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principle, the theorem concerning the existence of a solution of this problem (having the graph
in a prescribed domain) is proved.
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1. Introduction

In the present paper the following Cauchy-Nicoletti problem

y′
i = fi

(
x, y
)
, i = 1, . . . , n, (1.1)

yp

(
x+
p

)
= Ap, yq

(
x±
q

)
= Aq, yr

(
x−
r

)
= Ar,

p = 1, . . . , k; q = k + 1, . . . , s; r = s + 1, . . . , n
(1.2)

is considered, where y = (y1, . . . , yn), x ∈ I = [a, b] and a = x1 = · · · = xk < xk+1 ≤ · · · ≤
xs < xs+1 = · · · = xn = b; Ai, i = 1, . . . , n are real constants. Denote Ii = I \ {xi}, i = 1, . . . , n
and J =

⋂n
i=1Ii. We will suppose fi ∈ C(Θi,R), i = 1, . . . , n where the domain Θi ⊂ Ii × R

n

(satisfying a relation Θi∩{x = x∗}/= ∅ for every x∗ ∈ Ii) is more precisely specified in Section 2.
The continuity of the function fi is not required at the point xi, i = 1, . . . , n. Solution of the
problem (1.1), (1.2) is defined in the following sense.
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Definition 1.1. A vector-function y(x) = (y1(x), . . . , yn(x)) ∈ C(I,Rn) with yi ∈ C1(Ii,R),
i = 1, . . . , n, is said to be a solution of the problem (1.1), (1.2) if it satisfies the system (1.1) on
J and if, moreover, conditions (1.2) hold.

Although singular boundary value problems were widely considered by using various
methods (see, e.g., [1–11]), the method used here is based on a different approach. Namely,
it uses simultaneously the topological method of Ważewski and Schauder’s principle.
Note that the method of Ważewski (see, e.g., [12–14]) was used for the investigation of
various asymptotic and singular problems, for example, in [3–6, 11, 12, 15]. For successful
generalization of this to multipoint boundary-value problems, the basic obstacle must be
overcome: the applying of topological method assumes that every intersection of so-called
regular polyfacial set and the plane x = x∗ = const, x∗ ∈ (a, b) is an open set in the space
of dependent variables. Nature of the problems considered, as followed from problem (1.1),
(1.2) does not permit straightforward generalization of this approach since the cross-section
by the plane x = xi, i = 1, . . . , n is not an open set in the space y. The above mentioned obstacle
is overcome in the present paper by connecting the topological method and the fixed point
theorem.

Let us explain the main idea of this approach. Each equation of the system (1.1) is
considered separately (as a scalar equation) under the supposition that nondiagonal variables
are changed by functions taken from a prescribed set M of vector functions. For every
scalar equation (together with the corresponding Cauchy initial condition which is subtracted
from (1.2)) it is, with the aid of Ważewski’s method and qualitative properties of solutions
of differential equations, showed that there exists its solution having the same properties
which were supposed for the corresponding coordinate of vector functions from M. In
this way an operator T is defined. For verification of conditions of Schauder’s principle
(namely, the continuity of operator T), Ważewski’s method is used again. Stationary point
of operator T defines a solution of the problem (1.1), (1.2). The paper is organized as follows.
In Section 2 the main result is formulated. Illustrative examples are contained in Section 3.
Auxiliary results are stated in Section 4. In Section 5 we prove results concerning scalar
singular problems and the last section contains the proof of the main result.

2. Existence of Solutions of the Problem (1.1), (1.2)
Let αi, βi ∈ C1(I,R), i = 1, 2, . . . , n be functions satisfying αi(xi) = βi(xi) = Ai and αi(x) < βi(x)
on Ii. Define

Ω =
{(

x, y1, . . . , yn

)
: x ∈ I, αi(x) ≤ yi ≤ βi(x), i = 1, . . . , n

}
,

Ωi =
{(

x, y1, . . . , yn

)
: x ∈ Ii,

(
x, y1, . . . , yn

)
∈ Ω
}
.

(2.1)

Let us suppose that there exists a domain Θi, i = 1, 2 . . . , n such that Ωi ⊂ Θi ⊂ Ii × R
n; cross

section Si(x) = {(x, y) ∈ Θi} is an open set for every fixed x ∈ Ii and fi ∈ C(Θi,R). These
assumptions are supposed in the sequel. Define, moreover,

Γi =
{(

x, yi1 , . . . , yin−1

)
: x ∈ Ii, {i1, . . . , in−1} = {1, . . . , n} \ {i},

αs(x) ≤ ys ≤ βs(x), s = i1, . . . , in−1
}
,

Fi

(
x, y
)
≡ fi
(
x, y
)
− y′

i, i = 1, . . . , n.

(2.2)
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Result of the paper is given in the following theorem.

Theorem 2.1. Assume that

n∑

j=1

Mij(x)
∣
∣yj − zj

∣
∣ ≤ fi

(
x, y
)
− fi(x, z) ≤

n∑

j=1

Nij(x)
∣
∣yj − zj

∣
∣ (2.3)

for every (x, y1, . . . , yn), (x, z1, . . . , zn) ∈ Ωi with yi > zi where Mij(x), Nij(x), i, j = 1, . . . , n, are
continuous on Ii functions, such that for a constant ξ > 0

|Mii(x)| > ξ
n∑

j=1,j /= i

∣
∣Mij(x)

∣
∣, |Nii(x)| > ξ

n∑

j=1,j /= i

∣
∣Nij(x)

∣
∣. (2.4)

Let, moreover,

Fi(x, y)
∣∣
yi=αi(x)

· Fi(x, y)
∣∣
yi=βi(x)

< 0,

signMii(x) = signNii(x) = signFi(x, y)
∣∣
yi=βi(x)

