Hindawi Publishing Corporation
Boundary Value Problems

Volume 2009, Article ID 491952, 20 pages
doi:10.1155/2009/491952

Research Article

Existence of Solutions for Fourth-Order Four-Point
Boundary Value Problem on Time Scales

Dandan Yang,' Gang Li," and Chuanzhi Bai?

1 School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
2 Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, China

Correspondence should be addressed to Chuanzhi Bai, czbai8@sohu.com
Received 11 April 2009; Revised 8 July 2009; Accepted 28 July 2009
Recommended by Irena Rachiinkova

We present an existence result for fourth-order four-point boundary value problem on time scales.
Our analysis is based on a fixed point theorem due to Krasnoselskii and Zabreiko.

Copyright © 2009 Dandan Yang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Very recently, Karaca [1] investigated the following fourth-order four-point boundary value
problem on time scales:

¥ (1) - ay* (0®) = £(Ly®), ¥~ ®),
y(o*®)) =0,  ay(@) -py*(@ =0, (1)

Yy @) -6y¥(6) =0, Ly (&) + vyt (&) =0,

forte[abl]cT,a<é <& <o), and f € C([a,b] x R xR) xR). And the author made the
following assumptions:

(Al) a/,ﬁ/)’/ 6,§,Tl 2 O/ and a S §1 S §2 S G(b)/

(A2) g(t) >0.1fg(t) =0, theny + { > 0.

The following key lemma is provided in [1].
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Lemma 1.1 (see [1, Lemma 2.5]). Assume that conditions (A1) and (Ay) are satisfied. If h €
Cla,b], then the boundary value problem

yA' (1) - q(hy* (0() = h(t), te[ab],
y(o' ) =0,  ay(a)-py*(a) =0, (12)

FyRi @) - 6y2 (6) =0, Ly (&) +nyt (&) =0

has a unique solution

o (b) )
y(t) = J‘ Gl(t,g)L Ga(t,s)h(s)As A¢, (1.3)

a

where

o*(b) —o(s))(a(t—a)+p), t<s,
Gilt,s) = %{( ) & (14)
(c*(b) —t)(a(o(s) —a) +B), t=>o(s),
t), t<s,
Gats) - L {w(o(s))w( ), t<s s
pt)p(o(s), t=o(s).

Here D = {p(31) - g™ (&1) = 69(&2) +19p(&2), d = p+ a(o*(b) - a), and ¢(t), ¢ (t) are given as
follows:

t T
o) =+ 8t —b) + L L 4(5)p(0())As A,
o (1.6)

&
p(t) =6+ y(ta—)+ f f 4(s)p(0(s))As Ar.

Unfortunately, this lemma is wrong. Without considering the whole interval [a, o (b)], the
author only considers [&1,&,] in the Green's function Gy(t,s). Thus, the expression of y(t) (1.3)
which is a solution to BVP (1.2) is incorrect. In fact,if one takes T = R,q(t) = 0,a = 0,0*(b) = 1,
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a=1,=0,f(ty,y>) = f(t,y), then (1.1) reduces to the following boundary value problem:

y"(t) = f(tyt), 0<t<l,
y(0) =y(1) =0, (1.7)

Yy' (&) -6y" (&) =0,  ¢y" (&) +ny" (&) =0.

The counterexample is given by [2], from which one can see clearly that [1, Lemma 2.5] is wrong. If
one takes q(t) = g, here g > 0 is a constant, then (1.1) reduces to the following fourth-order four-point
boundary value problem on time scales:

yA () - qyt (o) = f (t,y(o(t)),yAz(t)>, telab]CT,
y(*®) =0, ay(@ -py(@) =0, (1.8)

Yy @) - 6yY (&) =0, Ly (&) +ny* (&) =0.

The purpose of this paper is to establish some existence criteria of solution for BVP
(1.8) which is a special case of (1.1). The paper is organized as follows. In Section 2, some basic
time-scale definitions are presented and several preliminary results are given. In Section 3, by
employing a fixed point theorem due to Krasnoselskii and Zabreiko, we establish existence
of solutions criteria for BVP (1.8). Section 4 is devoted to an example illustrating our main
result.

