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1. Introduction

In this paper we are interested in the existence of a global (L2(RN), Lp(RN))-attractor for the
m-Laplacian equation

ut −Δmu + λ|u|m−2u + f(x, u) = g(x), x ∈ RN, t ∈ R+, (1.1)

with initial data condition

u(x, 0) = u0(x), x ∈ RN, (1.2)

where the m-Laplacian operator Δmu = div(|∇u|m−2∇u), 2 ≤ m < N, λ > 0.
For the case m = 2, the existence of global (L2(RN), L2(RN))-attractor for (1.1)-(1.2) is

proved by Wang in [1] under appropriate assumptions on f and g. Recently, Khanmamedov
[2] studied the existence of global (L2(RN), Lm∗

(RN))-attractor for (1.1)-(1.2) with m∗ =
mN/(N−m). Yang et al. in [3] investigated the global (L2(RN), Lp(RN)∩W1,m(RN))-attractor
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Ap under the assumptions f(x, u)u ≥ a1|u|p − a2|u|m − a3(x) and fu(x, u) ≥ a4(x) with the
constants a1, a2 > 0 and the functions a3, a4 ∈ L1(RN) ∩ L∞(RN). We note that the global
attractor Ap in [3] is related to the p-order polynomial of u on f(x, u). In [4], we consider
the existence of global (L2(RN), Lp(RN))-attractor for (1.1)-(1.2), which the term λ|u|m−2u is
replaced by λu. We derive L∞ estimate of solutions by Moser’s technique as in [5–7], and due
to this, we need not to make the assumption like fu(x, u) ≥ a4(x) to show the uniqueness.
For a typical example is f(x, u) = a(x)|u|α−2u − h(x)|u|β−2u with a(x) ≥ h(x) ≥ 0, α > β ≥ 2,
h(x) ∈ L2(RN) ∩ L∞(RN). In [4], we assume that f(x, u) satisfies

0 ≤
∫u

0
f
(
x, η

)
dη + L(x)|u| ≤ k2

(
f(x, u)u + L(x)|u|) (1.3)

with some k2 > 0 and L(x) ∈ L2(RN) ∩ L∞(RN).
Obviously, the nonlinear function f(x, u) = −h(x)|u|q−2u with h(x) ≥ 0, q ≥ 1 does not

satisfy the assumption (1.3).
In this paper, motivated by [2–4], we are interested in the global (L2(RN), Lp(RN))-

attractor Ap for the problem (1.1)-(1.2) with any p > m, in which p is independent of the
order of polynomial for u on f(x, u).

Our assumptions on f(x, u) is different from that in [2–4]. To obtain the continuity
of solution of (1.1)-(1.2) in Lp(RN), p ≥ 2, we derive L∞ estimate of solutions by Moser’s
technique as in [4, 6, 7]. We will prove that the existence of the global attractor Ap in Lp(RN)
under weaker conditions.

The paper is organized as follows. In Section 2, we derive some estimates and prove
some lemmas for the solution of (1.1)-(1.2). By the a priori estimates in Section 2, the existence
of global (L2(RN), Lp(RN))-attractor for (1.1)-(1.2) is established in Section 3.

2. Preliminaries

We denote by Lp andW1,m the space Lp(RN) andW1,m(RN), and the relevant norms by ‖ · ‖p
and ‖·‖1,m, respectively. It is well known thatW1,m(RN) = W1,m

0 (RN). In general, ‖·‖E denotes
the norm of the Banach space E.

For the proof of our results, we will use the following lemmas.

Lemma 2.1 ([8–10] (Gagliardo-Nirenberg)). Let β ≥ 0, 1 ≤ r ≤ q ≤ m(1 + β)N/(N −m) when
N > m and 1 ≤ r ≤ q ≤ ∞ when N ≤ m. Suppose u ∈ Lr and |u|βu ∈ W1,m. Then there exists C0

such that

‖u‖q ≤ C
1/(β+1)
0 ‖u‖1−θr

∥∥∥∇(|u|βu)
∥∥∥θ/(β+1)

m
(2.1)

with θ = (1+ β)(r−1 − q−1)/(N−1 −m−1 + (1+ β)r−1), where C0 is a constant independent of q, r, β,
and θ ifN/=m and a constant depending on q/(1 + β) ifN = m.

Lemma 2.2 ([7]). Let y(t) be a nonnegative differentiable function on (0, T] satisfying

y′(t) +Atλθ−1y1+θ(t) ≤ Bt−ky(t) + Ct−δ, 0 < t ≤ T, (2.2)
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with A, θ > 0, λθ ≥ 1, B,C ≥ 0, k ≤ 1, and 0 ≤ δ < 1. Then one has

y(t) ≤ A−1/θ
(
2λ + 2BT1−k

)1/θ
t−λ + 2C

(
λ + BT1−k

)−1
t1−δ, 0 < t ≤ T. (2.3)

Lemma 2.3 ([11]). Let y(t) be a nonnegative differential function on (0,∞) satisfying

y′(t) +Ay1+μ(t) ≤ B, t > 0 (2.4)

with A, μ > 0, B ≥ 0. Then one has

y(t) ≤
(
BA−1

)1/(1+μ)
+
(
Aμt

)−1/μ
, t > 0. (2.5)

First, the following assumptions are listed.
(A1) Let f(x, u) ∈ C1(RN+1), f(x, 0) = 0 and there exist the nontrivial nonnegative functions

h(x) ∈ Lq1 ∩ L∞ and h1(x) ∈ L1, such that F(x, u) ≤ k1f(x, u)u and

−h(x)|u|q ≤ f(x, u)u ≤ h(x)|u|q + h1(x), (2.6)

(
f(x, u) − f(x, v)

)
(u − v) ≥ −k2

(
1 + |u|q−2 + |v|q−2

)
|u − v|2, (2.7)

where F(x, u) =
∫u
0f(x, s)ds, 2 ≤ q < m, q1 = m/(m − q) and some constants k1, k2 ≥ 0.

