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1. Introduction

The term “fuzzy differential equation” was coined in 1987 by Kandel and Byatt [1] and
an extended version of this short note was published two years later [2]. There are many
suggestions to define a fuzzy derivative and in consequence, to study fuzzy differential
equation [3]. One of the earliest was to generalize the Hukuhara derivative of a set-valued
function. This generalization was made by Puri and Ralescu [4] and studied by Kaleva [5].
It soon appeared that the solution of fuzzy differential equation interpreted by Hukuhara
derivative has a drawback: it became fuzzier as time goes by [6]. Hence, the fuzzy solution
behaves quite differently from the crisp solution. To alleviate the situation, Hüllermeier
[7] interpreted fuzzy differential equation as a family of differential inclusions. The main
shortcoming of using differential inclusions is that we do not have a derivative of a fuzzy-
number-valued function.

The strongly generalized differentiability was introduced in [8] and studied in [9–
11]. This concept allows us to solve the above-mentioned shortcoming. Indeed, the strongly
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generalized derivative is defined for a larger class of fuzzy-number-valued functions than
the Hukuhara derivative. Hence, we use this differentiability concept in the present paper.
Under this setting, we obtain some new results on existence of several solutions for Nth-
order fuzzy differential equations. Higher-order fuzzy differential equation with Hukuhara
differentiability is considered in [12] and the existence and uniqueness of solution for
nonlinearities satisfying a Lipschitz condition is proved. Buckley and Feuring [13] presented
two different approaches to the solvability of Nth-order linear fuzzy differential equations.

Here, using the concept of generalized derivative and its extension to higher-order
derivatives, we show that we have several possibilities or types to define higher-order
derivatives of fuzzy-number-valued functions. Then, we propose a new method to solve
higher-order fuzzy differential equations based on the selection of derivative type covering all
former solutions. With these ideas, the selection of derivative type in each step of derivation
plays a crucial role.

2. Preliminaries

In this section, we give some definitions and introduce the necessary notation which will be
used throughout this paper. See, for example, [6].

Definition 2.1. LetX be a nonempty set. A fuzzy set u inX is characterized by its membership
function u : X → [0, 1]. Thus, u(x) is interpreted as the degree of membership of an element
x in the fuzzy set u for each x ∈ X.

Let us denote by RF the class of fuzzy subsets of the real axis (i.e., u : R → [0, 1])
satisfying the following properties:

(i) u is normal, that is, there exists s0 ∈ R such that u(s0) = 1,

(ii) u is convex fuzzy set (i.e., u(ts+(1− t)r) ≥ min{u(s), u(r)}, for all t ∈ [0, 1], s, r ∈ R),

(iii) u is upper semicontinuous on R,

(iv) cl{s ∈ R | u(s) > 0} is compact where cl denotes the closure of a subset.

Then RF is called the space of fuzzy numbers. Obviously, R ⊂ RF . For 0 < α ≤ 1 denote
[u]α = {s ∈ R | u(s) ≥ α} and [u]0 = cl{s ∈ R | u(s) > 0}. If u belongs to RF, then α-level set
[u]α is a nonempty compact interval for all 0 ≤ α ≤ 1. The notation

[u]α =
[
uα, uα], (2.1)

denotes explicitly the α-level set of u. One refers to u and u as the lower and upper branches
of u, respectively. The following remark shows when [uα, uα] is a valid α-level set.

Remark 2.2 (see [6]). The sufficient conditions for [uα, uα] to define the parametric form of a
fuzzy number are as follows:

(i) uα is a bounded monotonic increasing (nondecreasing) left-continuous function on
(0, 1] and right-continuous for α = 0,

(ii) uα is a bounded monotonic decreasing (nonincreasing) left-continuous function on
(0, 1] and right-continuous for α = 0,

(iii) uα ≤ uα, 0 ≤ α ≤ 1.
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For u, v ∈ RF and λ ∈ R, the sum u + v and the product λ · u are defined by [u + v]α =
[u]α + [v]α, [λ · u]α = λ[u]α, for allα ∈ [0, 1], where [u]α + [v]α means the usual addition of
two intervals (subsets) of R and λ[u]α means the usual product between a scalar and a subset
of R.