2. Preliminaries

The study of dynamic equations on time scales goes back to its founder Hilger [3] and
it is a new area of still fairly theoretical exploration in mathematics. In the recent years
boundary value problem on time scales has received considerable attention [4-6]. And an
increasing interest in studying the existence of solutions to dynamic equations on time scales
is observed, for example, see [7-16].

For convenience, we first recall some definitions and calculus on time scales, so that the
paper is self-contained. For the further details concerning the time scales, please see [17-19]
which are excellent works for the calculus of time scales.

A time scale T is an arbitrary nonempty closed subset of real numbers R. The operators
cand p from T to T

ot)=inf{reT:7>t}, p(t)=sup{r e T: 1<t} (2.1)

are called the forward jump operator and the backward jump operator, respectively.
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For all t € T, we assume throughout that T has the topology that it inherits from the
standard topology on R. The notations [a, b], [a, b), and so on, will denote time-scale intervals

[a,b] ={teT:a<t<b}, (2.2)

where a,b € T with a < p(b).

Definition 2.1. Fixt € T.Lety : T — R. Then we define y*(t) to be the number (if it exists)
with the property that given ¢ > 0 there is a neighborhood U of t with

| [y(c®) -y(s)] —y*(t)[o(t) —s]| <elo(t) —s| Vsel. (2.3)

Then y* is called derivative of y(t).

Definition 2.2. If FA(t) = f(t) then we define the integral by
t
ffumrzﬂﬂ—nm. (2.4)

We say that a function p : T — R" is regressive provided
1+u(t)p(t)#0, teT, (2.5)

where pu(t) = o(t) —t, which is called graininess function. If p is a regressive function, then the
generalized exponential function e, is defined by

t
ep(t,s) = exp <I () (p(T))AT>, (2.6)

fors,t € T, ¢,(z) is the cylinder transformation, which is defined by

log(1 + hz)
- 1 h O/

t(z) = n 7 2.7)
z, h=0.

Let p, g be two regressive functions, then define

q
L+pq

P-4
L+pq

peq=p+q+pupq,  ©q=- ,  peq=pe(eq)= (2.8)

The generalized function e, has then the following properties.
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Lemma 2.3 (see [18]). Assume that p, q are two regressive functions, then
(i) eo(t,s) = land e, (t,t) = 1;
(i) ep(a(t),s) = (L+ pu(t)p(t))ey(t, s);
(iii) ep(t, s)ep(s, 1) = ep(t, 7);
(iv) 1/e,(t, s) = ecp(t, s);
(V) ep(t,s) =1/ep(s,t) = ecp(s, t);
(vi) ep(t,5)eq(t, s) = epaq(t, 5);

(vii) ey(t,5)/e4(t, s) = epoy(t, s).

The following well-known fixed point theorem will play a very important role in
proving our main result.

Theorem 2.4 (see [20]). Let X be a Banach space, and let F : X — X be completely continuous.
Assume that A : X — X is a bounded linear operator such that 1 is not an eigenvalue of A and

F@) - A _

0. 29
flx]] = oo [|x|l @9)

Then F has a fixed point in X.

Throughout this paper, let E = C?[a, b] be endowed with the norm by

Iyllo = max{ Iyl |v*° }. (2.10)

where [|y|| = maxse[ap|y(t)]. And we make the following assumptions:
(Hl) cx,ﬂ,)’,6,§,11 2 0/ and a < gl < §2 < U(b)/

(Hz) g>0,and r = /g, 12 =—./q,

(H3) d = p+a(c?(b) - a) > 0.