(A2) Let f(x, u) ∈ C1(RN+1), f(x, 0) = 0 and there exists the nontrivial nonnegative function
h1(x) ∈ L1, such that F(x, u) ≤ k1f(x, u)u and

a1|u|α − a2|u|m ≤ f(x, u)u ≤ b1|u|α + b2|u|m + h1(x),

(
f(x, u) − f(x, v)

)
(u − v) ≥ −k4

(
1 + |u|α−2 + |v|α−2

)
|u − v|2,

(2.8)

where a2 < λ,m < α < m + 2m/N, and a1, b1, b2 > 0, k1, k2 ≥ 0.
A typical example is f(x, u) = a(x)|u|α−2u−h(x)|u|β−2uwith a(x), h(x) ≥ 0, and α > β ≥ m.

The assumption (A2) is similar to [3, (1.3)–(1.7)].

Remark 2.4. If f(x, u) = −h(x)|u|q−2u, q > m, the problem (1.1)-(1.2) has no nontrivial solution
for some h(x) ≥ 0, see [12].

We first establish the following theorem.

Theorem 2.5. Let g ∈ Lm′ ∩ L∞ and u0 ∈ L2. If (A1) holds, then the problem (1.1)-(1.2) admits a
unique solution u(t) satisfying

u(t) ∈ X ≡ C
(
[0,∞), L2

)
∩ Lm

loc

(
[0,∞),W1,m

)
∩ L∞

loc

(
[0,∞), L2

)
,

ut ∈ Lm
loc

(
[0,∞),W−1,m′)

,

(2.9)
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and the following estimates:

‖u(t)‖22 ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1
)
t + ‖u0‖22, t ≥ 0, (2.10)

‖∇u(t)‖mm + λ‖u(t)‖mm ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1 + ‖h1‖1
)
+ t−1‖u0‖22, t > 0, (2.11)

∫ t

s

‖ut(τ)‖22dτ ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1 + ‖h1‖1
)
+ s−1‖u0‖22, 0 < s ≤ t, (2.12)

‖u(t)‖∞ ≤ C1t
−s0 , s0 = N(2m + (m − 2)N)−1, 0 < t ≤ T (2.13)

with m′ = m/(m − 1). The constant C0 depends only on m, N, q, λ, and C1 depends on h, g, u0,
and T .

Proof. For any T > 0, the existence and uniqueness of solution u(t) for (1.1)-(1.2) in the class

XT ≡ C
(
[0, T], L2

)
∩ Lm

(
[0, T],W1,m

)
∩ L∞

(
[0, T], L2

)
(2.14)

can be obtained by the standard Faedo-Galerkin method, see, for example, [10, Theorem 7.1,
page 232], or by the pseudomonotone operator method in [2]. Further, we extend the solution
u(t) for all t ≥ 0 by continuity and bounded over L2 such that u(t) ∈ X.

In the following, wewill derive the estimates (2.10)–(2.13). The solution is in fact given
as limits of smooth solutions of approximate equations (see [5, 6]), we may assume for our
estimates that the solutions under consideration are appropriately smooth. We begin with the
estimate of ‖u(t)‖2.

We multiply (1.1) by u and integrate by parts to get

1
2
d

dt
‖u(t)‖22 + ‖∇u(t)‖mm + λ‖u(t)‖mm =

∫
RN

(
g(x) − f(x, u)

)
udx. (2.15)

Since

−
∫
RN

f(x, u(t))u(t)dx ≤
∫
RN

h(x)|u(t)|qdx ≤ λ0‖u(t)‖mm + C0‖h‖q1q1 ,
∫
RN

g(x)u(t)dx ≤ λ0‖u(t)‖mm + C0
∥∥g∥∥m′

m′

(2.16)

with λ0 = λ/4. We have from (2.15) that

1
2
d

dt
‖u(t)‖22 + ‖∇u(t)‖mm + 2λ0‖u(t)‖mm ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1
)
. (2.17)

Integrating (2.17)with respect to t, we obtain

1
2
‖u(t)‖22 +

∫ t

0

(‖∇u(τ)‖mm + 2λ0‖u(τ)‖mm
)
dτ ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1
)
t +

1
2
‖u0‖22. (2.18)
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This implies (2.10) and the existence of t∗ ∈ (0, t) such that

‖∇u(t∗)‖mm + 2λ0‖u(t∗)‖mm ≤ C0

(∥∥g∥∥m′

m′ + ‖h‖q1q1
)
+ t−1‖u0‖22, t > 0. (2.19)

On the other hand, multiplying (1.1) by ut and integrating on (s, t) × RN , we get

∫ t

s

‖ut(τ)‖22dτ +
1
m
‖∇u(t)‖mm +

λ

m
‖u(t)‖mm +

∫
RN

(
F(x, u(t)) − g(x)u(t)

)
dx

=
1
m
‖∇u(s)‖mm +

λ

m
‖u(s)‖mm +

∫
RN

(
F(x, u(s)) − g(x)u(s)

)
dx.