,
(2.5)

if (x, y1, . . . , yi−1, yi+1, . . . , yn) ∈ Γi, i = 1, . . . , n. Then there exists at least one solution y(x) =
(y1(x), . . . , yn(x)) of the problem (1.1), (1.2) such that on Ii, i = 1, . . . , n:

αi(x) < yi(x) < βi(x). (2.6)

Remark 2.2. In the formulation of the problem (1.1), (1.2) the inequalities xk < xk+1 and xs <
xs+1 were supposed. Analyzing the method of proof of Theorem 2.1 we conclude that the
result remains valid in the cases when xk ≤ xk+1 and xs ≤ xs+1 too. This means, for example,
that a singular Cauchy problem

y′
i = fi

(
x, y
)
, yi

(
x+

1

)
= Ai, i = 1, . . . , n (2.7)

is a partial case of given result as well as a two-point boundary-value problem:

y′
i = fi

(
x, y
)
, i = 1, . . . , n

yp

(
x+

1

)
= Ap, p = 1, . . . , k, yr

(
x−
n

)
= Ar, r = k + 1, . . . , n.

(2.8)

Remark 2.3. In [9] a technique based on Kneser’s theorem is introduced to extend the
topological method of Ważewski for Carathéodory systems. It has, for example, been used
to study the asymptotic behavior of the solutions of a perturbed linear system:

ẋ = [A(t) + B(t)]x + g(t, x), (2.9)
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where the n × n matrices A (diagonal) and B are locally integrable, g ∈ Carloc((t0,∞) × C
n),

and the solutions are unique with respect to their initial values. The existence of solutions
xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . , n such that for any i /= p

lim
t→∞

xpi(t)
xpp(t)

= 0 (2.10)

is studied. This is accomplished with the above-mentioned extension of the topological retract
method for Carathédory systems which can be applied due to the construction of a suitable
regular polyfacial sets. This technique makes it possible to extend the results initially proved
(by Ważewski’s method) for ordinary differential equations with continuous right-hand sides
to Carathédory systems. Similar method has, for example, been used in a recent paper [6]
where the technique developed in [9] is utilized. Along these lines, we can analyse our result
in terms of its possible extension to systems (1.1) with Carathéodory right-hand sides. Since
the Lipschitz-type condition (2.3) is necessary in the proof of Theorem 2.1 for verifying the
continuity of the operator T, it cannot be omitted. Therefore, our result seems to be extendable
for Carathéodory systems (1.1) if the uniqueness of the solutions is ensured with respect to
their initial values (save at singular points).

3. Examples

Let us consider two illustrative nonlinear systems. The first one has a linear part which
determines the existence of the solution of the problem considered. The second one is a
perturbation of a system for which we know analytic solution of singular problem.

Example 3.1. Let us consider a singular problem:

y′
1 = 2

y1

x
−
x
(
y2

3 + 1
)

10
,

y′
2 =

y2

(x − 1/2)2
−

y1 + y3 + 1
20(x − 1/2)

,

y′
3 = −

3y3

1 − x
+
(1 − x)

(
y2

2 + 1
)

10
,

y1(0+) = 0, y2

(
1
2±

)
= 0, y3

(
1−
)
= 0.

(3.1)

For this problem all conditions of Theorem 2.1 are valid for

α1(x) = 0, β1(x) = 3x,

α2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
(
x − 1

2

)
, if x ∈

[
0,

1
2

]
,

0, if x ∈
(

1
2
, 1
]
,
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β2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x ∈
[

0,
1
2

]
,

3
(
x − 1

2

)
, if x ∈

(
1
2
, 1
]
,

α3(x) = 0, β3(x) = 3(1 − x)2

(3.2)

and, for example, for ξ = 1, M11(x) = N11(x) = 2/x, M12(x) = N12(x) = M31(x) = N31(x) = 0,
M13(x) = −N13(x) = −3x(1 − x)2/5, M21(x) = M23(x) = −N21(x) = −N23(x) = −1/(20|x −
1/2|), M22(x) = N22(x) = 1/(x − 1/2)2, M32(x) = −N32(x) = −|x − 1/2|, and M33(x) =
−N33(x) = −3/(1 − x). Consequently, there is at least one solution to this problem y(x) =
(y1(x), y2(x), y3(x)) such that

0 < y1(x) < 3x for x ∈ (0, 1],

min
{

3
(
x − 1

2

)
; 0
}

< y2(x) < max
{

0; 3
(
x − 1

2

)}
for x ∈

[
0,

1
2

)
∪
(

1
2
, 1
]
,

0 < y3(x) < 3(1 − x)2 for x ∈ [0, 1).

(3.3)

Example 3.2. Let us consider a singular problem:

y′
1 =

2
x3

y2
1 + εx2y2

2 ,

y′
2 =

3

(x − 1/2)4
y2

2 + ε

(
x − 1

2

)3

y2
3 ,

y′
3 =

−2

(1 − x)3
y2

3 + ε(1 − x)2y2
1 ,

y1(0+) = 0, y2

(
1
2±

)
= 0, y3

(
1−
)
= 0,

(3.4)

where ε is a real constant, |ε| < 0.01. For this problem all conditions of Theorem 2.1 are valid,
for example, for