Set

~1, O 11 =Py, O =1, =01 = ps. (2.11)
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For convenience, we denote

f;e,,l (s,a)As = (¢, a),
- [(Y — 6528 e 1, a)fj ep(5, @) A5 — 5p2(0(&1))en (0(21), a)ep, &, a)]
< (34 1P2(E)) e (&2, @) = (1 = 5p2(80)) e (G, @)
x [(«; 1pa(&))ep a)fem (5,0)As + p2(0(&2))en (0(22), @en (&2, a)],

A1 = ey, (0(81), a)ep, (&1,a) (& +1p2(&2) ) ep, (&2, a)

+ (Y = 6pa(&1)) ep, (81, a)nep, (0(&2), a)ey, (&2, a),
An = (y = 6p2(1)) ep, (81, ) (6 + 1p2(&2) ) eps (&2, @),
A1z = (y = 6pa(é1)) ep, (&1, A) ey, (0(&2), a)ep, (&2, a),

&
Bu = [@ +1p2(62)) e (G2, a)f ep, (5, @) As + 1pa(0(&2))ep, (0(&2), a)ep, (&, a)]
x (6p2(&1) —v)ep, (41, @)
[(r 6p2(81))ep, (&1, ) f ep,(s,a)As = 6p2(0(81))ep, (0(81), a)ep, (1, a)]

x (np2(&) + ) ep, (&2, a),

[ &
Biz = | € npa(@))en o a)f e (5, @) As + p2(0(E2))em (0(2), @)ep (&2, @)

e

><56p2(0(§1) a)ep, (61, a)

+ (Y 6p2(&1))ep, (&1, a)f ep (s,a)As = 6px(0(81))ep, (0 (81), a)ep, (1, a)

x 1ep, (0(&2), a)ep, (&2, a),
i & 7
Bis = | (y = 6p2(é1))ep, (41, a)f ep,(s,a)As — 6p2(0(é1))ep, (0(&1), a)ep, (é1,a)

x (p2(&) + ) ep, (&2, a),

-

1 b
By = | (y - 6p2(é1)) ep, (1, a)’[ ep, (s, a)As — 6p2(0(&1))ep, (0(81), a)ep, (é1,a)

L

x 1ep, (0(82), a)ep, (&2, a).
(2.12)

First, we present two lemmas about the calculus on Green functions which are crucial
in our main results.
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Lemma 2.5. Assume that (Hy) and (H,) are satisfied. If h € C[a, b], then u € C?[a, b] is a solution

of the following boundary value problem (BVP):

y¥t-qy(o(t) = h(t), telab],

Yy&) -6yt (&) =0,  y(k) +nyt(L) =

if and only if

o(b)
y(t) = f G(t,s)h(s)As, te€]a,b],

a

where the Green’s function of (2.13) is as follows:

‘iﬂf ep, (& a)e—r, (s, a)A¢
+[Aul (t a) - Bw] f ep (& @)e_y,(s,a) AL

. [Anl(t ,a) - Blz] e, (s,a)

t
+f ep (& a)er (s,a)A¢,

%J‘s ep: (&, a)e—r, (s, a)Ad

[M] f ep (& @)e_r, (s, a) AL

N [Alll(t Z) Blz]

[W] Ezem (& a)e—r (s, a)Aé

-Biy Ass
+Te,rl (s,a) + Tl(t' a)e_,(s,a)

G(t, S) =ép, (t, a) 4 €—r (S, El),

t
+’[ ep (él a)e—rl (S’ El)Aé;

[M] Ezepl (¢, a)ey (s,a)Aé

—Bis

t—ren (s,a) + 131(t,a)e_r2(s,a),
t
[(enteaen(sans

0,

\

(2.13)

(2.14)

a<o(s) <minf{t, &},

a<t<s<{,

1 < 0o(s) <min{t, &},

max{¢, t} <s<éy,

&H<o(s)<t<h,

max{t,é} <s<b,
(2.15)

where I(t,a), A, A1, A1z, A1z, B, Bia, Biz, Biaare given as (2.12), respectively.
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Proof. 1f y € C?[a, b] is a solution of (2.13), setting

u(s) = yA(s) -ny(o(s)), tela,b], (2.16)
then it follows from the first equation of (2.13) that

u(s) —ru(o(s)) = h(s), tela,b]. (2.17)

Multiplying (2.17) by e_,, (s, a) and integrating from a to t, we get

t

u(t) = eq—r, (t,a) [u(a) + j e_r (s, a)h(s)As], t€la,b]. (2.18)

Similarly, by (2.18), we have

t

y(t) = ecor(t, a) [y(a) +f en(s, a)u(s)As], te [ab]. (2.19)

a

Then substituting (2.18) into (2.19), we get for each t € [a, b] that

t
y(t) = ey, (t,a)y(a) +ep,(t, a)u(a)J‘ ep, (s, a)As
¢ (2.20)

t s
+ep,(t, a)f ep, (s, a)f e_n, (& a)h(¢)A¢ As.