(2.20)

By (2.6), we have F(x, u) ≥ −h(x)|u|q and

−
∫
RN

F(x, u(t))dx ≤
∫
RN

h(x)|u(t)|qdx ≤ ε‖u(t)‖mm + C0‖h‖q1q1 (2.21)

with 0 < ε ≤ λ/2m. Similarly, we have the following estimates by Young’s inequality:

∫
RN

∣∣g(x)u(t)∣∣dx ≤ ε‖u(t)‖mm + C0
∥∥g∥∥m′

m′ ,

∫
RN

∣∣g(x)u(S)∣∣dx ≤ ‖u(s)‖mm +
∥∥g∥∥m′

m′ ,

∫
RN

F(x, u(s))dx ≤ k1

∫
RN

(
h(x)|u(s)|q + h1(x)

)
dx

≤ C0

(
‖u(s)‖mm + ‖h‖q1q1 + ‖h1‖1

)
.

(2.22)

Then, we have from (2.20) that

∫ t

s

‖ut(τ)‖22dτ +
1
m
‖∇u(t)‖mm +

λ

2m
‖u(t)‖mm ≤ C0

(‖∇u(s)‖mm + ‖u(s)‖mm +M1
)
, (2.23)

where

M1 =
∥∥g∥∥m′

m′ + ‖h‖q1q1 + ‖h1‖1. (2.24)

Further, we let s = t∗ in (2.23) and obtain from (2.19) that

‖∇u(t)‖mm + λ‖u(t)‖mm ≤ C0

(
M1 + t−1‖u0‖22

)
, t > 0,

∫ t

s

‖ut(τ)‖22dτ ≤ C0

(
M1 + s−1‖u0‖22

)
, 0 < s < t.

(2.25)
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Thus, the solution u(t) satisfies (2.10)–(2.12). We now derive (2.13) by Moser’s
technique as in [5, 6]. In the sequel, we will write up instead of |u|p−1u when p ≥ 1. Also,
let C and Cj be the generic constants independent of p changeable from line to line.

Multiplying (1.1) by |u|p−2u, (p ≥ 2), we get

1
p

d

dt
‖u(t)‖pp + C1p

1−m
∥∥∥∇u(p+m−2)/m

∥∥∥m

m
+ λ‖u(t)‖p+m−2

p+m−2 ≤
∫
RN

(
g(x) − f(x, u)

)|u|p−2udx.

(2.26)

It follows from Young’s inequality that

∫
RN

∣∣g(x)∣∣|u|p−1dx ≤ λ0‖u‖p+m−2
p+m−2 + λ

(1−p)/(m−1)
0

∥∥g∥∥αp

αp

−
∫
RN

f(x, u)|u|p−2udx ≤ λ0‖u‖p+m−2
p+m−2 + λ

(2−p−q)/(m−q)
0 ‖h‖βpβp

(2.27)

with λ0 = λ/4, αp = (p +m − 2)/(m − 1), βp = (p +m − 2)/(m − q). Then, (2.26) becomes

1
p

d

dt
‖u(t)‖pp + C1p

1−m
∥∥∥∇u(p+m−2)/m

∥∥∥m

m
+ 2λ0‖u(t)‖p+m−2

p+m−2

≤ λ
(1−p)/(m−1)
0

∥∥g∥∥αp

αp
+ λ

(2−p−q)/(m−q)
0 ‖h‖βpβp .

(2.28)

Let R > m/2, p1 = 2, pn = Rpn−1 − (m − 2), n = 2, 3, . . .. Then, by Lemma 2.1, we see

∥∥∥∇u(pn+m−2)/m
∥∥∥m

m
≥ C−m/θn

0 ‖u‖(pn+m−2)(1−θ−1n )
pn−1 ‖u‖(pn+m−2)θ−1n

pn , (2.29)

where

θn =
pn +m − 2

m

(
1

pn−1
− 1
pn

)(
1
N

− 1
m

+
pn +m − 2
mpn−1

)−1
=

NR
(
1 − pn−1p−1n

)
m +N(R − 1)

. (2.30)

Inserting (2.29) into (2.28) (p = pn), we find

d

dt
‖u(t)‖pnpn + C1C

−m/θn
0 p2−mn ‖u‖pn+rnpn ‖u‖m−2−rn

pn−1 ≤ pnAn, (2.31)

where rn = (pn +m − 2)θ−1
n − pn and

An = λ
(2−pn−q)/(m−q)
0 ‖h‖μn

μn
+ λ

(1−pn)/(m−1)
0

∥∥g∥∥λn
λn

(2.32)

with λn = (pn +m − 2)/(m − 1), μn = (pn +m − 2)/(m − q), n = 1, 2, . . ..
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We claim that there exist the bounded sequences {ξn} and {sn} such that

‖u(t)‖pn ≤ ξnt
−sn , 0 < t ≤ T. (2.33)