α1(x) = x2 − 0.1x3, β1(x) = x2 + 0.1x3,

α2(x) =
(
x − 1

2

)3

− 0.1
(
x − 1

2

)4

, β2(x) =
(
x − 1

2

)3

+ 0.1
(
x − 1

2

)4

,

α3(x) = (1 − x)2 − 0.1(1 − x)3, β3(x) = (1 − x)2 + 0.1(1 − x)3

(3.5)

and for ξ = 1, M11(x) = 2/x, M12(x) = M31(x) = −N12(x) = −N31(x) = −M23(x) = N23(x) =
−0.1, N11(x) = 6/x, M13(x) = N13(x) = M21(x) = N21(x) = M32(x) = N32(x) = 0, M22(x) =
−12/(1/2 − x) if x < 1/2,N22(x) = −5/(1/2 − x) if x < 1/2,M22(x) = 3/(x − 1/2) if x >
1/2, N22(x) = 12/(x − 1/2) if x > 1/2, M33(x) = −5/(1 − x), and N33(x) = −3/(1 − x).
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Consequently, there is at least one solution to this problem y(x) = (y1(x), y2(x), y3(x)) such
that

x2 − 0.1x3 < y1(x) < x2 + 0.1x3 for x ∈ (0, 1],

(
x − 1

2

)3

− 0.1
(
x − 1

2

)4

< y2(x) <
(
x − 1

2

)3

+ 0.1
(
x − 1

2

)4

for x ∈ [0, 1] \
{

1
2

}
,

(1 − x)2 − 0.1(1 − x)3 < y3(x) < (1 − x)2 + 0.1(1 − x)3 for x ∈ [0, 1).

(3.6)

If ε = 0, then the considered system turns into system

y′
1 =

2
x3

y2
1 , y′

2 =
3

(x − 1/2)4
y2

2 , y′
3 =

−2

(1 − x)3
y2

3 , (3.7)

having solution

y1 = x2, y2 =
(

x − 1
2

)3

, y3 = (1 − x)2, (3.8)

which satisfies (3.4).

4. Preliminaries

In the sequel we will apply topological method of Ważewski (see, e.g., [12–14]). Therefore
we give a short summary of it. Let us consider the system of ordinary differential equations

y′ = g
(
x, y
)

(4.1)

with y ∈ R
n. Below, it will be assumed that the right-hand sides of the system (4.1) are

continuous functions defined on an open (x, y)-set Ω∗ ⊂ R × R
n.

Definition 4.1 (see [12]). An open subset Ω0 of the set Ω∗ is called an (n, p)-subset of Ω∗ with
respect to the system (4.1) if the following conditions are satisfied.

(1) There exist continuously differentiable functions ni : Ω∗ → R, i = 1, . . . , � and
pj : Ω∗ → R, j = 1, . . . , m; � +m > 0 such that

Ω0 =
{(

x, y
)
∈ Ω∗ : ni

(
x, y
)
< 0, pj

(
x, y
)
< 0 ∀i, j

}
. (4.2)

(2) ṅα(x, y) < 0 holds for the derivatives of the functions nα(x, y), α = 1, . . . , � along
trajectories of the system (4.1) on the set

Nα =
{(

x, y
)
∈ Ω∗, nα

(
x, y
)
= 0, ni

(
x, y
)
≤ 0, pj

(
x, y
)
≤ 0 ∀i /=α and j

}
. (4.3)
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(3) ṗβ(x, y) > 0 holds for the derivatives of the functions pβ(x, y), β = 1, . . . , m along
trajectories of the system (4.1) on the set

Pβ =
{(

x, y
)
∈ Ω∗, pβ

(
x, y
)
= 0, ni

(
x, y
)
≤ 0, pj

(
x, y
)
≤ 0 ∀i and j /= β

}
. (4.4)

As usual, if ω ⊂ R×Rn, then intω, ∂ω and ω denote the interior, the boundary, and the closure
of ω, respectively.

Definition 4.2. The point (x0, y0) ∈ Ω∗∩∂Ω0 is called an egress point (or ingress point) of Ω0 with
respect to the system (4.1) if, for every fixed solution of the problem y(x0) = y0, there exists
an ε > 0 such that (x, y(x)) ∈ Ω0 for x0 − ε ≤ x < x0 (x0 < x ≤ x0 + ε). An egress point (ingress
point) (x0, y0) of Ω0 is called a strict egress point (strict ingress point) of Ω0 if (x, y(x))/∈Ω 0 on
interval x0 < x ≤ x0 + ε1 (x0 − ε1 ≤ x < x0) for an ε1 > 0.

The set of all points of egress (strict egress) is denoted by Ω0
e (Ω0

se). It is proved in [12,
page 281], that when a set Ω0 is an (n, p)-subset of Ω∗ then Ω0

e ≡ Ω0
se.

Theorem 4.3 (see [12, page 282]). Let Ω0 be some (n, p)-subset of Ω∗ with respect to the system
(4.1). Let S be a nonempty compact subset ofΩ0 ∪Ω0

e such that the set S∩Ω0
e is not a retract of S but

is a retract of Ω0
e. Then there is at least one point (x0, y0) ∈ S ∩Ω0 such that the graph of a solution

y(x) of the Cauchy problem y(x0) = y0 for (4.1) lies in Ω0 on its right-hand maximal interval of
existence.

5. Partial Singular Problems

At this part we are interested in existence of solutions of some auxiliary singular problems
for one scalar equation. We consider two cases below with respect to the location of singular
point (at the left end or at the right end of the interval considered).

5.1. Singular Point Coincides with the Left End of Interval

Consider the initial problem

y′ = B
(
x, y
)
, (5.1)

y(u+) = K, (K ∈ R) (5.2)

on an interval (u, v] with u < v. By a solution of problem (5.1), (5.2) on interval (u, v] we
mean the function y ∈ C([u, v],R) ∩ C1((u, v],R) which satisfies (5.1) on (u, v] and the
condition (5.2). Let functions λ(x), μ(x) be continuously differentiable on (u, v], λ(u+) =
μ(u+) = K and λ(x) < μ(x) on (u, v]. Denote

Θ+ =
{(

x, y
)

: x ∈ (u, v], λ(x) < y < μ(x)
}
. (5.3)
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Let us suppose that there exists a domain Θ̃ ⊂ (u, v] × R, such that Θ+ ⊂ Θ̃ and the cross
section S+(x) = {(x, y) ∈ Θ̃} is an open set for every x ∈ (u, v]. Define an auxiliary function

H
(
x, y
)
≡ B
(
x, y
)
− y′. (5.4)

