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1. Introduction

It is well known that beam is one of the basic structures in architecture. It is greatly used
in the designing of bridge and construction. Recently, scientists bring forward the theory of
combined beams. That is to say, we can bind up some stratified structure copings into one
global combined beam with rock bolts. The deformations of an elastic beam in equilibrium
state, whose two ends are simply supported, can be described by following equation of
deflection curve:

d2

dx2

(
EIz

d2v

dx2

)
= q(x), (1.1)

where E is Yang’s modulus constant, Iz is moment of inertia with respect to z axes,
determined completely by the beam’s shape cross-section. Specially, Iz = bh3/12 if the cross-
section is a rectangle with a height of h and a width of b. Also, q(x) is loading at x. If the
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loading of beam considered is in relation to deflection and rate of change of deflection, we
need to research the more general equation

u(4)(x) = f
(
x, u(x), u′(x)

)
. (1.2)

According to the forms of supporting, various boundary conditions should be considered.
Solving corresponding boundary value problems, one can obtain the expression of deflection
curve. It is the key in design of constants of beams and rock bolts.

Owing to its importance in physics and engineering, the existence of solutions to this
problem has been studied bymany authors, see [1–10]. However, in practice, only its positive
solution is significant. In [1, 9, 11, 12], Aftabizadeh, Del Pino andManásevich, Gupta, and Pao
showed the existence of positive solution for

u(iv)(t) = f
(
t, u(t), u′′(t)

)
(1.3)

under some growth conditions of f and a nonresonance condition involving a two-parameter
linear eigenvalue problem. All of these results are based on the Leray-Schauder continuation
method and topological degree.

The lower and upper solution method has been studied for the fourth-order problem
by several authors [2, 3, 7, 8, 13, 14]. However, all of these authors consider only an equation
of the form

u(iv)(t) = f(t, u(t)), (1.4)

with diverse kind of boundary conditions. In [10], Ehme et al. gave some sufficient conditions
for the existence of a solution of

u(iv)(t) = f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
(1.5)

with some quite general nonlinear boundary conditions by using the lower and upper
solution method. The conditions assume the existence of a strong upper and lower solution
pair.

Recently, Krasnosel’skii’s fixed point theorem in a cone has much application in
studying the existence and multiplicity of positive solutions for differential equation
boundary value problems, see [3, 6]. With this fixed point theorem, Bai and Wang [6]
discussed the existence, uniqueness, multiplicity, and infinitely many positive solutions for
the equation of the form

u(iv)(t) = λf(t, u(t)), (1.6)

where λ > 0 is a constant.
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In this paper, via a new fixed point theorem in a cone and concavity of function, we
show the existence of positive solutions for the following problem:

u(iv)(t) = f
(
t, u(t), u′(t)

)
, 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1.7)

where f : [0, 1] × [0,+∞) × R → [0,+∞) is continuous.
We point out that positive solutions of (1.7) are concave and this concavity provides

lower bounds on positive concave functions of their maximum, which can be used in defining
a cone on which a positive operator is defined, to which a new fixed point theorem in a cone
due to Bai and Ge [5] can be applied to obtain positive solutions.

2. Fixed Point Theorem in a Cone

Let X be a Banach space and P ⊂ X a cone. Suppose α, β : X → R+ are two continuous
nonnegative functionals satisfying

α(λx) ≤ |λ|α(x), β(λx) ≤ |λ|β(x), for x ∈ X, λ ∈ [0, 1],

M1 max
{
α(x), β(x)

} ≤ ‖x‖ ≤ M2 max
{
α(x), β(x)

}
, for x ∈ X,

(2.1)

where M1,M2 are two positive constants.

Lemma 2.1 (see [5]). Let r2 > r1 > 0, L2 > L1 > 0 are constants and

Ωi =
{
x ∈ X | α(x) < ri, β(x) < Li

}
, i = 1, 2 (2.2)

are two open subsets in X such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2. In addition, let

Ci =
{
x ∈ X | α(x) = ri, β(x) ≤ Li

}
, i = 1, 2;

Di =
{
x ∈ X | α(x) ≤ ri, β(x) = Li

}
, i = 1, 2.

