, we set

La(x) = Q(x,ap1(x)),  Ea(x) ={y € R" [x € B(y,ap:(y))}, (2.7)
and note that
¢pi(x) < |Eq(x)] < pli(x) Vx € R, (2.8)
where ¢, ¢” € R, depend only on n, a, p (see [12]).
If v is a real function defined in Q, we denote by v the zero extension of v in R".

We begin to prove the following.

Lemma 2.1. If v, g are two nonnegative functions in L} (Q), L}

oc 1oc(R™), respectively, then for any
a €]0,1],

f 0(@)lIgllir e, o dx =j 2(ollis 1, (2.9)
Q R~

and for v €]1, +oo], the following also hold:

v 1/v v
[ sl < ([ o@iglil oir) (2.10)

Proof. The equality (2.9) follows by

j o) gl oy dx =f dx f 0(x)g(y)dy
Q R" Ea(x)
[ af  wmgwa 1)
Rn B(y,ap1(y))

= gtolollumar.
]Rn
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Prove now the inequality (2.10). We observe that:

[ sl = geax([  wway)
R~ R~ B(x,ap1(x))

- g(x)l/"mx)dxf 20(y)dy
R" B(x,ap1(x))
(2.12)
=f dyf g(x)"""h(x)vo(y)dx
R~ Ea(y)
- [ wdy[ g s,
Q Ea(y)
where we have put
v-1
h(x) = g(x)" ™ (f vo(y)dy> : (2.13)
B(x,ap:1(x))
On the other hand,
1/v (v-1)/v
f g(x)"h(x)dx < < f g(x)dx) <J h(x)"/“”l)dx)
Eq(y) Eq(y) Eq(y)
(2.14)

1/v (v-1)/v
([ geax) ([ s@lelgma)
Ea(y) Ea(y)

Therefore, from (2.12) and (2.14), we deduce that

(v-1)/v
v v 1/v
[ stlol < ([ s@loligmdn) [ oWlsli g dv. @15

By (2.15), it obviously follows

1/v
v 1/v
([ sl umdx) < [ ol i 2.16)
and (2.16) yields the inequality (2.10). O

If k € Ng,1 <p <+ and s € R, consider the space Wf ?(Q) of distributions u on Q
such that p*0*u € LP(Q) for |a| < k, equipped with the norm

ltllypo ey = 3 1p° 0% ullrc- (2.17)

lal<k

o k,P
Moreover, denote by W, (Q) the closure of CZ(£2) in Wf’p(Q) and put Wg'p(Q) =L/ (Q). A
more detailed account of properties of the above-defined spaces can be found, for instance,
n [14].
From Lemma 2.1 we can deduce another lemma which we will need in the proof of
our regularity result.
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Lemma 2.2. Let p € [1 +oo[ s e€R,and a €]0,1]. Then u € LY (Q) if and only if u € LF (Q) and

the function x € R" —>,01 p(x)llull 1 (I.(x)) belongs to LP(R™). In addition, there exist c1,c, € Ry
such that

loc

allulf) g, < f P Ol g, A < Callullly ) V€ LE(Q), (2.18)

where c1 and ¢, depend only on n, p, s, a, and p. Moreover, if pg € [1,p[ and u € LY (Q), then the

s—n/

function x € R" — p~"'" (x) |[ul| o 1, (x)) belongs to LP(R™) and the following estimate holds:

spn

(x)”u”Uvo(] (x)) C3||u||Lr'o(Q) (219)
with c3 € R, dependent only onmn,p,po, s, a,and p.

Proof. The first part of the lemma follows from (2.9) for ¢ = p;" " and v = [u?, if one uses
(2.1) and (2.8). The second part of the lemma follows in a similar way from the inequality
(2.10), if one puts g = p;” ", v = [ulP*, and v = p/po. O
3. An embedding lemma

We now recall the definitions of the function spaces in which the coefficients of the operator
will be chosen. If Q has the property

|Q(x, 1) > Ar" VxeQ, Vre€]0,1], (3.1)

where A is a positive constant independent of x and r, it is possible to consider the space
BMO(Q, 7) (T € R;) of functions g € LllOC (Q) such that

g~ )L b4
Q(x,r)