Indeed, by (2.10), this holds for n = 1 if we take s1 = 0, ξ1 = M1T
1/2 + ‖u0‖2. If (2.33) is

true for n − 1, then we have from (2.31) that

y′(t) +Atτnθ−1y1+θ(t) ≤ pnAn, 0 < t ≤ T, (2.34)

where y(t) = ‖u(t)‖pnpn , τn = snpn and

θ = rnp
−1
n , sn = (1 + sn−1(rn −m + 2))r−1n , A = C1C

−m/θn
0 p2−mn ξm−2−rn

n−1 . (2.35)

Applying Lemma 2.2 to (2.34), we have (2.33) for n with

ξn = ξn−1
(
C−1

1 Cm/θn
0 pm−1

n s−1n
)1/rn

+
(
2Ans

−1
n

)1/pn
T1+sn (2.36)

for n = 2, 3, . . . .
It is not difficult to show that sn → s0 = N(2m + (m − 2)N)−1, as n → ∞ and {ξn} is

bounded, see [6]. Then, (2.13) follows from (2.33) as n → ∞.
We now consider the uniqueness and continuity of the solution for (1.1)-(1.2) in L2. Let

u1, u2 be two solutions of (1.1)-(1.2), which satisfy (2.10)–(2.13). Denote u(t) = u1(t) − u2(t).
Then u(t) solves

ut − (Δmu1 −Δmu2) + λ
(
|u1|m−2u1 − |u2|m−2u2

)
= f(x, u2) − f(x, u1). (2.37)

Multiplying (2.37) by u, we get from (2.7) and (2.13) that

1
2
d

dt
‖u(t)‖22 + γ0‖∇u(t)‖mm + γ1‖u(t)‖mm ≤ k2

∫
RN

(
1 + |u1|q−2 + |u2|q−2

)
u2dx

≤ k2

∫
RN

(
1 + ‖u1(t)‖q−2∞ + ‖u2(t)‖q−2∞

)
u2dx ≤ C0

(
1 + t−s0(q−2)

)
‖u(t)‖22

(2.38)

with some γ0, γ1 > 0. Since s0(q − 2) < 1 and u(0) = 0, (2.38) implies that ‖u(t)‖2 ≡ 0 in [0, T]
and u1(t) = u2(t) in [0, T].

Further, let t > s ≥ 0. Note that

‖u(t) − u(s)‖22 =
∫
RN

(∫ t

s

ut(τ)dτ

)2

dx ≤
∫ t

s

‖ut(τ)‖22(t − s). (2.39)

This shows that ‖u(t) − u(s)‖22 → 0 as t → s and u(t) ∈ C([0, T], L2). Then the proof of
Theorem 2.5 is completed.
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Remark 2.6. By (2.23), we know that if u0 ∈ W1,m, then

∫ t

0
‖ut(τ)‖22dτ +

1
m
‖∇u(t)‖mm +

λ

2m
‖u(t)‖mm ≤ C0‖u0‖m1,m +M1, t ≥ 0, (2.40)

where M1 is given in (2.24). Hence, we have

Theorem 2.7. Assume (A1) and g ∈ Lm′ ∩ L∞. Suppose also u0(x) ∈ W1,m. Then, the unique
solution u(t) in Theorem 2.5 also satisfies

u(t) ∈ Y ≡ L∞
(
[0,+∞),W1,m

)
, ut ∈ L2

(
[0,+∞), L2

)
, (2.41)

and the estimate (2.40).
Now consider the assumption (A2). Since m < α < m + 2m/N, one has s0(α − 2) = N(α −

2)/(2m + (m − 2)N) < 1. By a similar argument in the proof of Theorem 2.5, one can establish the
following theorem.

Theorem 2.8. Assume (A2) and g ∈ Lm′ ∩ L∞, u0 ∈ L2. Then the problem (1.1)-(1.2) admits a
unique solution u(t) which satisfies

u(t) ∈ X ≡ C
(
[0,∞), L2

)
∩ Lm

loc

(
[0,∞),W1,m

)
∩ L∞

loc

(
[0,∞), L2

)
,

ut ∈ Lm
loc

(
[0,∞),W−1,m′)

,

(2.42)

and the following estimates:

‖u(t)‖22 ≤ C0t
∥∥g∥∥m′

m′ + ‖u0‖22, t ≥ 0,

‖∇u(t)‖mm + λ‖u(t)‖mm + ‖u(t)‖αα ≤ C0

(∥∥g∥∥m′

m′ + ‖h1‖1
)
+ t−1‖u0‖22, t > 0,

∫ t

s

‖ut(τ)‖22dτ ≤ C0

(∥∥g∥∥m′

m′ + ‖h1‖1
)
+ s−1‖u0‖22, 0 < s ≤ t,

‖u(t)‖∞ ≤ C1t
−s0 , s0 = N(2m + (m − 2)N)−1, 0 < t ≤ T.

(2.43)

Further, if u0 ∈ W1,m, the unique solution u(t)(∈ Y ) satisfies

∫ t

0
‖ut(τ)‖22dτ + ‖∇u(t)‖mm + ‖u(t)‖mm + ‖u(t)‖αα ≤ C0

(
‖u0‖m1,m + ‖h1‖1 +

∥∥g∥∥m′

m′

)
, (2.44)

where C0 depends only on m, N, λ, α, and C1 on the given data g, h1, u0, and T > 0.

