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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
noninteger order. The subject is as old as the differential calculus, and goes back to time when
Leibnitz and Newton invented differential calculus. The idea of fractional calculus has been a
subject of interest not only among mathematicians but also among physicists and engineers.
See, for instance, [1-6].

Fractional-order models are more accurate than integer-order models, that is, there are
more degrees of freedom in the fractional-order models. Furthermore, fractional derivatives
provide an excellent instrument for the description of memory and hereditary properties of
various materials and processes due to the existence of a “memory” term in a model. This
memory term insures the history and its impact to the present and future. For more details,
see [7].

Fractional calculus appears in rheology, viscoelasticity, electrochemistry, electromag-
netism, and so forth. For details, see the monographs of Kilbas et al. [8], Kiryakova [9],
Miller and Ross [10], Podlubny [11], Oldham and Spanier [12], and Samko et al. [13], and
the papers of Diethelm et al. [14-16], Mainardi [17], Metzler et al. [18], Podlubny et al. [19],
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and the references therein. For some recent advances on fractional calculus and differential
equations, see [1, 3, 20-24].

In this paper we consider the following nonlinear fractional differential equation of
the form

Dou(t) = u(t) = f(t,u(t)), teJ:=(0,1],0<6<1, (1.1)

where D¢ is the standard Riemann-Liouville fractional derivative, f is continuous, and A € R.

This paper is organized as follows. in Section 2 we recall some definitions of fractional
integral and derivative and related basic properties which will be used in the sequel. In
Section 3, we deal with the linear case where f(t,u(t)) = o(t) is a continuous function.
Section 4 is devoted to the nonlinear case.

2. Preliminary Results

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Let C[0, 1] the Banach space of all continuous real functions defined on [0, 1] with the
norm || f|| =: sup{|f(t)| : t € [0,1]}. Define for t € [0,1], f,(t) = t" f(t). Let C,[0,1], ¥ > O be
the space of all functions f such that f, € C[0,1] which turn out to be a Banach space when
endowed with the norm || f||, =: sup{t"|f(¢)| : t € [0,1]}.

By L'[0,1] we denote the space of all real functions defined on [0,1] which are
Lebesgue integrable.

Obviously C,[0,1] c L'[0,1] if r < 1.

Definition 2.1 (see [11, 13]). The Riemann-Liouville fractional primitive of order s > 0 of a
function f : (0,1] — R is given by

t
I5f(t) = % f (-1 (wyar, @.1)

provided the right side is pointwise defined on (0, 1], and where I is the gamma function.

For instance, I exists for all s > 0, when f € C((0,1]) N L'(0,1]; note also that when
f €C[0,1], then I f € C[0,1] and moreover I;f(0) = 0.

Let0 < s < 1,if f € C.[0,1] with r < s, then I°f € C[0,1], with I°f(0) = 0. If
f € Cs[0,1], then I° f is bounded at the origin, whereas if f € C,[0,1] with s <7 <1, then we
may expect I°f to be unbounded at the origin.

Recall that the law of composition I"I* = I"** holds for all r, s > 0.

Definition 2.2 (see [11, 13]). The Riemann-Liouville fractional derivative of order s > 0 of a
continuous function f : (0,1] — Ris given by

1 d

~ tt - d _dIl—s ¢ 29
r(1—s)af( -7 f(ndr = 21 f (). (2.2)

0

Def(t) =

We have DSI*f = f forall f € C(0,1] n L'(0,1].
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Lemma 2.3. Let 0 < s < 1. If one assumes u € C(0,1] N L(0, 1], then the fractional differential
equation

D’u=0 (2.3)
has u(t) = ct*™!, c € R, as unique solutions.

From this lemma we deduce the following law of composition.

Proposition 2.4. Assume that f isin C(0,1]NL'(0, 1] with a fractional derivative of order 0 < s < 1
that belongs to C(0,1] N L'(0,1]. Then

I*DSF(t) = f(t) +ct! (2.4)

for some ¢ € R.

If f € C,[0,1] withr <1-sand D*f € C(0,1] nL*(0,1], then I*DSf = f.

3. Linear Problem

In this section, we will be concerned with the following linear fractional differential equation:
Dou(t) — \u(t) =o(t), te]:=(0,1],0<6<1, (3.1)

where A € R, and ¢ is a continuous function.
Before stating our main results for this section, we study the equation

Dou(t) =o(t), te]:=(0,1],0<6<1. (3.2)
Then

u(t) = cto1 + (1%)(1&), tel0,1] (3.3)

for some ¢ € R.