Lemma 5.1. Suppose that B ∈ C(Θ̃,R) satisfies the local Lipschitz condition with respect to the
variable y in Θ̃ and, moreover,

H(x, λ(x)) < 0 < H
(
x, μ(x)

)
if x ∈ (u, v]. (5.5)

Then each point (v, y∗) where y∗ ∈ [λ(v), μ(v)] defines a solution y = y∗(x) of (5.1) on (u, v] such
that (5.2) holds, y∗(v) = y∗, and

λ(x) < y∗(x) < μ(x), x ∈ (u, v]. (5.6)

Proof. Let us evaluate the derivative of the function w(x, y) ≡ (y − λ(x))(y − μ(x)) along the
trajectories of (5.1) if (x, y) ∈ N, where

N =
{(

x, y
)

: x ∈ (u, v], w
(
x, y
)
= 0
}
. (5.7)

We get

dw
(
x, y
)

dx
=
(
y′ − λ′(x)

)
·
(
y − μ(x)

)
+
(
y − λ(x)

)
·
(
y′ − μ′(x)

)

=
[
B
(
x, y
)
− λ′(x)

](
y − μ(x)

)
+
(
y − λ(x)

)[
B
(
x, y
)
− μ′(x)

]
.

(5.8)

Since (x, y) ∈ N, then either y = μ(x) or y = λ(x). In the first case we have

dw(x, y)
dx

∣∣∣∣
y=μ(x)

=
(
μ(x) − λ(x)

)
·H
(
x, μ(x)

)
(5.9)

and in the second one

dw(x, y)
dx

∣∣∣∣
y=λ(x)

= −H(x, λ(x)) ·
(
μ(x) − λ(x)

)
. (5.10)

Thus, in view of condition (5.5),

dw(x, y)
dx

∣∣∣∣
(x,y)∈N

> 0, (5.11)

and, consequently, all points of the set N = Θ̃∩∂Θ+ are for x ∈ (u, v) the points of strict egress
of Θ+ with respect to (5.1).
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Let us consider behaviour of a solution y = y∗(x) of the problem y∗(v) = y∗ ∈
[λ(v), μ(v)] for decreasing values of x ∈ (u, v]. Let us suppose that this solution leaves
the domain Θ+ passing through a boundary point (x0, y∗(x0)) ∈ N where x0 ∈ (u, v) and
(x, y(x)) ∈ Θ+ for x ∈ (x0, v]. In this is case this point a point of ingress (for increasing x)
with respect to (5.1) and this contradicts the fact that each point of the set N is for x ∈ (u, v)
a point of strict egress. Only one possibility remains valid: solution y∗(x) is simultaneously a
solution of the problem (5.1), (5.2). The lemma is proved.

Lemma 5.2. Let all assumptions of Lemma 5.1 hold except condition (5.5) which is replaced by the
condition:

H
(
x, μ(x)

)
< 0 < H(x, λ(x)) if x ∈ (u, v]. (5.12)

Then there is at least one solution y = y∗(x) of the problem (5.1), (5.2) on (u, v] such that inequalities
(5.6) hold.

Proof. Let us define the set N and the function w(x, y) in the same way as in the proof of
Lemma 5.1. Then the derivative of w(x, y) along the trajectories of (5.1) satisfies, in view of
condition (5.12), the inequality

dw(x, y)
dx

∣∣∣∣
(x,y)∈N

< 0. (5.13)

This means that all points of the set N are for x ∈ (u, v) the points of strict ingress of Θ+ with
respect to (5.1).

Let us change the orientation of the x-axis into reverse. Then all points of the set N are
for x ∈ (u, v) the points of strict egress of Θ+ with respect to (5.1).

Is it easy to see that the two-point set {λ(v − 
), μ(v − 
)}, where 
 is a small positive
number, is a retract of the set N in view of existence of the retraction

r
(
x, y
)
=
(
v − 
, μ

(
v − 


)
+
[
λ
(
v − 


)
− μ
(
v − 


)] y − μ(x)
λ(x) − μ(x)

)
, (5.14)

where (x, y) ∈ N. Clearly, the nonempty compact set S = [λ(v − 
), μ(v − 
)] is not a retract
of its boundary ∂S = {λ(v − 
), μ(v − 
)} (see, e.g., [16]). All assumptions of topological
principle of Ważewski are valid, and, by Theorem 4.3 (in its formulation we put Ω0 ≡ intΘ+,
p1(x, y) ≡ w(x, y), j = 1, n1 ≡ x−v+
 and � = 1), there exists at least one solution y = y∗(x)
of the problem (5.1), (5.2) with graph belonging to the domain Θ+ on (u, v − 
]. By the same
arguments, as in the proof of Lemma 5.1, this solution can be continued on the interval (u, v].
The lemma is proved.

5.2. Singular Point Coincides with the Right End of Interval

Let us consider the initial problem (5.1), (5.15) where

y
(
v−) = K, (K ∈ R) (5.15)
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on an interval [u, v), with u < v. By a solution of (5.1), (5.15) on interval [u, v) we mean the
function y ∈ C([u, v],R) ∩ C1([u, v),R) which satisfies (5.1) on interval [u, v) and condition
(5.15). Let λ(x), μ(x) be continuously differentiable functions on [u, v), λ(v−) = μ(v−) = K
and λ(x) < μ(x) on [u, v). Denote

Θ− =
{(

x, y
)

: x ∈ [u, v), λ(x) < y < μ(x)
}
. (5.16)

Let us suppose that there exists a domain Θ ⊂ [u, v) × R, such that Θ− ⊂ Θ and the cross
section S−(x) = {(x, y) ∈ Θ} is an open set for every x ∈ [u, v). The proofs of following
Lemmas 5.3 and 5.4 can be made by the similar manner as the proofs of Lemmas 5.1 and 5.2.
Hence, they are omitted.