The metric structure is given by the Hausdorff distance:

D : RF × RF −→ R+ ∪ {0}, (2.2)

by

D(u, v) = sup
α∈[0,1]

max
{∣∣uα − vα

∣∣,
∣∣uα − vα∣∣}. (2.3)

The following properties are wellknown:

(i) D(u +w,v +w) = D(u, v), for allu, v,w ∈ RF,

(ii) D(k · u, k · v) = |k|D(u, v), for all k ∈ R, u, v ∈ RF,

(iii) D(u + v,w + e) ≤ D(u,w) +D(v, e), for allu, v,w, e ∈ RF,

and (RF,D) is a complete metric space.

Definition 2.3. Let x, y ∈ RF . If there exists z ∈ RF such that x = y + z, then z is called the
H-difference of x, y and it is denoted x � y.

In this paper the sign “�” stands always for H-difference and let us remark that x �
y /=x + (−1)y in general. Usually we denote x + (−1)y by x − y, while x � y stands for the
H-difference.

3. Generalized Fuzzy Derivatives

The concept of the fuzzy derivative was first introduced by Chang and Zadeh [14]; it was
followed up by Dubois and Prade [15] who used the extension principle in their approach.
Other methods have been discussed by Puri and Ralescu [4], Goetschel and Voxman [16],
Kandel and Byatt [1, 2]. Lakshmikantham and Nieto introduced the concept of fuzzy
differential equation in a metric space [17]. Puri and Ralescu in [4] introduced H-derivative
(differentiability in the sense of Hukuhara) for fuzzy mappings and it is based on the H-
difference of sets, as follows. Henceforth, we suppose I = (T1, T2) for T1 < T2, T1, T2 ∈ R.

Definition 3.1. Let F : I → RF be a fuzzy function. One says, F is differentiable at t0 ∈ I if
there exists an element F ′(t0) ∈ RF such that the limits

lim
h→ 0+

F(t0 + h) � F(t0)
h

, lim
h→ 0+

F(t0) � F(t0 − h)
h

(3.1)

exist and are equal to F ′(t0).Here the limits are taken in the metric space (RF,D).
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The above definition is a straightforward generalization of the Hukuhara differen-
tiability of a set-valued function. From [6, Proposition 4.2.8], it follows that Hukuhara
differentiable function has increasing length of support. Note that this definition of derivative
is very restrictive; for instance, in [9], the authors showed that if F(t) = c · g(t), where c is a
fuzzy number and g : [a, b] → R

+ is a function with g ′(t) < 0, then F is not differentiable.
To avoid this difficulty, the authors [9] introduced a more general definition of derivative for
fuzzy-number-valued function. In this paper, we consider the following definition [11].

Definition 3.2. Let F : I → RF and fix t0 ∈ I. One says F is (1)-differentiable at t0, if there
exists an element F ′(t0) ∈ RF such that for all h > 0 sufficiently near to 0, there exist F(t0 +
h) � F(t0), F(t0) � F(t0 − h), and the limits (in the metric D)

lim
h→ 0+

F(t0 + h) � F(t0)
h

= lim
h→ 0+

F(t0) � F(t0 − h)
h

= F ′(t0). (3.2)

F is (2)-differentiable if for all h < 0 sufficiently near to 0, there exist F(t0 + h) � F(t0), F(t0) �
F(t0 − h) and the limits (in the metric D)

lim
h→ 0−

F(t0 + h) � F(t0)
h

= lim
h→ 0−

F(t0) � F(t0 − h)
h

= F ′(t0). (3.3)

If F is (n)-differentiable at t0, we denote its first derivatives by D
(1)
n F(t0), for n = 1, 2.

Example 3.3. Let g : I → R
+ and define f : I → RF by f(t) = c · g(t), for all t ∈ I. If g is

differentiable at t0 ∈ I, then f is generalized differentiable on t0 ∈ I and we have f ′(t0) = c ·
g ′(t0). For instance, if g ′(t0) > 0, f is (1)-differentiable. If g ′(t0) < 0, then f is (2)-differentiable.