Note that (I°c) € W'1(0,1) and (I0)(0) = 0. However, u ¢ W'1(0,1) since ct®~! has a
singularity at 0 for ¢ #0.

It is easy to show that u € C;_5[0,1]. Hence we should look for solutions, not in
W1(0,1) but in C;_5[0,1]. We cannot consider the usual initial condition u(0) = ug, but
limyo-#'"%u(t) = up. Hence, to study the periodic boundary value problem, one has to
consider the following boundary condition of periodic type

lim t70u(t) = u(1). (3.4)
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From (3.3), we have
lim £70u(t) = ¢,

h—=0*

(3.5)
u(l) =c+ (1%)(1)

that leads to the following.

Theorem 3.1. The periodic boundary value problem (3.2)—(3.4) has a unique solution u € C1_5[0,1]
if and only if

1
f ods _, (3.6)

0(1- s)l_'S -

The previous result remains true even if 6 = 1. In this case, (3.2) is reduced to the
ordinary differential equation

u'(t) =o(t), (3.7)

with the periodic boundary condition
u(0) = u(1), (3.8)

and the condition (3.6) is reduced to the classical one:
1
J o(s)ds = 0. (3.9)
0

Now, for A different from 0, consider the homogenous linear equation

Dou(t) - Au(t) =0, te]:=(0,1],0<6<1. (3.10)

The solution is given by

0 )Li—l .
u(t) = cI'(6) _ 91 ceR. (3.11)
; I'(61)
Indeed, we have
0 )Li—l )
Dlu(t) = cI'(6) _ DO (911 (3.12)
; I'(61) < >

since the series representing u is absolutely convergent.
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Using the identities

r 1
DSt = Tur1) HoS s -1,
T(p+1-s) (3.13)
Dsts—l 0
we get
i I'(61) i1)- . _
6 (46i-1\ _ 6(i-1)-1 646-1 _
D<t ) Tea- , fori>1, DSt 1=0, (3.14)
Then
D6u(t —CF((S)ZWtﬁ(i_l)_l

0 )Li—Z )
— ACI—‘ 6 ‘—tﬁ(lfl)*l
©) 2 60-1)

)L' 1 i
—)LcF(G)ZF((S )t

= Au(t).

(3.15)

Note that the solution can be expressed by means of the classical Mittag-Leffler special
functions [8]. Indeed

0 ‘7

u(t) =

=1

© (0 i-1
=cr (G, (Ft( 6)1,)
i=1

(3.16)

2 (o)
= T(6)” 1ZT(61 1 6)

= cT(6)t5'Ess (M).

The previous formula remains valid for 6 = 1. In this case,

T(1)=1,
(3.17)
Ep1(A) = E1(Af) = exp(Af).
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Then
u(t) = c exp(it),
which is the classical solution to the homogeneous linear differential equation

W () - Au(t) = 0

(3.18)

(3.19)

Now, consider the nonhomogeneous problem (3.1). We seek the particular solution in the

following form:
! I3} 6
up(#) = f (t=5)""Es5(A(t = 5)")o(s)ds

© i i6
j(t— 5)% 1Zr(ét( Si)) o(s)ds.

It suffices to show that
uy(t) = )L(Iéup>(t) + (1%) (t).
Indeed
(1%,,) (t) r(a;)f (t—5)"u,(s)ds

5-1 5-1% -9)°
- i) [[a-9r -0 Zr(é( o ds

r<6> Z r<6<?1+ 1) J 0 J (t=9"(5-0" (5= 9" o)L ds

5- 6(i+1)
r(é)zr(6(1+1)fo<g>f (t ) (s - 7 s g

Using the change of variable

s=(1-0)¢+6t,

we get

i t 1 )
(1) 0 = 175, Zr(5(f‘+ 1))foo<§>f0<1 = 0)71e% (1 - )2 dg g

FT(63 +1))I(6)

= 1 _ £\0(i+2)-1
_T(5)§T(5(i+1))jo TeGr2)) (-9 olds

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Then,

0 )LHl

5- 5(i+1)
A%, (0 Zr<5(1+z>>f“‘§> - 9" o)y

B 51 Al 5i
- a-v Sty ¢ o

251 A i (3.25)
- a-o [Zr(ﬁ( 559 —F(6)]o(§> :
f(t &% Ess(A(t-2) )o(@dé—mf (-2 o(@)de
= u,(t) - <I 0> (t).
Hence, the general solution of the nonhomogeneous equation (3.1) takes the form
t
= cT(6)1° ' Egs (A7 —8)""Es5(A(t - 5)°)o(s)ds. 3.26
() = ) Egs (A°) + [ (1=5) o (14t =5)")os)ds (326)