Substituting this expression for y(f) into the boundary conditions of (2.13). By some
calculations, we get

1 &1 & s
u(@) =4 [Auj e, (5, a)h(s)As + Alzjg e (5, a)f e (&, )h(§)AE As

I3
+A13f e_r, (s, a)h(s)As],
&

1 & s & 221)
y(a) = 1 I:BHI ep, (s, a)f e_r (&, a)h(¢)A¢ As + Blzf e_r (s,a)h(s)As

a

& s &
+B13L ep, (s, a)f e_r (¢, a)h(¢)AE As + BML e_r (s, a)h(s)As].
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Then substituting (2.21) into (2.20), we get

ep, (t, a)

&1 &1
y<t>=—T[an ep(5,a) f e (¢, )h()AE As + By f e 1, (5, a)h(s)As

I3 s &
+B13L ep, (s, a)f e_r (& a)h(¢)AE As + BML e_r (s, a)h(s)As]

N ep,(t,a) (!

& & s
Lem (s,a)As [AHL e (s,a)h(s)As + A12J“§ ep, (s, a)J‘aer1 (¢, a)h(¢)A¢ As

2]
+A13f e_r(s, a)h(s)As]
&

t S
rept, a)f e (s, a)f e (& a)h(2)AE As.
(2.22)

By interchanging the order of integration and some rearrangement of (2.22), we obtain

y(t) = epz(t/ a)

+e_r (s a)[M]>h(s)As
_— ep, " P —e. n (s, a)
f<[Aul(t 4) - Blf’” (¢ e, (s, a) A+ —

+%l(t, a)e_, (s, a)> h(s)As + j; <J‘:elg1 (¢, a)e_ (s, a)A§> h(s)As> )
(2.23)

Thus, we obtain (2.14) consequently.
On the other hand, if y satisfies (2.14), then direct differentiation of (2.14) yields

20 - qy* (o) = h(t), te[ab]. (2.24)

And it is easy to know that y € C?[a, b] and y satisfies (2.13). O
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Corollary 2.6. If T = R, then BVP (2.13) reduces to the following problem:

y'(t) —qy(t) = h(t), te[ab],

(2.25)
Yy(&) -6y'(¢1) =0,  Sy(&) +ny'(&) =0.
From Lemma 2.5, BVP (2.25) has a unique solution
b
y(t) = f G(t,s)h(s)ds, (2.26)

where the Green's function of (2.25) is as follows:

)
Ai (&1 M, () — 7D My (s)) + "9 — en9) 4 < s < min{t, &),
1
1 (t-a) ra(t-a)
A—(e” M; (s) — eI M, (s)), a<t<s<g,
1

1
A—(eﬁ(t*a)]\/h(s) — e My(s)) +en(79) —en=9), ¢ <5 <minft, &),
1

G(t,s) =
( s) r—n 1
A—(e”(t’“)M3(s) — eI My(s)), max{é;, t} <s< &,
1
el (t=9) — gna(t=s), b <s<t<p,
0, max({t, &} <s<b,
(2.27)
where

A = (Y - 61‘2) (g + rlrl)erl(éz—a)*-rz(él—a) _ (Y _ 61’1) (g + 717,2)er1(<§1—a)+rz(<§z—a)/ (2.28)
M;(s) = (61-2 - Y) (ﬂrl + g)erl(§2_5)+72(§1_“) _ (61‘1 _ Y) (117‘2 + €)672(§2_a)+rl(§1_5)’
M;y(s) = (Y - 67«1) (117‘2 + g)erz(éz—s)”l(él—a) + (57-2 _ Y) (7171 + g)eﬁ(éz—a)ﬂz(él—s),
(2.29)
M;3(s) = (Y - 61‘2) (717'2 + g)erz(éz—s)”z(él—a) _ (Y _ 67-2) (717‘1 + é)erz(él—ﬂ)+ﬁ(§2—5),