(2.3)

Assume T : P → P is a completely continuous operator satisfying

(S1) α(Tx) ≤ r1, x ∈ C1 ∩ P ; β(Tx) ≤ L1, x ∈ D1 ∩ P ; α(Tx) ≥ r2, x ∈ C2 ∩ P ; β(Tx) ≥
L2, x ∈ D2 ∩ P ;

or

(S2) α(Tx) ≥ r1, x ∈ C1 ∩ P ; β(Tx) ≥ L1, x ∈ D1 ∩ Pα(Tx) ≤ r2, x ∈ C2 ∩ P ; β(Tx) ≤
L2, x ∈ D2 ∩ P,

then T has at least one fixed point in (Ω2 \Ω1) ∩ P.
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3. Existence of Positive Solutions

In this section, we are concerned with the existence of positive solutions for the fourth-order
two-point boundary value problem (1.7).

Let X = C1[0, 1] with ‖u‖ = max{max0≤t≤1|u(t)|,max0≤t≤1|u′(t)|} be a Banach space,
P = {u ∈ X | u(t) ≥ 0, u is concave on [0, 1]} ⊂ X a cone. Define functionals

α(u) = max
0≤t≤1

|u(t)|, β(u) = max
0≤t≤1

∣∣u′(t)
∣∣, for u ∈ X, (3.1)

then α, β : X → R+ are two continuous nonnegative functionals such that

‖u‖ = max
{
α(u), β(u)

}
(3.2)

and (2.1) hold.
Denote by G(t, s) Green’s function for boundary value problem

−y′′(t) = 0, 0 < t < 1,

y(0) = y(1) = 0.
(3.3)

Then G(t, s) ≥ 0, for 0 ≤ t, s ≤ 1, and

G(t, s) =

⎧⎨
⎩
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.
(3.4)

Let

M = max
0≤t≤1

∫∫1

0
G(t, s)G(s, x)dx ds,

N = max
0≤t≤1

∫1

0

∫3/4

1/4
G(t, s)G(s, x)dx ds,

A = max

{∫∫1

0
(1 − s)G(s, x)dx ds,

∫∫1

0
sG(s, x)dx ds

}
,

B = max

{∫1

0

∫1−h

h

(1 − s)G(s, x)dx ds,

∫1

0

∫1−h

h

sG(s, x)dx ds

}
.

(3.5)

However, (1.7) has a solution u = u(t) if and only if u solves the operator equation

u(t) = Tu(t) :=
∫1

0

[∫1

0
G(t, s)G(s, x)f

(
x, u(x), u′(x)

)
dx

]
ds. (3.6)

It is well know that T : P → P is completely continuous.
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Theorem 3.1. Suppose there are four constants r2 > r1 > 0, L2 > L1 > 0 such that max{r1, L1} ≤
min{r2, L2} and the following assumptions hold:

(A1) f(t, x1, x2) ≥ max{r1/M,L1/A}, for (t, x1, x2) ∈ [0, 1] × [0, r1] × [−L1, L1];

(A2) f(t, x1, x2) ≤ min{r2/M,L2/A}, for (t, x1, x2) ∈ [0, 1] × [0, r2] × [−L2, L2].

Then, (1.7) has at least one positive solution u(t) such that

r1 ≤ max
0≤t≤1

u(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣∣u′(t)
∣∣ ≤ L2. (3.7)

Proof. Let

Ωi =
{
u ∈ X | α(u) < ri, β(u) < Li

}
, i = 1, 2, (3.8)

be two bounded open subsets in X. In addition, let

Ci =
{
u ∈ X | α(u) = ri, β(u) ≤ Li

}
, i = 1, 2;

Di =
{
u ∈ X | α(u) ≤ ri, β(u) = Li

}
, i = 1, 2.

(3.9)

For u ∈ C1 ∩ P , by (A1), there is

α(Tu) = max
t∈[0,1]

∣∣∣∣∣
∫∫1

0
G(t, s)G(s, x)f

(
x, u(x), u′(x)

)
dx ds

∣∣∣∣∣
≥ r1

M
· max
t∈[0,1]

∣∣∣∣∣
∫∫1

0
G(t, s)G(s, x)dx ds

∣∣∣∣∣ = r1.

(3.10)

For u ∈ P , because T : P → P , so Tu ∈ P , that is to say Tu concave on [0, 1], it follows
that

max
t∈[0,1]

∣∣(Tu)′(t)∣∣ = max
{∣∣(Tu)′(0)∣∣, ∣∣(Tu)′(1)∣∣}. (3.11)
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Combined with (A1) and f ≥ 0, for u ∈ D1 ∩ P , there is

β(Tu) = max
t∈[0,1]

∣∣(Tu)′(t)∣∣

= max
t∈[0,1]

∣∣∣∣∣−
∫ t

0
s

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds

+
∫1

t

(1 − s)
∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds

∣∣∣∣∣
= max

{∫1

0
(1 − s)

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds,

∫1

0
s

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds

}

≥ L1

A
·max

{∫∫1

0
(1 − s)G(s, x)dx ds,

∫∫1

0
sG(s, x)dx ds

}

=
L1

A
·A = L1.