{ g-teenr[ g (33)
Q(x,r) Q(x,r)
If g € BMO(Q) = BMO(L, T4), where

< +oo, (3.2)

(g ]BMO(Q,T) = sup
x€Q

Q(x,
rel0,7] Cen)

where

r" 1
Ta=sup TER,: su S— , 34
AT T e QG G4

rel0,7]

we will say that g € VMO(Q) if [g]py0(q,) — 0 for 7— 0. A function

nlgl:10,1] — R, (3.5)
is called a modulus of continuity of g in VMO(Q) if
[g]BMO(Q,T) <nlgl(r) V7€]0,1], }iqu[g] () =0. (3.6)

For t € [1,+oo[ and A € [0, n[, we denote by M**(Q) the set of all functions g in L. (Q) such
that

gl = sup r gl @er) < +oo (3.7)
rel0,1]
xeQ
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endowed with the norm defined by (3.7). Then we define M (Q) as the closure of L*(Q) in
M (Q) and M5 (Q) as the closure of C*(Q) in M*(Q). In particular, we put M'(Q) =
M (Q), MHQ) = MY(Q), and ML(Q) = M(Q). In order to define the modulus of
continuity of a function g in M*(Q), recall first that for a function g € M**(Q) the following
characterization holds:

ge MM Q) = lim pg() =0, (3.8)
where
pg(T) = sup xegllvr @), 7 €R;. (3.9)
EeX(Q)

sup, o |E(x,1)|<T
Thus the modulus of continuity of g € M*(Q) is a function
5lg] 10,1 — R, (3.10)
such that

pg(7) <0lgl(7) V7 e€l0,1],  limG[g](r) =0. (3.11)

A more detailed account of properties of the above defined function spaces can be found in
[6,15, 16].
We consider the following condition:

(hp) Q has the cone property, p €]1,+oo[, s € R, k, h, t are numbers such that

keN, he{01,...,k-1}, t>p, t>p ifp:ﬁ, g€ M(Q). (3.12)

From [17, Theorem 3.1] we have the following.

Lemma 3.1. If the assumption (hoy) holds, then for any u € WP (Q), it results that go"u € LE(Q)
and

with ¢ dependent only on Q, n, k, h, p, and t.

4. A regularity result

Assume that Q is an unbounded open subset of R", n > 3, with the uniform C'!-regularity
property, and let p be the function defined by (2.6). Moreover, let p €]1,+o0[ and s € R.
Consider in Q the differential operator

n aZ n a
L:—Zaijm'f'zaia‘f'a, (41)
i,j=1 ! i=1 t

with the following conditions on the coefficients:
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(hy)

aii:aiieLw(Q)mVMOM(ﬁ), i,j=1,...,n,

n
I >0: D ajkié; > v[i* ae inQVéeR”,
ij=1

there exist functions e;j, i,j = 1,...,n, g and p € R, such that
(h2)
ei]-:e]'iELOO(Q)ﬂVMO(Q), i,]':],'_.,n,

D eijkiéi > plE* ae. in QVEeR",

ij=1

n
geL7(@),  lim ley - gali-n =0,
ij=

(hs)
a; e M(Q), i=1,...,n, aec M?(Q),
where
ti>n ifp<n, th=p ifp>mn,

t>n if <n ty = if >n
225 WPy REp RPZo

(4.2)

(4.3)

(4.4)

(4.5)

Observe that under the assumptions (h;)-(hs), it follows that the operator L

Wg’p(Q)ﬁL’;(Q) is bounded from Lemma 3.1.

Theorem 4.1. Suppose that the assumptions (h1), (hy), and (h3) hold, and let u be a solution of the

problem
243y~ Sy (1P
u €W, () NW, (Q)NLy(Q),
Lue L (Q),
where g €]1, p] and po € [1, p]. Then u belongs to WP (Q).

Proof. By [8, Lemma 4.1], we have

2,p J— o 1,P J—
uc Wloc (Q) N Wioe (Q)

We choose r, 7' € R,, with r < 7' <1, and a function ¢ € CZ(R") such that

¢, =1, supp¢ C By,

sup|o*| < cu(r' - T vae NG,
Rn

where ¢, € R, depends only on a.