My(s) = (Y — 6T1) (7ZT2 + g)erz(éz—s)”l(él—ﬂ)) _ (Y _ 61’1) (7171 + g)eﬁ(él—ﬂ)ﬂ’l(éz—s)‘
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Proof. 1f y € C*[a, b] is a solution of (2.25), take T = R, then p; = r1 — 12, p» = 12. Hence, from
(2.20) we have

t
Y(O) = em(t, @)y (@) + ept, a)u(a)j e (5,)As

a

t s
ve(t, a)f e (5, a) f e (&, A)h()AE As

t
= -0y (a) + -0y (q) f o r-r)(s-a) g
“ (2.30)
t ps
+erz(tfa)J‘ f e(ﬁ—rz)(sfa)efh(é*a)h(g)dg ds
avYy a

- u(a) - -
— erz(t a) a) + erl(t a) _erz(t a)
ylay+ —- _T2( )
1 t
+ j <e” (t=s) _ e”(t*s)>h(s)ds.
rn—-nj),

Substituting this expression for y(t) into the boundary conditions of (2.25). By some
calculations, we obtain

1 o —s)+r(é1—a 12 (&—a)+r1(éi-s
”(a):A_l[,[ <(6r2_Y)(rlr1+§)er1(§2 1160 (67 — y) (qra + £ €m0 >>h(s)ds

153
+J ((Y _ 672) (TZT2 + €)672(§2*5)+7’2(§1*a) _ (Y _ 672) (qu + g)efz(élfa)”l (§zs)>h(s)ds],
&

1
y(a) B _(7’1 1)

&
x I:I ((Y —611) (nry + g)erl(éra)ﬂz(éz*S) + (¢ +7r) (672 - Y)erl(ézfa)ﬁz(érﬂ

+(y = 612) (ry + 8) e @D o (51— 3 (ry + &) G (§1—s>> h(s)ds

b
N f (7 = 6r0) (ra-+ )P E9#nGm0) _ (3 — 6ry) (qry + )" b=
b

_(Y_ 7‘26) (111,2+ g)erz(§1—a)+rz(§z—s) + (Y_ T26) (111,.1 + g)erz(§1—a)+r1 (§z—s)> h(S)dS] ,

(2.31)
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where A; is given as (2.28). Then substituting (2.31) into (2.30), we get

a

1 é1 erl(t—a) M erz(t—a) M I p
v = —— | [ (S5 M) - S Ma(s) Yniords

I3 r1(t-a) ) (t-a) t
+Ll <e A Ma(s) - ¢ A M4(s)>h(s)ds + f (ent2 - e”(t‘s)>h(s)ds:|,
(2.32)
where M;(s) (i = {1,2,3,4}) are as in (2.29), respectively. By some rearrangement of (2.32),
we obtain (2.26) consequently. O

From the proof of Corollary 2.6,if T =R, takey=(=1,6=1=0,a=¢=0,b=¢%& =1,
we get the following result.

Corollary 2.7. The following boundary value problem:

-y"(t) + qy(t) = h(t), te[0,1],

(2.33)
y(0)=y(1)=0
has a unique solution
1
y(t) = J‘ G(t,s)h(s)ds, (2.34)
0
where the Green'’s function of (2.33) is as follows:
1 Al(erltMg(s) — e My(s)) +ents) —ents) 0<t<s<1,
G(t,5) = — 11 (2.35)
n-n A—(erltMg(s) - e M,(s)), 0<s<t<l,
1
where
Ay =e —e”, M;(s) = My(s) = e?(179) — en(1-9), (2.36)

After some rearrangement of (2.35), one obtains

smhrﬁsmhrﬂl _S), O<t<s<l,
r1sinhrq

G(t,s) = - A (2.37)
sinh s sin rl( - )/ 0<s<t<I.

r1 sinhry
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Remark 2.8. Green function (2.37) associated with BVP (2.33) which is a special case of (2.13)
is coincident with part of [21, Lemma 1].