(3.12)

For u ∈ C2 ∩ P , by (A2), there is

α(Tu) = max
t∈[0,1]

∣∣∣∣∣
∫∫1

0
G(t, s)G(s, x)f

(
x, u(x), u′(x)

)
dx ds

∣∣∣∣∣
≤ max

t∈[0,1]

∫∫1

0
G(t, s)G(s, x) · r2

M
dxds

=
r2
M

· max
t∈[0,1]

∫∫1

0
G(t, s)G(s, x)dx ds = r2.

(3.13)

For u ∈ D2 ∩ P , by (A2), there is

β(Tu) = max

{∫1

0
(1 − s)

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds,

∫1

0
s

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds

}

≤ L2

A
·max

{∫∫1

0
(1 − s)G(s, x)dx ds,

∫∫1

0
sG(s, x)dx ds

}

=
L2

A
·A = L2.

(3.14)
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Now, Lemma 2.1 implies there exists u ∈ (Ω2 \Ω1) ∩ P such that u = Tu, namely, (1.7)
has at least one positive solution u(t) such that

r1 ≤ α(u) ≤ r2 or L1 ≤ β(u) ≤ L2, (3.15)

that is,

r1 ≤ max
0≤t≤1

u(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣∣u′(t)
∣∣ ≤ L2. (3.16)

The proof is complete.

Theorem 3.2. Suppose there are five constants 0 < r1 < r2, 0 < L1 < L2, 0 ≤ h < 1/2 such that
max{r1/N,L1/B} ≤ min{r2/M,L2/A}, and the following assumptions hold

(A3) f(t, x1, x2) ≥ r1/N, for (t, x1, x2) ∈ [1/4, 3/4] × [r1/4, r1] × [−L1, L1];

(A4) f(t, x1, x2) ≥ L1/B, for (t, x1, x2) ∈ [h, 1 − h] × [0, r1] × [−L1, L1];

(A5) f(t, x1, x2) ≤ min{r2/M,L2/A}, for (t, x1, x2) ∈ [0, 1] × [0, r2] × [−L2, L2].

Then, (1.7) has at least one positive solution u(t) such that

r1 ≤ max
0≤t≤1

u(t) ≤ r2 or L1 ≤ max
0≤t≤1

∣∣u′(t)
∣∣ ≤ L2. (3.17)

Proof. We just need notice the following difference to the proof of Theorem 3.1.
For u ∈ C1∩P , the concavity of u implies that u(t) ≥ (1/4)α(u) = r1/4 for t ∈ [1/4, 3/4].

By (A3), there is

α(Tu) = max
t∈[0,1]

∣∣∣∣∣
∫∫1

0
G(t, s)G(s, x)f

(
x, u(x), u′(x)

)
dx ds

∣∣∣∣∣
≥ max

t∈[0,1]

∣∣∣∣∣
∫1

0

∫3/4

1/4
G(t, s)G(s, x)f

(
x, u(x), u′(x)

)
dx ds

∣∣∣∣∣
≥ max

t∈[0,1]

∣∣∣∣∣
∫1

0

∫3/4

1/4
G(t, s)G(s, x) · r1

N
dxds

∣∣∣∣∣
=

r1
N

· max
t∈[0,1]

∣∣∣∣∣
∫1

0

∫3/4

1/4
G(t, s)G(s, x)dx ds

∣∣∣∣∣ = r1.

(3.18)



8 Boundary Value Problems

For u ∈ D1 ∩ P , by (A4), there is

β(Tu) = max

{∫1

0
(1 − s)

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds,

∫1

0
s

∫1

0
G(s, x)f

(
x, u(x), u′(x)

)
dx ds

}

≥ max

{∫1

0
(1 − s)

∫1−h

h

G(s, x)f
(
x, u(x), u′(x)

)
dx ds,

∫1

0
s

∫1−h

h

G(s, x)f
(
x, u(x), u′(x)

)
dx ds

}

≥ L1

B
·max

{∫1

0

∫1−h

h

(1 − s)G(s, x)dx ds,

∫1

0

∫1−h

h

sG(s, x)dx ds

}

=
L1

B
· B = L1

(3.19)

The rest of the proof is similar to Theorem 3.1 and the proof is complete.
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