Lemma 5.3. Suppose that B ∈ C(Θ,R) satisfies the local Lipschitz condition with respect to the
variable y in Θ and, moreover,

H(x, λ(x)) < 0 < H
(
x, μ(x)

)
if x ∈ [u, v). (5.17)

Then there is at least one solution y = y∗∗(x) of the problem (5.1), (5.15) on (u, v] such that

λ(x) < y∗∗(x) < μ(x). (5.18)

Lemma 5.4. Let all assumptions of Lemma 5.3 hold except condition (5.17) which is replaced by the
condition:

H
(
x, μ(x)

)
< 0 < H(x, λ(x)) if x ∈ [u, v). (5.19)

Then each point (u, y∗∗) where y∗∗ ∈ [λ(u), μ(u)] defines a solution y = y∗∗(x) of (5.1) on [u, v),
y∗∗(u) = y∗∗ and the inequalities (5.18) hold.

6. Proof of Theorem 2.1

6.1. Construction of Operator

Let us consider the system

y′
i = fi

(
x, ϕ1(x), . . . , ϕi−1(x), yi, ϕi+1(x), . . . , ϕn(x)

)
, i = 1, 2, . . . , n (6.1)

with (ϕ1(x), . . . , ϕn(x)) ∈ M, where

M =
{(

ϕ1(x), ϕ2(x), . . . , ϕn(x)
)
, x ∈ I, ϕi ∈ C(I,R),

αi(x)≤ ϕi(x) ≤ βi(x), i = 1, 2, . . . , n
} (6.2)

This system, strictly speaking, consists of separated scalar equations. Therefore in the
following we will consider equations of system (6.1) separately.
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y1

x1 xn x

y∗
1(v)β1(x)

y1(x)

α1(x)

Figure 1: Using Lemma 5.1.

y1

x1 xn x

y∗
1(v)

β1(x)

y1(x)

α1(x)

Figure 2: Using Lemma 5.2.

(a) Let us consider the first equation of system (6.1) (which corresponds to the value
i = 1) together with corresponding initial value which is subtracted from (1.2):

y′
1(x) = f1

(
x, y1, ϕ2(x), . . . , ϕn(x)

)
,

y1
(
x+

1

)
= A1.

(6.3)

Let us put B(x, y) ≡ f1(x, y, ϕ2(x), . . . , ϕn(x)), λ(x) ≡ α1(x), μ(x) ≡ β1(x), u = x1, v = xn and
K = A1. In view of condition (2.5) we see that either condition (5.5) or condition (5.12) holds
for H(x, y) ≡ F1(x, y). From Lemmas 5.1 and 5.2 (it is easy to see that their assumptions are
valid) the existence of a solution of the problem (6.3) satisfying inequalities (5.6) follows. An
illustration to the cases where Lemma 5.1 or Lemma 5.2 is used is given in Figures 1 and 2.
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In the sequel we will consider a solution y1(x) = y∗
1(x) of problem (6.3) chosen in a

unique way. We define this solution (in the case when Lemma 5.1 was used) by means of the
additional condition

y1(xn) = y∗
1(v) = y∗

1 =
1
2
(
α1(xn) + β1(xn)

)
. (6.4)

If Lemma 5.2 was used, then denote the set of all solutions of problem (6.3) with the indicated
properties as a set Y and put y1(xn) = y∗

1(v) = min{y(v) : y ∈ Y}. Obviously this minimum
exists and y∗

1(v) > λ(v).
Define the first coordinate T1 of operator T by relation

T1
(
ϕ2, . . . , ϕn

)
= y∗

1. (6.5)

From inequalities (5.6) it follows that (y∗
1, ϕ2, . . . , ϕn) ∈ M. The same reasoning can be

repeated for i = 2, . . . , k.
(b) Now consider the last equation of system (6.1) (which corresponds to the value

i = n) together with the corresponding initial value which is subtracted from (1.2):

y′
n = fn

(
x, ϕ1(x), . . . , ϕn−1(x), yn

)
,

yn

(
x−
n

)
= An.

(6.6)

Let us put B(x, y) ≡ fn(x, ϕ1(x), . . . , ϕn−1(x), y), λ(x) ≡ αn(x), μ(x) ≡ βn(x), u = x1, v = xn and
K = An. In view of condition (2.5) we see that either condition (5.17) or condition (5.19) holds
for H(x, y) ≡ Fn(x, y). From Lemmas 5.3 and 5.4 the existence of a solution of the problem
(6.6) satisfying inequalities (5.18) follows. Similarly as in the part (a) above, we chose the
solution yn(x) = y∗∗

n (x) of problem (6.6), which is uniquely defined.
Define the last coordinate Tn of operator T by relation

Tn
(
ϕ1, . . . , ϕn−1

)
= y∗

n. (6.7)

From inequalities (5.18) it follows that (ϕ1, . . . , ϕn−1, y
∗
n) ∈ M. The same reasoning can be

repeated for i = s + 1, . . . , n − 1.
(c) Let us consider the equation of system (6.1) which corresponds to the value i = s

together with corresponding initial value which follows from (1.2):

y′
s = fs

(
x, ϕ1(x), . . . , ϕs−1(x), ys, ϕs+1(x), . . . , ϕn(x)

)
,

ys

(
x±) = As.

(6.8)

Let us put B(x, y) ≡ fs(x, ϕ1(x), . . . , ϕs−1(x), y, ϕs+1(x), . . . , ϕn(x), λ(x) ≡ αs(x), μ(x) ≡ βs(x)
and K = As. Consider, at first, the problem (6.8) on interval [x1, xs). For this, let us put u = x1,
v = xs. In view of condition (2.5) we see that either condition (5.17) or condition (5.19) holds
for H(x, y) = Fs(x, y) and with the aid of Lemmas 5.3 and 5.4 (as in the part (b)) we can
define the unique solution ys(x) = yΔΔ(x) of (6.8) on interval [x1, xs). Now consider the
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problem (6.8) on interval (xs, xn]. Put u = xs, v = xn. In view of condition (2.5) we see that
either condition (5.5) or condition (5.12) holds for H(x, y) ≡ Fs(x, y) and with the aid of
Lemmas 5.1 and 5.2 (as in part (a)) we define the unique solution ys(x) = yΔ(x) of (6.8) on
interval (xs, xn].