Lemma 2.9. Assume that conditions (Hy)—(Hj3) are satisfied. If h € C[a,b], then boundary value
problem

v (1) - qy® (0() = h(t), te[a,b],
y<04(b)> =0, ay(a) - ﬂyA(a) =0, (2.38)

yyr @) -6y (@) =0, Ly (&) +nyt (&) =0

has a unique solution

0‘4(b) o(b)
y<t>=f Git,d) [ G sh(s)as g, (2.39)

a a

where

1 [ (6*(®) —0o(s))(a(t—a) +p), t<s,
Gi(t,s) =5 (2.40)
A (o*(b) - 1) (a(o(s) - a) + ), t>0(s),
and G(t, s) is given in Lemma 2.5.
Proof. Consider the following boundary value problem:
, o (b)
v —qytot) = | Gt s)h(s)as, te [a, 02(b)],
a (2.41)

y(o'()) =0,  ay(a)-py*(a) =0.

The Green'’s function associated with the BVP (2.41) is G (¢, s). This completes the proof. O

Remark 2.10. In [1, Lemma 2.5], the solution of (1.2) is defined as

4

o*(b) &
v =[G | Gole )h(s) s a2 )

a
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where G;(t,s) and G (t, s) are given as (1.4) and (1.5), respectively. In fact, y(t) is incorrect.
Thus, we give the right form of y(t) as the special case g(t) = g in our Lemma 2.9.

3. Main Results

Theorem 3.1. Assume (H;)-(H3) are satisfied. Moreover, suppose that the following condition is
satisfied:

(Ha) f(t,y(o(t)),yAz(t)) = m(t)g(u) + n(t)h(v), where g,h : R — R are continuous,
m(t), n(t) € Cla,b], with

lim M =1, lim M =U, (3.1)

u—ow U u—w U

and there exists a continuous nonnegative function w : [a,b] — R* such that |m(s)| + |n(s)| <
w(s), s € [a,b].If

. 1 1
max{|[A], |p]} < mm{L—l, L—}, (3.2)

2

where

ot (b) o (b)
L1=max<f G1<t,§>f |G<§,s>|w<s>AsA«;>,

a<t<b

(3.3)

o(b)
L, = maxj |G(t, s)|w(s)As,
ast<b ) ,

then BVP (1.8) has a solution y € C*[a, b].

Proof. Define an operator F : C?[a,b] — C?[a,b] by

ot (b)

Fy(t) = f cl(t,g)fo(b)c(g,s) [m(5)8(y(s)) +no)n(y* ()| asas,  (34)

a

where G (t, s) is given by (2.40). Then by Lemmas 2.5 and 2.9, it is clear that the fixed points
of F are the solutions to the boundary value problem (1.8). First of all, we claim that F is a
completely continuous operator, which is divided into 3 steps.
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Step 1 (F : C?[a,b] — C?[a,b] is continuous). Let {y,}o; be a sequence such that y, —
y(n — oo), then we have

|(Fyn)(t) = (Fy)(#)]

j04(b)G1(t,§)Ia(b)G(é, 5) [m()8(ya(s)) + n(s)n(y2" ()] as ¢

_J’U4(b)cl(t,g)fa(b)c(§, 9)[m()3(4() + () (y*'(s))] As Ag'

.[ %)Gl (t, é)fo(b)c(é, $)[m(s)(3(yn(5)) -8 (y())) +n(s)(h(vh () ~h(y*'(5)))]as Ag

0'4(b) o(b)
sj |Gl<t,g>|j G )m(s)]|g (ya(s)) - g ((s))| A&

a

: j04(b)|cl<t,§>|jg(b)|c<g, Sm(s)|(v2 () - h(y* ) a¢,

a

|(Fy)* &) - (Fy)* )]

jz(b)G@, 5)[m(9)g(yn(5)) + n()h(y2" ()] As

- f s [m(5)8(y(s)) +n(s)h(y* (5))] s

[ 6125 ms) (5069 - 5(39)) 9 (2" ®) ~ (3 1)) s

o)