Remark 3.4. In the previous definition, (1)-differentiability corresponds to the H-derivative
introduced in [4], so this differentiability concept is a generalization of the H-derivative and
obviously more general. For instance, in the previous example, for f(t) = c ·g(t)with g ′(t0) <
0, we have f ′(t0) = c · g ′(t0).

Remark 3.5. In [9], the authors consider four cases for derivatives. Here we only consider the
two first cases of [9, Definition 5]. In the other cases, the derivative is trivial because it is
reduced to crisp element (more precisely, F ′(t0) ∈ R. For details, see [9, Theorem 7]).

Theorem 3.6. Let F : I → RF be fuzzy function, where [F(t)]α = [fα(t), gα(t)] for each α ∈ [0, 1].

(i) If F is (1)-differentiable, then fα and gα are differentiable functions and [D1
1F(t)]

α =
[f ′

α(t), g
′
α(t)].

(ii) If F is (2)-differentiable, then fα and gα are differentiable functions and [D1
2F(t)]

α =
[g ′

α(t), f
′
α(t))].

Proof. See [11].

Now we introduce definitions for higher-order derivatives based on the selection of
derivative type in each step of differentiation. For the sake of convenience, we concentrate on
the second-order case.
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For a given fuzzy function F, we have two possibilities (Definition 3.2) to obtain the
derivative of F ot t: D(1)

1 F(t) and D
(1)
2 F(t). Then for each of these two derivatives, we have

again two possibilities: D
(1)
1 (D(1)

1 F(t)), D(1)
2 (D(1)

1 F(t)), and D
(1)
1 (D(1)

2 F(t)), D(1)
2 (D(1)

2 F(t)),
respectively.

Definition 3.7. Let F : I → RF and n,m = 1, 2. One says say F is (n,m)-differentiable at t0 ∈ I,
if D(1)

n F exists on a neighborhood of t0 as a fuzzy function and it is (m)-differentiable at t0.
The second derivatives of F are denoted by D

(2)
n,mF(t0) for n,m = 1, 2.

Remark 3.8. This definition is consistent. For example, if F is (1, 2) and (2, 1)-differentiable
simultaneously at t0, then F is (1)- and (2)-differentiable around t0. By remark in [9], F is a
crisp function in a neighborhood of t0.

Theorem 3.9. Let D(1)
1 F : I → RF or D

(1)
2 F : I → RF be fuzzy functions, where [F(t)]α =

[fα(t), gα(t)].

(i) If D(1)
1 F is (1)-differentiable, then f ′

α and g ′
α are differentiable functions and [D(2)

1,1F(t)]
α
=

[f ′′
α(t), g

′′
α(t)].

(ii) If D(1)
1 F is (2)-differentiable, then f ′

α and g ′
α are differentiable functions and [D(2)

1,2F(t)]
α
=

[g ′′
α(t), f

′′
α(t)].

(iii) If D(1)
2 F is (1)-differentiable, then f ′

α and g ′
α are differentiable functions and [D(2)

2,1F(t)]
α
=

[g ′′
α(t), f

′′
α(t)].

(iv) If D(1)
2 F is (2)-differentiable, then f ′

α and g ′
α are differentiable functions and [D(2)

2,2F(t)]
α
=

[f ′′
α(t), g

′′
α(t)].

Proof. We present the details only for the case (i), since the other cases are analogous.
If h > 0 and α ∈ [0, 1], we have

[
D

(1)
1 F(t + h) �D

(1)
1 F(t)

]α
=
[
f ′
α(t + h) − f ′

α(t), g
′
α(t + h) − g ′

α(t)
]
, (3.4)

and multiplying by 1/h, we have

[
D

(1)
1 F(t + h) �D

(1)
1 F(t)

]α

h
=
[
f ′
α(t + h) − f ′

α(t)
h

,
g ′
α(t + h) − g ′

α(t)
h

]
. (3.5)

Similarly, we obtain

[
D

(1)
1 F(t) �D

(1)
1 F(t − h)

]α

h
=
[
f ′
α(t) − f ′

α(t − h)
h

,
g ′
α(t) − g ′

α(t − h)
h

]
. (3.6)
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Passing to the limit, we have

[
D

(2)
1,1F(t)

]α
=
[
f ′′
α(t), g

′′
α(t)

]
. (3.7)

This completes the proof of the theorem.