So, by Theorems 2.5–2.8, one obtains that the solution operator S(t)u0 = u(t), t ≥ 0
of the problem (1.1)-(1.2) generates a semigroup on L2 or on W1,m, which has the following
properties:
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(1) S(t) : L2 → L2 for t ≥ 0, and S(0)u0 = u0 for u0 ∈ L2 or S(t) : W1,m → W1,m for
t ≥ 0, and S(0)u0 = u0 for u0 ∈ W1,m;

(2) S(t + s) = S(t)S(s) for t, s ≥ 0;

(3) S(t)θ → S(s)θ in L2 as t → s for every θ ∈ L2.

From Theorems 2.5–2.8, one has the following lemma.

Lemma 2.9. Suppose (A1) (or (A2)) and g ∈ Lm′ ∩L∞. Let B0 be a bounded subset of L2. Then, there
exists T0 = T0(B0) such that S(t)B0 ⊂ D for every t ≥ T0, where

D =
{
u ∈ W1,m | ‖∇u‖mm + λ‖u‖mm ≤ M1

}
(2.45)

withM1 = ‖h‖q1q1 + ‖h1‖1 + ‖g‖m′
m′ if (A1) holds, and M1 = ‖h1‖1 + ‖g‖m′

m′ if (A2) holds.
Now it is a position of Theorem 2.5 to establish some continuity of S(t) with respect to the

initial data u0, which will be needed in the proof for the existence of attractor.

Lemma 2.10. Assume that all the assumptions in Theorem 2.5 are satisfied. Let S(t)φn and S(t)φ
be the solutions of problem (1.1)-(1.2) with the initial data φn and φ, respectively. If φn → φ in
Lp(p ≥ 2) as n → ∞, then S(t)φn uniformly converges to S(t)φ in Lp for any compact interval
[0, T] as n → ∞.

Proof. Let un(t) = S(t)φn, u(t) = S(t)φ, n = 1, 2, . . .. Then, wn(t) = un(t) − u(t) solves

wnt − (Δmun −Δmu) + λ
(
|un|m−2un − |u|m−2u

)
= f(x, u) − f(x, un) (2.46)

and wn(x, 0) = φn(x) − φ(x).
Multiplying (2.46) by |wn|p−2wn, we get from [8, Chapter 1, Lemma 4.4] and (2.13)

that

1
p

d

dt
‖wn(t)‖pp + γ0

∫
RN

|∇wn|m|wn|p−2dx + λ‖wn(t)‖p+m−2
p+m−2

≤ k2

∫
RN

(
1 + |u|q−2(t) + |un|q−2(t)

)
|wn(t)|ppdx

≤ C0

(
1 + ‖un(t)‖q−2∞ + ‖u(t)‖q−2∞

)
‖wn(t)‖pp

≤ C0

(
1 + t−s0(q−2)

)
‖wn(t)‖pp, 0 ≤ t ≤ T,

(2.47)

for some γ0 > 0, depending on m, N. This implies that

‖wn(t)‖p ≤ ‖wn(0)‖p exp
(
C0

(
T +

(
1 − s0(q − 2)

)−1
T1−s0(q−2)

))

=
∥∥φn − φ

∥∥
p exp

(
C0

(
T +

(
1 − s0

(
q − 2

))−1
T1−s0(q−2)

))
, 0 ≤ t ≤ T,

(2.48)
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with s0(q − 2) = N(q − 2)((m − 2)N + 2m)−1 < 1. Letting n → ∞, we obtain the desired
result.

Lemma 2.11. Suppose that all the assumptions in Theorem 2.5 are satisfied. Let u(t) be the solution
of (1.1)-(1.2) with u0 ∈ L2, ‖u0‖2 ≤ M0. Then, ∃T0 > 0, such that for any p > m, one has

‖u(t)‖p ≤ Ap + Bp(t − T0)
−1/pα0 , t > T0, (2.49)

where α0 = (m − 2 +m2/N)/(p −m) and Ap, Bp > 0, which depend only on p,N,m and the given
data ‖g‖αp

, ‖h‖βp , M0 with αp = (p +m − 2)/(m − 1), βp = (p +m − 2)/(m − q).

Proof. Multiplying (1.1) by |u|p−2u, we have

1
p

d

dt
‖u(t)‖pp + γp

∥∥∥∇(
|u|(p−2)/mu

)∥∥∥m

m
+ λ‖u‖p+m−2

p+m−2 ≤
∫
RN

(
g(x) − f(x, u)

)
u|u|p−2dx (2.50)

with γp = mm(p − 1)(m + p − 2)−m. Note that

∫
RN

g(x)|u|p−2udx ≤ ε‖u‖p+m−2
p+m−2 + Cp

∥∥g∥∥αp

αp
,

−
∫
RN

f(x, u)u|u|p−2dx ≤
∫
RN

h(x)|u|p+q−2dx ≤ ε‖u‖p+m−2
p+m−2 + Cp‖h‖βpβp

(2.51)

with 0 < ε < λ/4. Then (2.50) becomes

1
p

d

dt
‖u(t)‖pp + γp

∥∥∥∇(
|u|(p−2)/mu

)∥∥∥m

m
+
λ

2
‖u‖p+m−2

p+m−2 ≤ Cp

(
‖h‖βpβp +

∥∥g∥∥αp

αp

)
. (2.52)

By Lemma 2.1, we get

∥∥∇(|u(t)|τu(t))∥∥m

m ≥ C0‖u(t)‖m(1+τ)/θ1
p ‖u(t)‖τ1m, (2.53)

with

τ =
p − 2
m

, θ1 = (1 + τ)
(

1
m

− 1
p

)(
1
N

+
τ

m

)−1
, τ1 = m

(
1 − θ−1

1

)
(1 + τ) < 0. (2.54)