At the end we define, by a unique manner, the solution y∗
s(x) of the problem (6.8) as

y∗
s(x) =

⎧
⎨

⎩

yΔΔ(x), x ∈ [x1, xs),

yΔ(x), x ∈ (xs, xn].
(6.9)

Define the sth coordinate Ts of operator T by relation

Ts
(
ϕ1, . . . , ϕs−1, ϕs+1, . . . , ϕn

)
= y∗

s. (6.10)

It is easy to see that (ϕ1, . . . , ϕs−1, y
∗
s, ϕs+1, . . . , ϕn) ∈ M. The same reasoning can be repeated

for i = k + 1, . . . , s − 1.
(d) Now we are able to define operator T. For every ϕ = (ϕ1, . . . , ϕn) ∈ M define

Tϕ = y∗ with

T = (T1, T2, . . . , Tn), (6.11)

where y∗ = (y∗
1, . . . , y

∗
n) ∈ M. Note that y∗ is defined in the unique way. Obviously, T(M) ⊂

M.

6.2. Verification of Schauder’s Assumptions

Let us consider the Banach space Ψ of functions ψ(x) = (ψ1(x), ψ2(x), . . . , ψn(x)), continuous
on I, with the norm

∥
∥ψ
∥∥ = max

i=1,2,...,n

{
max

I

∣
∣ψi(x)

∣∣
}
. (6.12)

Clearly M ⊂ Ψ and, as follows from the properties of the functions αi(x), βi(x), i = 1, 2, . . . , n,
M is a closed, bounded and convex set. It remains to prove that T is a continuous mapping
such that T(M) is a relatively compact subset of Ψ. Then all the assumptions of Schauder’s
fixed-point theorem will be satisfied (e.g., [15, page 29]). With respect to the relative
compactness of T(M) it is sufficient to prove in accordance with Arzelà-Ascoli theorem that
T(M) is uniformly bounded and equicontinuous on I.

(α) The uniform boundedness follows from the inequality

∥∥ϕ
∥∥ < L, (6.13)

where L = maxI{|αi(x)|, |βi(x)|, i = 1, 2, . . . , n}, which holds for every ϕ ∈ M.
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(β) Let us prove the equicontinuity of each function ϕ ∈ T(M). On I1 the first coordinate
ϕ1 of ϕ satisfies (as it follows from the construction of T) an equation of the type

ϕ′
1 = f1

(
x, ϕ1, ν2(x), . . . , νn(x)

)
(6.14)

with (ϕ1, ν2, . . . , νn) ∈ M. Since f1 ∈ C(Θ1,R), (6.14) yields

∣
∣ϕ′

1(x)
∣
∣ < Kδ, x ∈ [x1 + δ, xn], x1 + δ < xn, 0 < δ = const, (6.15)

where the constant Kδ exists and depends on δ. Let us put δ1 = min(δ/2, ε∗/Kδ/2) where ε∗

is an arbitrary positive number and δ is so small that

max
[x1,x1+δ]

∣∣β1(x) −A1
∣∣ <

ε∗

2
, max

[x1,x1+δ]
|α1(x) −A1| <

ε∗

2
. (6.16)

Let us suppose that |z1 − z2| < δ1, z1, z2 ∈ [x1, xn]. Then either z1, z2 ∈ [x1, x1 + δ] or z1, z2 ∈
[x1 + δ/2, xn]. In the first case

∣∣ϕ1(z1) − ϕ1(z2)
∣∣ ≤
∣∣ϕ1(z1) −A1

∣∣ +
∣∣ϕ1(z2) −A1

∣∣ <
ε∗

2
+
ε∗

2
= ε∗ (6.17)

and in the second one (by Lagrange’s mean value theorem)

∣∣ϕ1(z1) − ϕ1(z2)
∣∣ ≤ Kδ/2|z1 − z2| < ε∗. (6.18)

So, for each positive ε∗ there is a δ1 > 0 such that |ϕ1(z1) − ϕ1(z2)| < ε∗ for |z1 − z2| < δ1

and each function of the type of ϕ1(x) is equicontinuous. By analogy we can show that the
functions of the type ϕj(x), j = 2, . . . , n are equicontinuous too. Finally, for |z1 − z2| < δ1, we
get ‖ϕ(z1) − ϕ(z2)‖ < ε∗ and the equicontinuity of the set T(M) is proved.

(γ) Continuity of operator T. Let us suppose that y0, ỹ ∈ M and

Y 0 = Ty0, Ỹ = Tỹ. (6.19)

In the sequel we prove that the operator T is continuous. We prove that

∥∥∥Y 0 − Ỹ
∥∥∥ < ε if

∥∥∥y0 − ỹ
∥∥∥ < δ, (6.20)

where δ ≤ εξ and ξ was defined in formulation of Theorem 2.1. The following construction
will show that operator T is continuous. All expressions in the following will be well defined
(supposing, if necessary, ε sufficiently small).
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Consider the identity (see the definition of T)

Y 0′
i (x) ≡ fi

(
x, η0

1(x), η
0
2(x), . . . , η

0
n(x)
)
, (6.21)

where i = 1, 2, . . . , n, η0
i (x) ≡ Y 0

i (x), η0
j (x) ≡ y0

j (x), j /= i, (x, η0
1, η

0
2, . . . , η

0
n) ∈ Ωi and the

equation

Ỹ ′
i = fi

(
x, η̃1(x), η̃2(x), . . . , η̃n(x)