Let N be a positive integer number, pursuing the above-cited idea, we write
D

(N)
k1,...,kN

F(t0) to denote the Nth-derivatives of F at t0 with ki = 1, 2 for i = 1, . . . ,N. Now
we intend to compute the higher derivatives (in generalized differentiability sense) of the
H-difference of two fuzzy functions and the product of a crisp and a fuzzy function.

Lemma 3.10. If f, g : I → RF are Nth-order generalized differentiable at t ∈ I in the same case of
differentiability, then f + g is generalized differentiable of orderN at t and (f + g)(N)(t) = f (N)(t) +
g(N)(t). (The sum of two functions is defined pointwise.)

Proof. By Definition 3.2 the statement of the lemma follows easily.

Theorem 3.11. Let f, g : I → RF be second-order generalized differentiable such that f is (1,1)-
differentiable and g is (2,1)-differentiable or f is (1,2)-differentiable and g is (2,2)-differentiable or f is
(2,1)-differentiable and g is (1,1)-differentiable or f is (2,2)-differentiable and g is (1,2)-differentiable
on I. If theH-difference f(t)�g(t) exists for t ∈ I, then f�g is second-order generalized differentiable
and

(
f � g

)′′(t) = f ′′(t) + (−1) · g ′′(t), (3.8)

for all t ∈ I.

Proof. We prove the first case and other cases are similar. Since f is (1)-differentiable and
g is (2)-differentiable on I, by [10, Theorem 4], (f � g)(t) is (1)-differentiable and we have
(f � g)′(t) = f ′(t) + (−1) · g ′(t). By differentiation as (1)-differentiability in Definition 3.2 and
using Lemma 3.10, we get (f � g)(t) is (1,1)-differentiable and we deduce

(
f � g

)′′(t) =
(
f ′(t) + (−1) · g ′(t)

)′ = f ′′(t) + (−1) · g ′′(t). (3.9)

TheH-difference of two functions is understood pointwise.

Theorem 3.12. Let f : I → R and g : I → RF be two differentiable functions (g is generalized
differentiable as in Definition 3.2).

(i) If f(t) · f ′(t) > 0 and g is (1)-differentiable, then f · g is (1)-differentiable and

(
f · g)′(t) = f ′(t) · g(t) + f(t) · g ′(t). (3.10)
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(ii) If f(t) · f ′(t) < 0 and g is (2)-differentiable, then f · g is (2)-differentiable and

(
f · g)′(t) = f ′(t) · g(t) + f(t) · g ′(t). (3.11)

Proof. See [10].

Theorem 3.13. Let f : I → R and g : I → RF be second-order differentiable functions (g is
generalized differentiable as in Definition 3.7).

(i) If f(t)·f ′(t) > 0, f ′(t)·f ′′(t) > 0, and g is (1,1)-differentiable then f ·g is (1,1)-differentiable
and

(
f · g)′′(t) = f ′′(t) · g(t) + 2f ′(t) · g ′(t) + f(t) · g ′′(t). (3.12)

(ii) If f(t)·f ′(t) < 0, f ′(t)·f ′′(t) < 0 and g is (2,2)-differentiable then f ·g is (2,2)-differentiable
and

(
f · g)′′(t) = f ′′(t) · g(t) + 2f ′(t) · g ′(t) + f(t) · g ′′(t). (3.13)

Proof. We prove (i), and the proof of another case is similar. If f(t) · f ′(t) > 0 and g is (1)-
differentiable, then by Theorem 3.12 we have

(
f · g)′(t) = f ′(t) · g(t) + f(t) · g ′(t). (3.14)

Now by differentiation as first case in Definition 3.2, since g ′(t) is (1)-differentiable and f ′(t) ·
f ′′(t) > 0, then we conclude the result.