By Lemma 2.9, ∃T0 > 0, such that t ≥ T0, ‖u(t)‖m ≤ M1. Therefore, we have from (2.52)
and (2.53) that

1
p

d

dt
‖u(t)‖pp + C0M

τ1
1 ‖u(t)‖

p(1+α0)
p ≤ A ≡ Cp

(
‖h‖βpβp +

∥∥g∥∥αp

αp

)
, t > T0 (2.55)
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with

p(1 + α0) =
m(1 + τ)

θ1
, τ1 = m − 2 − pα0 < 0, α0 =

m − 2 +m2/N

p −m
> 0. (2.56)

It follows from (2.55) and Lemma 2.3 that

‖u(t)‖pp ≤
(
AM−τ1

1 C−1
0

)1/(1+α0)
+
(
C0M

τ1
1 α0(t − T0)

)−1/α0 , t > T0. (2.57)

This gives (2.49) and completes the proof of Lemma 2.11.

By Lemma 2.11, we now establish

Lemma 2.12. Assume that all the assumptions in Theorem 2.5 are satisfied. Let B0 be a bounded set in
L2 and u(t) be a solution of (1.1)-(1.2)with u0 ∈ B0. Then, for any η > 0 and p > m, ∃r0 = r0(η,B0),
T1 = T1(η,B0), such that r ≥ r0, t ≥ T1,

∫
Bc
r

|u(t)|pdx ≤ η, ∀u0 ∈ B0, (2.58)

where Bc
r = {x ∈ RN | |x| ≥ r}.

Proof. We choose a suitable cut-off function for the proof. Let

φ0(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ s ≤ 1;

(n − k)−1
(
n(s − 1)k − k(s − 1)n

)
, 1 < s < 2;

1, s ≥ 2;

(2.59)

in which n(> k > m) will be determined later. It is easy to see that φ0(s) ∈ C1[0,∞), 0 ≤
φ0(s) ≤ 1, 0 ≤ φ′

0(s) ≤ β0φ
1−1/k
0 (s) for s ≥ 0, where β0 = k(n/(n − k))1/k. For every r > 0,

denote φ = φ(r, x) = φ0(|x|/r), x ∈ RN . Then

∣∣∇xφ(r, x)
∣∣ ≤ β1

r
φ
1−
1
k (r, x), x ∈ RN, (2.60)

with β1 = Nβ0.
Multiplying (1.1) by |u|p−2uφ, (p > m), we obtain

1
p

d

dt

∫
RN

|u|pφ dx +
∫
RN

|∇u|m−2∇u∇
(
|u|p−2uφ

)
dx +

λ

2

∫
RN

|u|p+m−2φdx

≤ Cp

(
‖h‖βpβp(Bc

r ) +
∥∥g∥∥αp

αp
(Bc

r )
)
,

(2.61)
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where and in the sequel, we let ‖f‖pp(Ω) =
∫
Ω|f(x)|pdx. Note that

D1 =
∫
RN

|∇u|m−2∇u∇
(
|u|p−2uφ

)
dx =

(
p − 1

)∫
RN

|u|p−2|∇u|mφ dx +D2 (2.62)

with

D2 =
∫
RN

|∇u|m−2∇u∇φ|u|p−2udx

≤
∫
RN

|∇u|m−1∣∣∇φ
∣∣|u|p−1dx

≤ β1
r

∫
RN

|∇u|m−1|u|p−1φ1−1/kdx

≤ β1
r

∫
RN

(
|∇u|m|u|p−2φ + |u|p+m−2φ1−m/k

)
dx.

(2.63)

Therefore, if r ≥ 2β1/(p − 1),

D1 ≥
p − 1
2

∫
RN

|∇u|m|u|p−2φ dx − β1
r

∫
RN

|u|p+m−2φ1−m/kdx. (2.64)

Further, we estimate the first term of the right-hand side in (2.64). Since

∂

∂xi

(∣∣∣uφ1/p
∣∣∣τuφ1/p

)
= (τ + 1)|u|τφτ/p

(
φ1/p ∂u

∂xi
+
u

p

∂φ

∂xi
φ1/p−1

)
, i = 1, 2, . . . ,N,

∣∣∣∇(∣∣∣uφ1/p
∣∣∣τuφ1/p

)∣∣∣2 = (τ + 1)2|u|2τφ2τ/p

(
|∇u|2φ2/p +

u2

p2
∣∣∇φ

∣∣2φ2/p−2 +
2u
p
φ2/p−1∇u∇φ

)
,

(2.65)

we have

D3 =
∣∣∣∇(∣∣∣uφ1/p

∣∣∣τuφ1/p
)∣∣∣m =

[∣∣∣∇(∣∣∣uφ1/p
∣∣∣τuφ1/p

)∣∣∣2
]m/2

≤ λ0
(
|u|τm|∇u|mφmτ2 + |u|mτ0 |∇φ|mφm(τ2−1) + |u|mτ+m/2(|∇u|∣∣∇φ

∣∣)m/2
φmτ2−m/2

)
,

(2.66)

where τ2 = τ0/p, τ0 = 1 + τ = (p − 2 +m)/m and with some constant λ0 > 0. The second term
of (2.66) is