(4.6)

(4.7)

(4.8)
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We fix y € R" and put

repre® —9(055)

Clearly, we have

YB.rey) =1, suppy C By, 7'p1(y)),
sup|o*g| < capilal(y)(r’ - vae Ng.
Rn

olp
Since gu € W (Q)NW  (Q), from [8, Theorem 3.1] it follows that

lpullwer) < cr(ILgW)llr@ + lgulle @)

(4.9)

(4.10)

(4.11)

with ¢; depending onn, p, Q, v, u, t1, ta, llaijlli=(), lleijlli=@), Igllt=@), nléraijl, nleijl,
olai], o[a], where ro € R, depends onn, p, Q, u, |eijllL=(), nlei;j] and &, is a function in

C2(R™) such that
0<Gr <1, Gnipy, =1, Supp Gor, C Bur,.

Since

n n
L(gu) = —Z ai]-((pu)xix]_ + Zai((pu)xi + agpu

ij=1 i=1

n n n
=¢Lu- ZZ aii(‘l’xf”)xj + Z Aij P U + Zai(pxiu
i=1

ij=1 ij=1

from (4.11) and (4.13), we have

n
||‘l’”||w2rrf(gz) < C2<||‘IfL“||U’(Q) + Z ||(‘l’xiu)xj||LP(Q)
ij=1

n n
+ Z g, 1l e () + Z||llilpx,-u||mg) +llgullr @

i,j=1 i=1

with ¢; depending on the same parameters of c;.

(4.12)

(4.13)

(4.14)
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From Lemma 3.1 with s = 0, we have that

llaigxullr @) < csllaillpm @) (lgx @) + (@) [l @) (4.15)

with c3 dependent on Q, 1, p, and .
Using [18, Corollary 4.5], we can obtain the following interpolation estimates:

1-a

g allriy + @i @) < calll (@) el ol 1l + gl @),
g 2l @) < €511y 10) o 5, 15 + o el ), (4.16)

lgpuller @ < col(g) el gl + lgullin),

where a(€]0,1[) depends on n, p, pp and the constants cy4, ¢s5, and cs depend on Q, n, p, po.
Thus by (4.14)—(4.16), with easy computations, we deduce the following bound:

lullwzr ) < llgullwz @)

-2(1 _ (4.17)
< e = 1) 2O (WLl ) + 14l 1 oy + N8 100,

where ¢; € R, depends on n, p, po, 2, p, v, i, t1, t, llaijlli=), lleijllr=), 118ll=),
nléraijl, nleijl, llaillmn ), olai], olal.

By a well-known lemma of monotonicity of Miranda (see [19, Lemma 3.1]), it follows
from (4.17) that

el aiony < €8 (It + lallon g + 1l oy lehaen iy ), (418)
and then, using Young’s inequality, we deduce from (4.18) that

lliwzr ns ) < co (1Ll yy + uelliro o) (4.19)

with cg, cg € R, dependent on the same parameters of c;.
From (4.19) it follows that

[ A sy < e [ o @M+ [ o 0 ).

(4.20)
where c19 € R, depends on the same parameters of cg.
By (4.20) and by Lemma 2.2, we have that
llullyy2r g < crn(ILullpr ) + lullro o)) (4.21)

with ¢1; € R, dependent on the same parameters of ¢jp and on s.
Therefore, from (4.21), we have the result. O
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5. Existence and uniqueness results

In this section, we will prove our existence and uniqueness theorem. To this aim, we need
two preliminary lemmas.

Observe that it is possible to find a function o € #(Q) N C*(Q) N C*(Q) which is
equivalent to p and such that

|0%0(x)| < cpol(x) VxeQ, VaeN?, (5.1)
where ¢, is independent of x (see [12]).

Lemma 5.1. The Dirichlet problem

o012
ueWA(Q) nw, (Q),

(5.2)
—Au+bu=f, fel*Q),
where
n 2 O
1) SRS il .
b= s(s + )Z — Z o (5.3)

=1

is uniquely solvable. Moreover, if f € CZ(Q), then the solution u belongs to L1(Q) for all q in
[1,+o0].