Remark 3.14. By [9, Remark 16], let f : I → R, γ ∈ RF and define F : I → RF by F(t) = γ ·f(t),
for all t ∈ I. If f is differentiable on I, then F is differentiable on I, with F ′(t) = γ · f ′(t). By
Theorem 3.12, if f(t) · f ′(t) > 0, then F is (1)-differentiable on I. Also if f(t) · f ′(t) < 0, then
F is (2)-differentiable on I. If f(t) · f ′(t) = 0, by [9, Theorem 10], we have F ′(t) = γ · f ′(t). We
can extend this result to second-order differentiability as follows.

Theorem 3.15. Let f : I → R be twice differentiable on I, γ ∈ RF and define F : I → RF by
F(t) = γ · f(t), for all t ∈ I.

(i) If f(t) · f ′(t) > 0 and f ′(t) · f ′′(t) > 0, then F(t) is (1,1)-differentiable and its second
derivative, D(2)

1,1F, is F
′′(t) = γ · f ′′(t),

(ii) If f(t) · f ′(t) > 0 and f ′(t) · f ′′(t) < 0, then F(t) is (1,2)-differentiable with D
(2)
1,2F) =

γ · f ′′(t),

(iii) If f(t)·f ′(t) < 0 and f ′(t)·f ′′(t) > 0, then F(t) is (2,1)-differentiable withD(2)
2,1F = γ ·f ′′(t),

(iv) If f(t)·f ′(t) < 0 and f ′(t)·f ′′(t) < 0, then F(t) is (2,2)-differentiable withD(2)
2,2F = γ ·f ′′(t).
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Proof. Cases (i) and (iv) follow from Theorem 3.13. To prove (ii), since f(t) · f ′(t) > 0, by
Remark 3.14, F is (1)-differentiable and we haveD(1)

1 F = γ ·f ′(t) on I. Also, since f ′(t) ·f ′′(t) <
0, then D

(1)
1 F is (2)-differentiable and we conclude the result. Case (iii) is similar to previous

one.

Example 3.16. If γ is a fuzzy number and φ : (0, 3) → R,where

φ(t) = t2 − 3t + 2 (3.15)

is crisp second-order polynomial, then for

F(t) = γ · φ(t), (3.16)

we have the following

(i) for 0 < t < 1: φ(t) · φ′(t) < 0 and φ′(t) · φ′′(t) < 0 then by (iv), F(t) is (2-2)-
differentiable and its second derivative, D(2)

2,2F is F ′′(t) = 2 · γ ,
(ii) for 1 < t < 3/2: φ(t) · φ′(t) > 0 and φ′(t) · φ′′(t) < 0 then by (ii), F(t) is (1-2)-

differentiable with D
(2)
1,2F = 2 · γ ,

(iii) for 3/2 < t < 2: φ(t) · φ′(t) < 0 and φ′(t) · φ′′(t) > 0 then by (iii), F(t) is (2-1)-
differentiable and D

(2)
2,1F = 2 · γ ,

(iv) for 2 < t < 3: φ(t)·φ′(t) > 0 and φ′(t)·φ′′(t) > 0 then by (i), F(t) is (1-1)-differentiable
and D

(2)
1,1F = 2 · γ ,

(v) for t = 1, 3/2, 2: we have φ′(t) · φ′′(t) = 0, then by [9, Theorem 10] we have F ′(t) =
γ · φ′(t), again by applying this theorem, we get F ′′(t) = 2 · γ.

4. Second-Order Fuzzy Differential Equations

In this section, we study the fuzzy initial value problem for a second-order linear fuzzy
differential equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′(t) + a · y′(t) + b · y(t) = σ(t),

y(0) = γ0,

y′(0) = γ1,

(4.1)

where a, b > 0, γ0, γ1 ∈ RF, and σ(t) is a continuous fuzzy function on some interval I. The
interval I can be (0, A) for some A > 0 or I = (0,∞). In this paper, we suppose a, b > 0. Our
strategy of solving (4.1) is based on the selection of derivative type in the fuzzy differential
equation. We first give the following definition for the solutions of (4.1).