(2.66)2 ≤
βm1
rm

|u|p−2+mφ1+(m−2)/p−m/k ≤ C1

r
|u|p−2+mφ1+(m−2)/p−m/k, r ≥ 1, (2.67)
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and the third term of (2.66) is

(2.66)3 ≤
C1

r
|u|p−2+m/2|∇u|m/2φ1+(m−2)/p−m/2k

≤ C1

r

(
|u|p−2|∇u|mφ + |u|p+m−2φ1+(2m−4)/p−m/k

)
, r ≥ 1

(2.68)

with some C1 > 0. Thus, we let k > pm/(2m − 4) and have

D3 ≤ C1

(
|u|p−2|∇u|mφ + r−1|u|p+m−2φ1+(m−2)/p−m/2k

)
(2.69)

or

|u|p−2|∇u|mφ ≥ C−1
1

∣∣∣∇(
|uφ1/p|τuφ1/p

)∣∣∣m − r−1|u|p+m−2φ1+(m−2)/p−m/2k. (2.70)

This implies that

∫
RN

|u|p−2|∇u|mφ dx ≥ C−1
1

∥∥∥∇(
|uφ1/p|τuφ1/p

)∥∥∥m

m
− r−1

∫
RN

|u|p+m−2φ1+(m−2)/p−m/2kdx (2.71)

and for r ≥ 1,

D1 ≥ C−1
1

∥∥∥∇(
|uφ1/p|τuφ1/p

)∥∥∥m

m
− Cpr

−1
∫
RN

|u|p+m−2(φ1+(m−2)/p−m/2k + φ1−m/k
)
dx. (2.72)

On the other hand, we obtain by Lemma 2.9 that

∥∥∥u(t)φ1/p
∥∥∥
m
≤ ‖u(t)‖m ≤ M1, t ≥ T0, (2.73)

and then for t ≥ T0,

∥∥∥∇(
|uφ1/p|τuφ1/p

)∥∥∥m

m
≥ C0

∥∥∥uφ1/p
∥∥∥(m+mτ)/θ1

p

∥∥∥uφ1/p
∥∥∥τ1

m
≥ C0M

τ1
1

∥∥∥uφ1/p
∥∥∥(m+mτ)/θ1

p
, (2.74)

where τ1 and θ1 are determined by (2.54). Hence we get from (2.61)–(2.74) that

1
p

d

dt

∥∥∥u(t)φ1/p
∥∥∥p

p
+ C0M

τ1
1

∥∥∥u(t)φ1/p
∥∥∥p(1+α0)

p

≤ Cp

(
‖h‖βpβp(B

c
r ) +

∥∥g∥∥αp

αp
(Bc

r ) + r−1‖u(t)‖p+m−2
p+m−2(B

c
r )
)
, t > T0, r ≥ 1.

(2.75)

By Lemma 2.11, we know that there exist ∃T1 > T0 and Mp+m−2 > 0, such that

‖u(t)‖p+m−2 ≤ Mp+m−2, for t ≥ T1. (2.76)
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Then we obtain
∫
RN

|u|pφ dx ≤
(
H(r, t)

(
Mτ1

1 C0
)−1)1/(1+α0)

+
(
C0M

τ1
1 α0(t − T1)

)−1/α0 , t > T1, (2.77)

where

H(r, t) = Cp

(
‖h‖βpβp(B

c
r ) +

∥∥g∥∥αp

αp
(Bc

r ) + r−1Mp+m−2
p+m−2

)
, t > T0, r ≥ 1, (2.78)

and H(r, t) → 0 as r → ∞. Then (2.77) implies (2.58) and the proof of Lemma 2.12 is
completed.

Remark 2.13. In fact, we see from the proof of Lemma 2.12 that if (2.73) and (2.76) are satisfied,
then (2.77) and (2.58) hold.

Remark 2.14. In a similar argument, we can prove Lemmas 2.10–2.12 under the assumptions
in Theorem 2.8.

3. Global Attractor in RN

In this section, we will prove the existence of the global (L2, Lp)-attractor for problem (1.1)-
(1.2). To this end, we first give the definition about the bi-spaces global attractor, then, prove
the asymptotic compactness of {S(t)}t≥0 in Lp and the existence of the global (L2, Lp)-attractor
by a priori estimates established in Section 2.

Definition 3.1 ([2, 3, 13, 14]). A set Ap ⊂ Lp is called a global (L2, Lp)-attractor of the
semigroup {S(t)}t≥0 generated by the solution of problem (1.1)-(1.2) with initial data u0 ∈ L2

if it has the following properties:

(1) Ap is invariant in Lp, that is, S(t)Ap = Ap for every t ≥ 0;

(2) Ap is compact in Lp;

(3) Ap attracts every bounded subset B of L2 in the topology of Lp, that is,

dist
(
S(t)B,Ap

)
= sup

v∈B
inf
u∈Ap

‖S(t)v − u‖p −→ 0 as t −→ +∞. (3.1)

Now we can prove the main result.

Theorem 3.2. Assume that all assumptions in Theorem 2.5 (Theorem 2.7) are satisfied. Then the
semigroup {S(t)}t≥0 generated by the solutions of the problem (1.1)-(1.2) with u0 ∈ L2 has a global
(L2, Lp)-attractorAp for any p > m.