)
, (6.22)

where i = 1, 2, . . . , n, η̃i = Ỹi, η̃j = η̃j(x) ≡ ỹj(x), j /= i, (x, η̃1(x), η̃2(x), . . . , η̃n(x)) ∈ Ωi.
Note that in view of definition of T a solution of (6.22) is given by Ỹi ≡ Ỹi(x). Define, for
i = 1, 2, . . . , n, the functions

Wi

(
x, Ỹi

)
=
(
Ỹi − Y 0

i (x) − ε
)(

Ỹi − Y 0
i (x) + ε

)
(6.23)

and the sets

Pi =
{(

x, Ỹi

)
:
(
x, Ỹi

)
∈ Ωi,Wi

(
x, Ỹi

)
= 0
}
. (6.24)

(γ1) Let us evaluate the derivative of W1(x, Ỹ1) along the trajectories of (6.22) for i = 1
if (x, Ỹ1) ∈ P1. We get,

dW1

(
x, Ỹ1

)

dx
=
[
Ỹ ′

1 − Y 0′
1 (x)
](

Ỹ1 − Y 0
1 (x) + ε

)
+
(
Ỹ1 − Y 0

1 (x) − ε
)[

Ỹ ′
1 − Y 0′

1 (x)
]
. (6.25)

Since (x, Ỹ1) ∈ P1, then either Ỹ1 = Y 0
1 (x) + ε or Ỹ1 = Y 0

1 (x) − ε. So,

dW1(x, Ỹ1)
dx

∣∣∣∣∣
Ỹ1=Y 0

1 (x)±ε

= ±2ε
[
f1

(
x, Y 0

1 (x) ± ε, ỹ2(x), . . . , ỹn(x)
)
− f1

(
x, Y 0

1 (x), y
0
2(x), . . . , y

0
n(x)
)]

.

(6.26)
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According to (2.3) and (6.20):

ε

⎛

⎝M11(x) − ξ
n∑

j=2

∣
∣M1j(x)

∣
∣

⎞

⎠ ≤ εM11(x) +
n∑

j=2

M1j(x)
∣
∣
∣ỹj(x) − y0

j (x)
∣
∣
∣

≤ f1

(
x, Y 0

1 (x) + ε, ỹ2(x), . . . , ỹn(x)
)
− f1

(
x, Y 0

1 (x), y
0
2(x), . . . , y

0
n(x)
)

≤ εN11(x) +
n∑

j=2

N1j(x)
∣
∣
∣ỹj(x) − y0

j (x)
∣
∣
∣ ≤ ε

⎛

⎝N11(x) + ξ
n∑

j=2

∣
∣N1j(x)

∣
∣

⎞

⎠,

ε

⎛

⎝−N11(x) − ξ
n∑

j=2

∣∣N1j(x)
∣∣

⎞

⎠ ≤ −εN11(x) −
n∑

j=2

N1j(x)
∣
∣
∣ỹj(x) − y0

j (x)
∣
∣
∣

≤ f1

(
x, Y 0

1 (x) − ε, ỹ2(x), . . . , ỹn(x)
)
− f1

(
x, Y 0

1 (x), y
0
2(x), . . . , y

0
n(x)
)

≤ −εM11(x) −
n∑

j=2

M1j(x)
∣∣∣ỹj(x) − y0

j (x)
∣∣∣ ≤ ε

⎛

⎝−M11(x) + ξ
n∑

j=2

∣∣M1j(x)
∣∣

⎞

⎠.

(6.27)

Therefore (in view of (2.4), (6), and (6.20))

dW1(x, Ỹ1)
dx

∣∣∣∣∣
(x,Ỹ1)∈P1

> 0 if N11(x) > 0 on I1, (6.28)

dW1(x, Ỹ1)
dx

∣∣∣∣∣
(x,Ỹ1)∈P1

< 0 if N11(x) < 0 on I1. (6.29)

If inequality (6.28) and suppositions of Lemma 5.1 (in the situation, described in Section 6.1,
(a)) hold simultaneously, then points of the set ∂Q1, where

Q1 = {(x, Y1) : x ∈ (x1, xn], w(x, Y1) < 0,W1(x, Y1) < 0} (6.30)

with w defined in the proof of Lemma 5.1, are (for all x ∈ (x1, xn)) the points of strict egress
for Q1 with respect to (6.22) with i = 1 (this equation is at the same time an equation of
the type (6.1) for i = 1). Since Y 0

1 (x
+
1 ) = Ỹ1(x+

1 ) and (in view of construction of operator T)
Y 0

1 (x
−
n) = Ỹ1(x−

n), then |Y 0
1 (x) − Ỹ1(x)| < ε (see Figure 3).

Indeed, if this inequality does not hold then there is a x∗ ∈ I1 such that |Y 0
1 (x

∗) −
Ỹ1(x∗)| = ε and by (6.28): |Y 0

1 (x) − Ỹ1(x)| > ε on (x∗, xn]. This is impossible.
If inequality (6.29) and suppositions of Lemma 5.2 (in the situation, described in

Section 6.1, (a)) hold simultaneously, then all points of the set ∂Q1 are, for all x ∈ (x1, xn),
the points of strict ingress for Q1 with respect to (6.22) with i = 1 (see Figure 4).

In view of construction (x, Y 0
1 (x)) ∈ Ω1 and (x, Ỹ1(x)) ∈ Ω1. If inequality |Y 0

1 (x) −
Ỹ1(x)| < ε does not hold, then there is a x∗ ∈ I1 such that |Y 0

1 (x
∗) − Ỹ1(x∗)| = ε and |Y 0

1 (x) −
Ỹ1(x)| < ε on (x1, x

∗). This is impossible, since point (x∗, Ỹ1(x∗) is the point of strict ingress.
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Y1

a b x

β1(x)

Y 0
1 (x) + ε

Y 0
1 (x) − ε

Y 0
1 (x)

Q1

Ỹ1(x)

α1(x)

Figure 3: Continuity of T (the first case).