Definition 4.1. Let y : I → RF be a fuzzy function and n,m ∈ {1, 2}. One says y is an (n,m)-
solution for problem (4.1) on I, if D1

nyD
2
n,my exist on I and D2

n,my(t) + a ·D1
ny(t) + b · y(t) =

σ(t), y(0) = γ0, D
1
ny(0) = γ1.
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Let y be an (n,m)-solution for (4.1). To find it, utilizing Theorems 3.6 and 3.9
and considering the initial values, we can translate problem (4.1) to a system of second-
order linear ordinary differential equations hereafter, called corresponding (n,m)-system for
problem (4.1).

Therefore, four ODEs systems are possible for problem (4.1), as follows:

(1, 1)-system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y(0;α) = γ0
α, y(0;α) = γ0

α,

y′(0;α) = γ1
α, y′(0;α) = γ1

α,

(4.2)

(1, 2)-system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y(0;α) = γ0
α, y(0;α) = γ0

α,

y′(0;α) = γ1
α, y′(0;α) = γ1

α,

(4.3)

(2, 1)-system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y(0;α) = γ0
α, y(0;α) = γ0

α,

y′(0;α) = γ1, y
′(0;α) = γ1,

(4.4)

(2, 2)-system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y′′(t;α) + ay′(t;α) + by(t;α) = σ(t;α),

y(0;α) = γ0
α, y(0;α) = γ0

α,

y′(0;α) = γ1
α, y′(0;α) = γ1

α.

(4.5)
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Theorem 4.2. Let n,m ∈ {1, 2} and y = [y, y] be an (n,m)-solution for problem (4.1) on I. Then y

and y solve the associated (n,m)-systems.

Proof. Suppose y is the (n,m)-solution of problem (4.1). According to the Definition 4.1, then
D1

ny and D2
n,my exist and satisfy problem (4.1). By Theorems 3.6 and 3.9 and substituting

y, y and their derivatives in problem (4.1), we get the (n,m)-system corresponding to (n,m)-
solution. This completes the proof.

Theorem 4.3. Let n,m ∈ {1, 2} and fα(t) and gα(t) solve the (n,m)-system on I, for every α ∈
[0, 1]. Let [F(t)]α = [fα(t), gα(t)]. If F has valid level sets on I and D2

n,mF exists, then F is an
(n,m)-solution for the fuzzy initial value problem (4.1).

Proof. Since [F(t)]α = [fα(t), gα(t)] is (n,m)-differentiable fuzzy function, by Theorems 3.6
and 3.9 we can compute D1

nF and D2
n,mF according to f ′

α, g
′
α, f

′′
α, g

′′
α. Due to the fact that fα, gα

solve (n,m)-system, from Definition 4.1, it comes that F is an (n,m)-solution for (4.1).

The previous theorems illustrate themethod to solve problem (4.1). We first choose the
type of solution and translate problem (4.1) to a system of ordinary differential equations.
Then, we solve the obtained ordinary differential equations system. Finally we find such a
domain in which the solution and its derivatives have valid level sets and using Stacking
Theorem [5] we can construct the solution of the fuzzy initial value problem (4.1).

Remark 4.4. We see that the solution of fuzzy differential equation (4.1) depends upon the
selection of derivatives. It is clear that in this new procedure, the unicity of the solution is
lost, an expected situation in the fuzzy context. Nonetheless, we can consider the existence of
four solutions as shown in the following examples.

Example 4.5. Let us consider the following second-order fuzzy initial value problem

y′′(t) = σ0, y(0) = γ0, y′(0) = γ1, t ≥ 0, (4.6)

where σ0 = γ0 = γ1 are the triangular fuzzy number having α-level sets [α − 1, 1 − α].
If y is (1,1)-solution for the problem, then

[
y′(t)

]α =
[
y′(t;α), y′(t;α)

]
,

[
y′′(t)

]α =
[
y′′(t;α), y′′(t;α)

]
, (4.7)

and they satisfy (1,1)-system associatedwith (4.1). On the other hand, by ordinary differential
theory, the corresponding (1,1)-system has only the following solution:

y(t;α) = (α − 1)

(
t2

2
+ t + 1

)

, y(t;α) = (1 − α)

(
t2

2
+ t + 1

)

. (4.8)

We see that [y(t)]α = [y(t;α), y(t;α)] are valid level sets for t ≥ 0 and

y = [α − 1, 1 − α] ·
(

t2

2
+ t + 1

)

. (4.9)
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By Theorem 3.15, y is (1,1)-differentiable for t ≥ 0. Therefore, y defines a (1,1)-solution for
t ≥ 0.