Ve sym(s)l|n(va"(5))-h(y*' () |as.
(3.5)

o(b)
<[ 16 ImO I (e)-gwE)]as+ |

a

Since g, h are continuous, we have |(Fy,)(t) — (Fy)(t)] — 0, which yields ||Fy, - Fy| —
0(n — oo). Thatis,F : C*[a,b] — C?[a,b] is continuous.
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Step 2 (F maps bounded sets into bounded sets in C?[a, b]). Let Q ¢ C?[a,b] be a bounded
set. Then, for t € [a,b] and any y € Q, we have

|Fy(t)| =

f G4(b)cl(t,g)f(b)c(§, 9)[m($)g(y(s)) + n(s)h(y* (5)) ] as Aé‘

a

(3.6)
< r (b)lcl(t,é)lfg(b)lc(é, 9)I(|ms)g(y(s)] + [nh(y* ()] ) as ag.

a a

By virtue of the continuity of ¢ and h, we conclude that Fu is bounded uniformly, and so
F(Q) is a bounded set.

Step 3 (F maps bounded sets into equicontinuous sets of C?[a,b)). Let t,t, € [a,b], y € Q,
then

|(Fy)(t) = (Fy) (t2)]

ot (b) o(b) A2
f (Gl<tl,g>—cl<tz,g>>fa G, 5) [m(s)g(y(s)) +n(s)h(y (s))]AsAg‘ 57)

a

< r4(b)|G1(t1,§) - Gl(tz,§)|r(b) |G(§, s) [m(s)g(y(S)) + n(S)h<yA2(S)>] |As As

a

The right hand side tends to uniformly zero as t; —t, — 0. Consequently, Steps 1-3 together
with the Arzela-Ascoli theorem show that F is completely continuous.

Now we consider the following boundary value problem:

yA (1) - qy™ (0(t) = Am(t)y(t) + un(t)y™ (t), te€ [a,b],
y('®) =0, ay(a)-py*(a) =0, (3.8)

ry¥ @) -6y* @) =0, Ly (&) +ny* (&) =0.

Define

o*(b

) o(b) .
vt =[G o[ G s m(s)y(s) + ey (9)]4s ad (39)

a

Obviously, A is a completely continuous bounded linear operator. Moreover, the fixed point
of A is a solution of the BVP (3.8) and conversely.

We are now in the position to claim that 1 is not an eigenvalue of A.

If A =0 and u = 0, then (3.8) has no nontrivial solution.
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If A#0 or p#0, suppose that the BVP (3.8) has a nontrivial solution y and ||y|lo > 0,
then we have

o*(b)

Ay ()] < f c1<t,g>fo(b)|c<§,s>[Am(s)y(s) +pun(s)y® (s)]|As Ag

a

o (b) o(b) )
<[ an| i6esi[umeye] « ulney o] asag

a

(3.10)
ot (b) o(b)
< mab< [ awo| e olmE)+ lulin)Iloas A§>
ot (b) (o(b))
< max{[A], |p }rgteg;q Gi(t,¢) IG(¢,5)|w(s)As A§> Iyl
which yields
|Ay(t)| < max{|Al, |p| }Lallylly = llyllo- (3.11)
On the other hand, we have
e o(b) e
|(Ay) (t)' SI )G(t, s)Am(s)y(s) + un(s)y (s)|As
o(b)
<max[ G [lm(s) + [nlin(s) ]Iyl s
. (3.12)

o(b)
< max{ ], |u Jmax [ 16t s)w(9)slvl,
1
< max{ldl, [u[}Lallyllo < - Lallylly = 1y lo-

From the above discussion (3.11) and (3.12), we have ||Ay|lo < |lyllo. This contradiction
implies that boundary value problem (3.8) has no trivial solution. Hence, 1 is not an
eigenvalue of A.