Proof. We only consider the case in Theorem 2.5 and the other is similar and omitted. Define

Ap =
⋂
τ≥0

A(τ), A(τ) =

[⋃
t≥τ

S(t)D
]

Lp

, (3.2)

where D is defined in (2.45) and [E]Lp is the closure of E in Lp.
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Obviously, A(τ) is closed and nonempty and A(τ1) ⊂ A(τ2) if τ1 ≥ τ2. Thus, Ap is
nonempty. We now prove that Ap is a global (L2, Lp)-attractor for (1.1)-(1.2).

We first prove Ap is invariant in Lp. Let φ ∈ Ap. Then, ∃tn → +∞ and θn ∈ D such
that S(tn)θn → φ in Lp. Since S(t) is continuous from Lp → Lp by Lemma 2.10, we obtain
S(t + tn)θn = S(t)(S(tn)θn) → S(t)φ in Lp. Note that

S(t + tn)θn ∈
⋃
t≥τ

S(t)D =⇒ S(t)φ ∈ A(τ) =⇒ S(t)φ ∈
⋂
τ≥0

A(τ). (3.3)

That is, S(t)φ ∈ Ap and S(t)Ap ⊂ Ap.
On the other hand, let φ ∈ Ap. Suppose tn → +∞ and θn ∈ D such that S(tn)θn → φ

in Lp. We claim that there exists ψ ∈ Ap such that S(t)ψ = φ. This implies Ap ⊂ S(t)Ap.
First, since {θn} is bounded in W1,m by Lemma 2.9, so is {S(tn − t)θn} by Theorem 2.7.

That is, ∃n0 > 1, T0 > 0, M3 > 0, such that

‖un‖m ≤ M3, ‖∇un‖m ≤ M3 for n ≥ n0, tn − t ≥ T0, (3.4)

with un(x) = S(tn − t)θn(x). Then,

‖un‖W1,m(Br0 )
= ‖∇un‖m(Br0) + ‖un‖m(Br0) ≤ h(r0,M3), n ≥ n0, (3.5)

where the constant h(r0,M3) depends on r0, M3, and r0 is from Lemma 2.12. By the compact
embedding theorem, ∃{unk} ⊂ {un} such that unk → ψ in Lp(Br0) if 2 ≤ p < m∗. We extend
ψ(x) as zero when |x| > r0. Then unk → ψ in Lp, and ψ ∈ A(τ), ψ ∈ Ap. By the continuity of
S(t) in Lp, we have

S(tnk)θnk = S(t)(S(tnk − t)θnk) −→ S(t)ψ =⇒ φ = S(t)ψ in Lp. (3.6)

So, Ap ⊂ S(t)Ap andAp is invariant in Lp for every t ≥ 0.
For the case p ≥ m∗, we take μ ∈ (m,m∗] and unk → ψ in Lμ as the above proof. Thus

{unk} is a Cauchy sequence in Lμ. We claim that {unk} is also a Cauchy sequence in Lp.
In fact, it follows from Lemma 2.11 that ∃Mρ and n0 such that if n ≥ n0, then tn − t ≥ T0

and

‖un‖ρ ≤ Mρ, ρ =

(
p − 1

)
μ

μ − 1
. (3.7)

Notice that

∫
RN

∣∣∣uni − unj

∣∣∣pdx ≤
∥∥∥uni − unj

∥∥∥
μ

∥∥∥uni − unj

∥∥∥p−1

ρ
≤ (

2Mρ

)p−1∥∥∥uni − unj

∥∥∥
μ

(3.8)

for i, j ≥ n0. This gives our claim. Therefore, ∃ψ ∈ Lp such that unk = S(tnk − t)θnk → ψ in Lp

and φ = S(t)ψ. Hence Ap ⊂ S(t)Ap and S(t)Ap = Ap.
We now consider the compactness of Ap in Lp. In fact, from the proof of Ap ⊂ S(t)Ap,

we know that [∪t≥τS(t)D]Lp is compact in Lp, so isAp.
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For claim (3), we argue by contradiction and assume that for some bounded set B0 of
L2, distLp(S(t)B0,Ap) does not tend to 0 as t → +∞. Thus there exists δ > 0 and a sequence
tn → ∞ such that

distLp

(
S(tn)B0,Ap

) ≥ δ

2
> 0, for n = 1, 2, . . . . (3.9)

For every n = 1, 2, . . . , ∃θn ∈ B0 such that

distLp

(
S(tn)θn,Ap

) ≥ δ

2
> 0. (3.10)

By Lemma 2.9,D is an absorbing set, and S(tn)θn ⊂ D if tn ≥ T0. By the aforementioned proof,
we know that ∃φ ∈ Lp and a subsequence {S(tnk)θnk} of {s(tn)θn} such that

φ = lim
k→∞

S(tnk)θnk = lim
k→∞

S(tnk − T0)(S(T0)θnk), in Lp. (3.11)

When θnk ∈ B0 and T0 is large, we have from Lemma 2.9 that S(T0)θnk ∈ D and

S(tnk − T0)(S(T0)θnk) ∈
⋃
t≥τ

S(t)D. (3.12)

Thus, φ ∈ Ap which contradicts (3.10). Then the proof of Theorem 3.2 is completed.

Remark 3.3. Let p = m∗ = mN/(N − m). Theorem 3.2 gives the results in [2, Theorem 2]
for the case N > m > 2 and improve the corresponding results in [3]. The attractor Ap in
Theorem 3.2 is independent of the order of u on f(x, u).
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