Now, consider the periodic boundary value problem (3.1)-(3.4). Its unique solution is
given by (3.26) for some ¢ € R. Also uis in C;_5[0, 1] and

lim 10u(t) = c. (3.27)
From (3.26), we have
u(1) = cT(6)Egs (1) + j:(l ~8)9 Egs ()L(l - s)6>o(s)ds, (3.28)
which leads to
c[1-T(6)Ess(\)] = f:(l ~8)" Egp (m - s)‘S)o(s)ds, (3.29)

since I'(6) Es s (A) #1 for any A #0, we have

c=[1- r(5)E5,5()L)]1J‘:(1 ~8)" Egp <A(1 - s)6>0'(s)ds. (3.30)
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Then the solution of the problem (3.1)—(3.4) is given by

I'(5)

mté_l&"s ()‘tfj)ﬂ(l -5)""Ess <)L(1 - s)5>o(s)ds

u(t) =
(3.31)

o[ @95 s (-5 )oas

0

Thus we have the following result.

Theorem 3.2. The periodic boundary value problem (3.1)—(3.4) has a unique solution u € C1_5[0, 1]
given by

1
u(t) = J‘OG)L,g(t, s)o(s)ds, (3.32)

where

Gs(t,s)

T(6)Ess (M5 Esys </\(1 - 5)5)t6-1(1 — )01

1-T(6)Es5(L)
T(8)Ess(M5)Esys </\(1 - s)6>t6’1(1 — )01

+(t-35)""Ess ()L(t - s)6>, 0<s<t<l,

, 0<t<s<l1.
1-T(6)Ess(L)
(3.33)
For A, 6 given, G, s is bounded on [0, 1] x [0, 1].
For6 =1, (3.1) is
u'(t)—lu(t) =c(t), te], (3.34)
and the boundary condition (3.4) is
u(0) = u(1). (3.35)
In this situation Green’s function is
1 eMt=s), 0<s<t<l,
Gyri(t,8) = 3.36
) =0 M) 0<t<s<1. (330)

which is precisely Green'’s function for the periodic boundary value problem considered in
[25, 26].
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4. Nonlinear Problem

In this section we will be concerned with the existence and uniqueness of solution to the
nonlinear problem (1.1)-(3.4). To this end, we need the following fixed point theorem of
Schaeffer.

Theorem 4.1. Assume X to be a normed linear space, and let operator F : X — X be compact. Then
either

(i) the operator F has a fixed point in X, or

(ii) theset &= {u € X :u = puF(u), p € (0,1)} is unbounded.

If u is a solution of problem (1.1)—(3.4), then it is given by

1
u(t) = IOGA,a(t/S)f(SIu(S))dS/ (1)

where G, s is Green’s function defined in Theorem 3.2.
Define the operator B : C1_5[0,1] — Ci1-5[0,1] by

1
B - [ Gualt, ) (s u(s)ds, te(0,1] (42)

Then the problem (1.1)—(3.4) has solutions if and only if the operator equation Bu = u has
fixed points.

Lemma 4.2. Suppose that the following hold:

(i) there exists a constant M > 0 such that

|f(t,u)| <M, Vte[0,1], ueR, (4.3)

(ii) there exists a constant k > 0 such that

|f(t,u) - f(t,0)| <klu—-v|, foreachte[0,1], and all u,v € R. (4.4)

Then the operator B is well defined, continuous, and compact.
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Proof. (a) We check, using hypothesis (4.3), that Bu € C;_5[0,1], for every u € C;_5[0,1].
Indeed, for any t; < t; € [0,1], u € D, we have