For (1,2)-solution, we get the following solutions for (1,2)-system:

y(t;α) = (α − 1)

(

− t
2

2
+ t + 1

)

, y(t;α) = (1 − α)

(

− t
2

2
+ t + 1

)

, (4.10)

where y(t) has valid level sets for t ∈ [0, 1].How ever-also [y(t)]α = [α−1, 1−α]·(−(t2/2)+t+1)
where y is (1,2)-differentiable. Then y gives us a (1,2)-solution on (0, 1).

(2,1)-system yields

y(t;α) = (α − 1)

(

− t
2

2
− t + 1

)

, y(t;α) = (1 − α)

(

− t
2

2
− t + 1

)

, (4.11)

where y(t) has valid level sets for t ∈ [0,
√
3−1].We can see y is a (2,1)-solution on (0,

√
3−1)

Finally, (2-2)-system gives

y(t;α) = (α − 1)

(
t2

2
− t + 1

)

, y(t;α) = (1 − α)

(
t2

2
− t + 1

)

, (4.12)

where y(t) has valid level sets for all t ∈ [0, 1], and defines a (2,2)-solution on (0, 1).

Then we have an example of a second-order fuzzy initial value problem with four
different solutions.

Example 4.6. Consider the fuzzy initial value problem:

y′′(t) + y(t) = σ0, y(0) = γ0, y′(0) = γ1 ∀t ≥ 0, (4.13)

where σ0 is the fuzzy number having α-level sets = [α, 2 − α] and [γ0]
α = [γ1]

α = [α − 1, 1 − α].
To find (1,1)-solution, we have

y(t;α) = α(1 + sin t) − sin t − cos t, y(t;α) = (2 − α)(1 + sin t) − sin t − cos t, (4.14)

where y(t) has valid level sets for t ≥ 0 and y(t) = σ0·(1+sin t)−sin t−cos t. From Theorem 3.15,
y is (1,2)-differentiable on (0, π/2), then by Remark 3.8, y is not (1, 1)-differentiable on
(0, π/2). Hence, no (1,1)-solution exists for t > 0.

For (1,2)-solutions we deduce

y(t;α) = α(1 + sinh t) − sinh t − cos t,

y(t;α) = (2 − α)(1 + sinh t) − sinh t − cos t,
(4.15)

we see that y(t) has valid level sets and is (1,1)-differentiable for t > 0. Since the (1,2)-system
has only the above solution, then (1,2)-solution does not exist.
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For (2,1)-solutions we get

y(t;α) = α(1 − sinh t) + sinh t − cos t,

y(t;α) = (2 − α)(1 − sinh t) + sinh t − cos t,
(4.16)

we see that the fuzzy function y(t) has valid level sets for t ∈ [0, ln(1 +
√
2)] and define a

(2,1)-solution for the problem on (0, ln(1 +
√
2)).

Finally, to find (2,2)-solution, we find

y(t;α) = α(1 − sin t) + sin t − cos t, y(t;α) = (2 − α)(1 − sin t) + sin t − cos t, (4.17)

that y(t) has valid level sets for t ≥ 0 and y is (2,2)-differentiable on (0, π/2).

We then have a linear fuzzy differential equation with initial condition and two
solutions.

5. Higher-Order Fuzzy Differential Equations

Selecting different types of derivatives, we get several solutions to fuzzy initial value problem
for second-order fuzzy differential equations. Theorem 4.2 has a crucial role in our strategy.
To extend the results to Nth-order fuzzy differential equation, we can follow the proof
of Theorem 4.2 to get the same results for derivatives of higher order. Therefore, we can
extend the presented argument for second-order fuzzy differential equation to Nth-order.
Under generalized derivatives, we would expect at most 2N solutions for anNth-order fuzzy
differential equation by choosing the different types of derivatives.
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