Proof. Note that u is a solution of problem (5.2) if and only if w = o°u is a solution of the
problem

012
weW>?(Q)nNWw (Q),

(5.4)
—A(c5w) +bo~w = f, fe€LXQ).
But for anyi€ {1,...,n}
az
ﬁ(o"sw) = 0 Wy, — 250 05wy, + 5(s + 1)0 " 20w — 50~ Oy W, (5.5)
Xi
then (5.4) is equivalent to the problem
012
weW» Q) NwW (Q),
n (5.6)
—-Aw + sziwxi taw=g, ge€L*Q),
i=1
where we have put
o n 2 "5
-—25% i=1,...,n,(x=b—s(s+1)Z—); Z x’x’, g=0°f. (5.7)
i1 0 =1

Using [7, Theorem 5.2], [6, Equation (1.6)], and (5.1), we obtain that (5.6) is uniquely solvable
and then problem (5.2) is uniquely solvable too.

Moreover, if f € CP(Q), then also g € CP(L). Therefore, using the theorem in [20],
we have that the solution w of (5.6) belongs to L1() for all g € [1, +o0], and so the solution
u of (5.2) lies in L1(Q) for all g€ [1,+o0]. O
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Lemma 5.2. The Dirichlet problem

2p o Lp
ue W (Q)nw, (Q),
~Au+bu=f, felLl(Q),

(5.8)

is uniquely solvable, where b is defined by (5.3).

Proof. Let f be a function in CP (). Then, by Lemma 5.1, there exists a unique u € Ws2 ’Z(Q) N
Vi/ilz(Q) N LI(Q) (for all g € [1,+o0]) such that ~Au + bu = f.

Firstly, suppose that p > 2. It follows from Theorem 4.1 that u belongs to W2 (Q).
Moreover, by [10, Lemma 2.2], u lies in I/({/:p(Q).

Suppose now p < 2. Then u € le(f(ﬁ) N V({/:;Z(ﬁ) N LI(Q) (for all q € [1,+0]) and

then, using again Theorem 4.1, u belongs to WS2 ?(Q). Moreover, by [10, Lemma 2.2], u lies in
o 1,P
W, ().

o 1/

Therefore, in both cases, u € Wz"p(Q) N WSP(Q) and it is a solution of the equation
—Au+bu = f,so that CP(Q) C R(-A+b). Since CF(Q) is dense in L2(Q) (see [14, Proposition
1.1]) and R(-A +b) is a closed subspace of L? (Q) by [10, Theorem 4.1], we obtain that R(~A +
b) = LE(Q). The uniqueness of the solution follows from [10, Theorem 5.2]. O

Finally, adding the following assumption on the coefficients of L:

(hs)
(eif),, € MEHQ), with t€]2,n], i,j,h=1,...,n,
ae MI(Q), i=1,...,n,
. (5.9)
a=a+a’, aeMF(Q), a'eL*(Q), aj=essinfa” >0,
Q
g€ Lip(ﬁ), g0 = essbinfg >0,
we are now in position to state the following uniqueness and existence result.

Theorem 5.3. Suppose that conditions (hi)—(hs) hold. In addition, assume that a > ap > 0 a.e. in Q.
Then the problem

2,p o lp
ue WS (Q)nw, (Q),
Lu=f, fell(Q),

(5.10)

is uniquely solvable.
Proof. For each T € [0, 1], put

Lr=7(gL)+(1-7)(-A +D). (5.11)
The function

o lp
T€[0,1] — L, € BWP(Q) nW, (Q),LL(Q)) (5.12)
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is clearly continuous; moreover, it is easy to show that the coefficients of each operator L,
satisfy the hypotheses of [10, Theorem 5.2] (see also [16, Lemma 3.2]), and hence N(L;) =
{0}. On the other hand, it follows from [10, Theorem 4.1] that R(L;) is closed forany 7 € [0, 1],
so that [9, Lemma 4.1] can be used to obtain the existence of Cy € R, such that

o 1/P
lully2r gy < Coll Lotz Y€ WEP(Q) AW, (@), Y7 € [0,1]. (5.13)

By Lemma 5.2, the problem

weW? Q) nw. Q)

~Au+bu=h, helLl(Q),

(5.14)

is uniquely solvable.
Therefore, this latter result and estimate (5.13) allow to use the method of continuity
along a parameter in order to prove that the problem

W@, (@
ueW;m(Q)nw, (Q), (5.15)
(8Lu=gf, feLiQ)
is likewise uniquely solvable. The proof is complete. O
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