|10B ) (1) - 5B (1)
1 1

- tﬁf Gus(tr,5) f (s, u(s))ds - t;ﬁj Gus(tr,5) f (5, u(s))ds
0 0

r(5)156,5()¢f) tl
1-T(6)Es5(L) ) o

IN

Ess(A(1-9)°) (1=9)"" f(su(s))ds

+ t%_ﬁf:Eﬁ,a (J\(tl - S)5>(t1 =) f(s,u(s))ds

T(6)Ess <)Lt§> b

6 6-1
TR0y ) o (19 ) (=9 (s us))ds

151
- t;‘SJ‘O Ess (/\(tz - S)5> (t2=9)"" f(s,u(s))ds

T(6)Ess <)Lt‘f> b

+ m t1E6,6 </\(1 - S)6> 1- 5)6_1 f(s,u(s))ds

T(6)Ess ()ug) b

6 6-1
“TIT@ s ), oo (11 9°) =9 s uo)ds

t
- t;SJ‘t Ess </\(t2 - S)5>(f2 =) f(s,u(s))ds
L(6)Ess(18) 1

6 6-1
ToT@ st ), oo (11 9°) =97 s u(e)ds

I'(6)Ess <)Ltg) 1

6 6-1
ToT@ (), oo (11 9°) (=9 (s uo)ds

- M<% |E6’6 <M‘1$> ~Ess <)‘t§> U: 'Eé,é <)L(1 - s)6> | (1-35)"ds

t
f
0
r(6
o r(5()1;25,5u)| |Eas (A7) - Ess (115)

£0(t — 5)° Egps (A(tl - s)5> — 853ty — 5)° ' Egs ()L(t2 - s)6> |ds

sz
b

Ess (m - 5)5) | (1-5)"ds
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+ t;ﬁr |155,5 (A(tz - s)6> | (t - 5)°'ds
3]

o) B B () - B (45) 1 [Eaa(a1-9)7)] 1 - S)ﬁlds>'

(4.5)
From the previous expression, we deduce that, if |t; — f2| — 0, then
|t§-673(u)(t1) - t;-ﬁﬁ(u)(t2)| —0. (4.6)
Indeed, note that the integral fg |Es;s(A(1 - 5)5)|(1 - 5)5_1ds is bounded by
& A & A 1
S L

A similar argument is useful to study the behavior of the last three terms of the long
inequality above. On the other hand, if we denote by H the second term in the right-hand
side of that inequality, then it is satisfied that

H= f tl N (t =) N (ty = 5)

& 62 r(6j+0) 162 T(6j+6)

- j _ o\0j+6-1 _ _ o\6j+0-1
N 0 [l i
r(5] +5) 02 G T(6j+6)
AV
S t1—5 _ t1—6 | | I (t S)6J+5 1ds
| ! 2 |]ZF(6] +6)
AI 1 o e
- 521"(5|] |+ 5),[ |(t1 _ 5)5,+6 Ut - 5)5,+5 1 4s.
(4.8)
Note that
. 5j+6-1 tfj+6 1
— JH+O= =1 <« - )
fo(t1 s) ds 5i16°57+5 (4.9)
and, concerning R; fo (ty - 6] 61 — (k- s)'sj +‘S_llds, we distinguish two cases. If j is such
that 6j+6-1>0, then
f ‘ ' —(tz ¢ )5]+5 n t6]+6 t6]+6
L _ o\9j+o-1 _ _ o\0j+6-1
R; IO <(t2 s) (t1—s) )ds 5776 , (4.10)
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and, if j is such that 6j + 6 - 1 <0, then

I3 ) ) (tz s )5]+5 " t5]+6 t5j+6
o _ Q\Gi+6-1 _ (p _ o\6j+6-1 2
R; fo ((t1 5) (k2 —s) )ds 5i+6 (4.11)
In consequence,
5 g Al Ay
H< |10 -0 g : .
|1 ? ‘j_zor(6]+6)(6]+6) 2 %r(51+5)(5]+5)
(4.12)

P 5 A/
| 1 2 ' 5,6+1(| |)+ 2 I:ZOF(6]+6+1) ]

The first term in the right-hand side of the previous inequality clearly tends to zero as [t; —
to| — 0. On the other hand, denoting by [-] the integer part function, we have

o j [1/6]-1 j _
Z |A| R _ Z IM <( —t) ]+6+t5]+5 t5]+'5>
= AT(6j+6+1) = T(6j+6+1)
' (4.13)
+00
|J\|] 6j+6 6j+6 6i+6
0\t —(k—t)7).
1/61*(6]+6+1)< )
The finite sum obviously has limit zero as [t; — ;| — 0. The infinite sum is equal to
+0o .)Lt5 j +00 ./\t6 ] +00 _ o j
] ] r(5]+5+1) j:[l/é]r(6]+6+1) i) r(6j+6+1)

and its limit as |t; —f;] — 01is zero. Note thatz [1/6] ((JA(£2 —t1)6)j/r(6j+6+1)) is bounded

above by Z]: (A /T (8] + 6 +1)) = Ess:1(|A]).