Y1

a b x

β1(x)

Y 0
1 (x) + ε

Y 0
1 (x) − ε

Y 0
1 (x)

Q1

Ỹ1(x)

α1(x)

Figure 4: Continuity of T (the second case).

In both considered cases, |Y 0
1 (x) − Ỹ1(x)| < ε on I1 and, consequently, on I too. We

conclude that

∣∣∣Ỹ1(x) − Y 0
1 (x)
∣∣∣ < ε on I if

∥∥∥y0 − ỹ
∥∥∥ < δ. (6.31)

If inequality (6.29) and suppositions of Lemma 5.1 (in the situation, described in part 6.1, (a))
hold simultaneously, then for small ε : N1 ∩ P1 /= ∅, where N1 ≡ N (N was defined in the
proof of Lemma 5.1), and there exist a point (xΔ, yΔ) ∈ N1 ∩ P1 which is at the same time
a point of strict egress and a point of strict ingress for Q1. This is excluded by condition (6).
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For the same reason is the case when (6.28) and Lemma 5.2 hold simultaneously impossible.
Analogously we can investigate (6.22) if i = 2, . . . , k.

(γ2) Let us evaluate the derivative of Wn(x, Ỹn) along the trajectories of (6.22) for i = n

if (x, Ỹn) ∈ Pn. The similar computations as above lead to inequalities

dWn(x, Ỹn)
dx

∣
∣
∣
∣
∣
(x,Ỹn)∈Pn

> 0 if Nnn(x) > 0 on In, (6.32)

dWn(x, Ỹn)
dx

∣
∣
∣
∣
∣
(x,Ỹn)∈Pn

< 0 if Nnn(x) < 0 on In. (6.33)

If inequality (6.32) and suppositions of Lemma 5.3 (in the situation described in Section 6.1,
(b)) hold simultaneously, then all points of the set ∂Qn, where

Qn = {(x, Yn) : x ∈ (x1, xn), w(x, Yn) < 0,Wn(x, Yn) < 0} (6.34)

with w defined as in the proof of Lemma 5.1, are (for x ∈ (x1, xn)) the points of strict egress
for Qn with respect to (6.22) with i = n (since this equation is at the same time an equation of
the type (6.1) for i = n).

If inequality (6.33) and suppositions of Lemma 5.4 (in the situation described in
Section 6.1, (b)) hold simultaneously, then all points of the set ∂Qn for x ∈ (x1, xn) are points
of strict ingress.

In both of these cases we conclude similarly, as in part (γ1), that |Y 0
n(x) − Ỹ 0

n(x)| < ε
on I if ‖y0 − ỹ‖ < δ. The cases when inequality (6.32) and suppositions of Lemma 5.4
hold simultaneously or when inequality (6.33) and suppositions of Lemma 5.3 hold
simultaneously are impossible according to (6).

Analogously we can proceed if i = s + 1, . . . , n − 1.
(γ3) Let us evaluate the derivative of Wq along the trajectories of (6.22) for q = k +

1, . . . , s if (x, Ỹq) ∈ Pq. It is easy to see (by analogy with γ1)) that the following four cases
(6.35)–(6.38) are possible:

dWq

(
x, Ỹq

)

dx
> 0 if Nqq(x) > 0, on Iq, (6.35)

dWq

(
x, Ỹq

)

dx
> 0 if Nqq(x) > 0 on

[
x1, xq

)
,

dWq

(
x, Ỹq

)

dx
< 0 if Nqq(x) < 0 on

(
xq, xn

]
,

(6.36)
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dWq

(
x, Ỹq

)

dx
< 0 if Nqq(x) < 0 on Iq, (6.37)

dWq

(
x, Ỹq

)

dx
< 0 if Nqq(x) < 0 on

[
x1, xq

)
,

dWq

(
x, Ỹq

)

dx
> 0 if Nqq(x) > 0 on

(
xq, xn

]
.

(6.38)

Each of the admissible cases (i.e., if suppositions of Lemmas 5.1 , 5.3 and inequality (6.35)
hold; or if suppositions of Lemmas 5.2 , 5.3 and inequalities (6.36) hold; or if suppositions
of Lemmas 5.2 , 5.4 and inequality (6.37) hold; or if suppositions of Lemmas 5.1 , 5.4 and
inequalities (6.38) hold) can be considered as above (see parts (γ1) and (γ2)) and, therefore,
for q = k + 1, . . . , s : |Y 0

q (x) − Ỹq(x)| < ε on I if ‖y0 − ỹ‖ < δ. The remaining cases are
impossible in view of (6). Connecting all parts (γ1)–(γ3) we conclude that (6.20) holds and,
consequently, operator T is continuous. All conditions of Schauder’s principle are valid.
Therefore, the operator T has a fixed point, that is, the problem (1.1), (1.2) has a solution
with indicated properties which follow from the form of the set M. Strong inequalities in
(2.6) are a consequence of the fact that boundaries of considered sets are transversal with
respect to integral curves. The proof is complete.
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[2] V. A. Čečik, “Investigation of systems of ordinary differential equations with a singularity,” Trudy
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[10] I. Rachůnková, O. Koch, G. Pulverer, and E. Weinmüller, “On a singular boundary value problem
arising in the theory of shallow membrane caps,” Journal of Mathematical Analysis and Applications,
vol. 332, no. 1, pp. 523–541, 2007.

[11] B. Vrdoljak, “On solutions of the Lagerstrom equation,” Archivum Mathematicum, vol. 24, no. 3, pp.
111–122, 1988.

[12] P. Hartman, Ordinary Differential Equations, vol. 38 of Classics in Applied Mathematics, SIAM,
Philadelphia, Pa, USA, 2nd edition, 2002.
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[14] T. Ważewski, “Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des
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