At last, we show that

IF () - A@)ll _

0. (3.13)
llxllo— oo llxll

By lim, o, (g(u) /u) = A, lim, o (h(v)/v) = p, then for any € > 0, there exist a R > 0 such
that

|g(w) = A\u| <elul, |h(v)-pv|<elv|, |ul,|v]> R (3.14)

Set R* = max{max|y<r|g ()|, maxjy<r|h(v)|} and select M > 0 such that R* + max{[A|, [4|} R <
eM.
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Denote

Ei={te[ab]: [u)| <R |o(t) >R}, E»={te[ab]:ult) <R |ot)]>R},

Es ={te[ab]:|u@®)] o) <R},  Ey={telab]:|u®) o) >R} o
Thus for any y € E and ||y|lo > M, when t € Ej, it follows that
|g(u(t)) - Au(t)| < |g(u®)] + M[u®)] < R* + MR < eM < elfull,, (316)
[h(v(t) - po(t)| < elo(t)] < elloll,.
In a similar way, we also conclude that for any t € E;, (i =2,3,4),
|g(u(t)) = du(t)| <ellull,  |h(v(®) - po(t)| <elvll, (3.17)

Therefore,

|Fy(t) - Ay(#)]

a

J G4(b)cl(t,§>fa(b)c<§, 9 (M) 3 (1() = ] + 1) [y () - uy*' ()] ) As Aé)

a<t<b

o*(b) o(b)
< max<f Gi(t,é) | 1G(E s)|w(s)As A§>5||;‘/||o = eL1|lyll,-
(3.18)

On the other hand, we get
|(Fy - Ay)* )] < fg(b) |G(t,5) (m(s) [y () = Ay()] +n(&)[n(y* () - uy* (9] ) | s

o(b)
< max <’[ |G(t, 5)|w(s)As> ellylly

a<t<b

= eLa|lyll,-
(3.19)

Combining (3.18) with (3.19), we have

IF ()~ Ay _

0. 3.20
lxllo — oo llxllo (3.20)

Theorem 2.4 guarantees that boundary value problem (1.8) has a solution y* €
C?[a,b]. It is obvious that y* #0 when m(ty)g(0) + n(tp)h(0) #0 for some ¢, € [a,b]. In fact,
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if m(to)g(0) + n(to)h(0) #0, then (0)** = g(0)*" = m(to)g(0) + n(to)h(0) #0 will lead to a

contradiction, which completes the proof. O

4. Application
We give an example to illustrate our result.

Example 4.1. Consider the fourth-order four-pint boundary value problem

1 t sin 2art 1
4 Y/ — _ y,c0st "
yi(t) 1Y (t) T y(t) Ste cosy (), 0<t<l,

y(0)=y(1) =0, (4.1)
ORORRORIOR

Notice that T = R. To show that (4.1) has at least one nontrivial solution we apply Theorem 3.1
with m(t) = tsin2art/(#> + 1),n(t) = (1/2)te*s!, g(u) = u,h(u) = cosu,a =y=6=n=¢ =
1,=0,q=1/4,¢ =1/3,and & = 2/3. Obviously, (H;)-(H3) are satisfied. And

m(ty)g(0) + n(to)h(0) = %tQECOStU #0, to€e(0,1]. (4.2)

Since |m(s)| + |n(s)| < ((1/2)e +1)s := w(s), for each s € [0, 1], we have the following.
By simple calculation we have

1 1
L; = max (J Gl(t,g)f |G(¢, s)|w(s)ds d§> =0.05<1,
0 0

0<t<1
(4.3)
1
L, = maxj |G(¢,s)|w(s)ds = 0.82 < 1.
0<t<1 0
On the other hand, we notice that
A= lim&u):L U= limM:O. (4.4)
u—oo U u—owo U
Hence,
x{Ap} <1 <mi L (4.5)
max{A, 4 min 'L .

That is, (Hy) is satisfied. Thus, Theorem 3.1 guarantees that (4.1) has at least one nontrivial
solution u € C?[0,1].
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