The previous calculus shows that Bu € Ci_5[0,1], for u € C1_5[0,1], hence we can
define B : C1_5[0,1] — Cy1-5[0,1].

(b) Next, we prove that B is continuous.

Note that, for u, v € Ci_5[0, 1] and for every ¢ € [0, 1], we have, using hypothesis (4.4),

1
£0B(u) (t) - B(o)(1)] < tl‘ﬁfolGA,a(t, 8)I|f(s,u(s)) - f(s,v(s))|ds
(4.15)

1
<kt [ [Gualts)lu(s) - o(s)lds.
0
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Using the definition of || - ||,_s5, we get
1
B(u) - B(v)]l;_s < kmax {tl_éf IGas(t, S)Isé_ldS} [ = ollys-
te[0,1] 0

Moreover,

(T(6)|Ess(M9)] |E5,5/\(1 - s)5|

1
1-6 6-1 3. _ o 6-1,.6-1
t J‘O|G)L,5(t, s)|s° T ds = 4[0 =T (6)Eas (L] (1-15)""s""ds

+ tlﬁj;(t _g)01 |E5,6 ()L(t - 5)5) |s5’1ds

1- s)ﬁfls‘sflds

1 F(6) |E5,5 (/U’é) | 'E5,5 <)L(1 - S)6> |
’ f t [T—T(6)Es5(V)]

L(6)|Ess (M) & |\
" [1-T(6)Ess(V) ST (6] +6)

1
J‘ (1 _ S)5j+6—156—1ds
0

j t
|)L|] f (t _ S)5j+6_156_1d5.

NI Y
7‘=Zor(5]+5) 0

Usingthat0<1-s<1forse€[0,1],0<t-s<1forse[0,t],and 6j >0forj=0,1,...

obtain

1
tl’ﬁf |Gis(t,5)|s°Lds

1"(5)|E66()‘t6)| A 5)5 1551
S [(6)Ess(h)] 2 F(6]+6),[( s7ds

e

f1-6 (t- 6-16-1 4
+ ZF(6]+6) s)" s s

T'(6) |E5,5 (/\té) |

1
_ _ o\0-1.6-1
. |1—T(6)E5,5()L)|E6'5(|A|)f0(1 5)71s% ds

t
+t17%Es5(1A]) f (t—s)%1s%1ds.
0
Note that the Beta function, also called the Euler integral of the first kind,

1
B(p.q) = J 211 - x)7 dx,
0

13

(4.16)

(4.17)

(4.18)

(4.19)
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where p > 0 and g > 0, satisfies that f(p,q) = I'(p)I'(q)/T'(p + q). In particular, p(5,6) =
(I'(6))%/T(26). On the other hand, using the change of variable s = ut/(1+u), we deduce that

f;sr"l(t -5)"ds = J‘;w<1itu>pl<1 -: u>q1 <m> du

( ) ( ) (4.20)
_+—1+wL_1 _ g1 w1 L) (g
-0 4G = TR
This proves that
I ;56‘1(t—s)6 'ds = 12571 (15((;?5; (4.21)
Hence,
1
$1-0 I |Gys(t,s)|s° 'ds
0
T'(6)|Es5(MP)| T©)* s 5.1 (L(6))°
S T-T@Ese o0 WD gy * ¢ EasWDE g
(4.22)
_ (E@IEss M| s\ gy £
~ \[1-T(®)Ess(1)| 00NV T(26)
T(6)Ess(|\]) ([(5))*
<(7 T(®) (D] T 1)Eas(4) g
In consequence,
6 A 2
130 - B < k(T prerm s + 1) Ess(U) Tob -l (429

Finally, we check that B is compact. Let D be a bounded set in C;_5[0, 1].
(i) First, we check that {#'"°[Bu](t) : u € D} is a bounded set in C[0, 1].
Indeed,

1
f- f Gas(t,s)lds
0

ds

tT'(6) |E5,5 (M®)Egs <)L(1 _ S)6> | (1-5)5"
- JO |1 -T(6)Ess (L)

+ t1‘5ft (t-s)°" |E5,5 <A(t - s)6> |ds
0
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ds

T(6)| Ess (1) Ess (A1 - )°) |1 - )7
' L [1-T(6)Ess(\)|

_ T(®)|Ess (M%) o
Ti- r(a)Ew(M“E M1-9)°)|(1-5)"ds

+ tl-ﬁf (t—s)5 |55,5 <J\(t - s)6> |ds
0

r<6>|E56<M5>| $ (1 - 5)%)
|1 F((S)Eg,(s()u l"(6]+6)

1-6 (Iil(t—S)) R
+t —[010 T(6] +06) (t—s)""ds

(1-s)°"'ds

F(6) |E56 ()‘tﬁ) | |)L|] 5(j+1)-1
" T-T@)Ess (1) £ 1"(6]+6)I(1 ds

f1-6 A J‘ 5(j+1)-1
t— d
Zr((s] w5y, °

CTO)|Ess(MO)] & A 152 A U
- [1-T(86)Ess(V)| ]OF(6]+6)6(]+1) 4T (6 +6) 6j+6

T(O)|Ess (M) & 5 S
T [1-T(8)Ess(A I’(6;+6+1) ].ZOI’(6]'+6+1)

3 F(6)|E5,5 ()Lté)l s
= mlfam(l/\l) + tE5,5+1<|A|t >

(4.24)

Hence

T(8)|Ess(Mt0)]

1
1-6 1-6
£170|B(u) ()| < Mt IOIGm(t, s)lds < M<m

+ 1> Ess+1(|A]), (4.25)

and then

I'(6)Ess(JA)

Bl s < M( = EEre = + 1) Egpa (Al < o (4.26)

which implies that {t!~°[Bu](t) : u € D} is a bounded set in C[0,1].
(ii) Now, we prove that {#!"9[Bu](t) : u € D} is an equicontinuous set in C[0,1].
Following the calculus in (a), we show that |t%‘573(u) (tl)—té“SB(u) (t2)| tends to zero as ty — t5.
Then {[Bu],_g : u € D} is equicontinuous in the space C[0, 1], where v;_5(t) = t'~%v(t),
for v € C15[0,1].
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As a consequence of (i) and (ii), {[Bu],_s : u € D} is a bounded and equicontinuous
set in the space C[0, 1].

Hence, for a sequence {u,} in D, {[Bu,];_s : n € N} = {t!°[Bu,](t) : n € N} has a
subsequence converging to ¢ € C[0,T], that is,

lim t1_5[Bunk](t) - ()| =0, uniformlyont € [0,1]. (4.27)

Taking ¢s(t) = t°"Lop(t), we get

lim |t'70[Bu,, | (t) - t' ¢ (t)| =0, uniformlyon t € [0,1], (4.28)

Ci-5[01]

which means that {Bu,, } ¢, which proves that BB is compact. O

Theorem 4.3. Assume that (4.3) and (4.4) hold. Then the problem (1.1)—(3.4) has at least one
solution in C1_5[0,1].

Proof. Consider theset &= {ue X :u=puB(u), pe(0,1)}.
Let u be any element of &, then u = uB(u) for some p € (0,1). Thus for each t € [0,1],
we have

1
lu(t)] < ﬂfo|Gi,6(tr s)I[ f(s,u(s))|ds. (4.29)

Asin Lemma 4.2, (i), we have

T'(6)Ess(|A|)

||u||1,6 < M(m + 1>E5,5+1(|)L|) < oo, (430)

which implies that the set £ is bounded independently of y € (0,1). Using Lemma 4.2 and
Theorem 4.1, we obtain that the operator B has at least a fixed point. O

Remark 4.4. In Lemma 4.2, condition (4.3) is used to prove that the operator B is continuous.
Hence, in Lemma 4.2 and, in consequence, in Theorem 4.3, we can assume the weaker
condition.

(i) For each uy € C1_5[0, 1] fixed, there exists k,, > 0 such that

| f(t,u) — f(tuo(t)| < kol —uo(t)|, foreachte[0,1], andall u € R, (4.31)

instead of (4.3).

However, to prove the existence and uniqueness of solution given in the following
theorem, we need to assume the Lipschitzian character of f (condition (4.3)).
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Theorem 4.5. Assume that (4.4) holds. Then the problem (1.1)—(3.4) has a unique solution in
Ci1-5[0, 1], provided that

2
()

T8 (4.32)

Fasap (LOESWD 1)y

[1-T(6)Ess()|

Proof. We use the Banach contraction principle to prove that the operator B has a unique fixed
point.

Using the calculus in (b) Lemma 4.2, B is a contraction by condition (4.32). As a
consequence of Banach fixed point theorem, we deduce that B has a unique fixed point which
gives rise to a unique solution of problem (1.1)-(3.4). O

Remark 4.6. 1f 6 = 1, condition (4.32) is reduced to

kel —fﬂ—+1 <1 (4.33)
TR . .
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