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The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-
fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian
fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid
in the core region of the artery is assumed as a (i) Herschel-Bulkley fluid and (ii) Casson
fluid. Perturbation method is used to solve the resulting system of non-linear partial differential
equations. Expressions for various flow quantities are obtained for the two-fluid Casson model.
Expressions of the flow quantities obtained by Sankar and Lee (2006) for the two-fluid Herschel-
Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and
velocity distribution of the two-fluid Casson model are considerably higher than those of the two-
fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall
shear stress and the resistance to flow are significantly very low for the two-fluid Casson model
than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be
more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed
arteries.
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1. Introduction

There are many evidences that vascular fluid dynamics plays a major role in the
development and progression of arterial stenosis. Arteries are narrowed by the development
of atherosclerotic plaques that protrude into the lumen, resulting arterial stenosis. When an
obstruction developed in an artery, one of the most serious consequences is the increased
resistance and the associated reduction of the blood flow to the particular vascular bed
supplied by the artery. Thus, the presence of a stenosis leads to the serious circulatory
disorder.

Several theoretical and experimental attempts were made to study the blood flow
characteristics in the presence of stenosis [1–8]. The assumption of Newtonian behavior of
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Figure 1: Geometry of the two-fluid models with arterial stenosis.

blood is acceptable for high shear rate flow through larger arteries [9]. But, blood, being a
suspension of cells in plasma, exhibits non-Newtonian behavior at low shear rate (γ̇ < 10/sec)
in small diameter arteries [10]. In diseased state, the actual flow is distinctly pulsatile [11, 12].
Many researchers studied the non-Newtonian behavior and pulsatile flow of blood through
stenosed arteries [1, 3, 9, 12].

Bugliarello and Sevilla [13] and Cokelet [14] have shown experimentally that for blood
flowing through narrow blood vessels, there a peripheral layer of plasma and a core region
of suspension of all the erythrocytes. Thus, for a realistic description of the blood flow, it is
appropriate to treat blood as a two-fluid model with the suspension of all the erythrocytes in
the core region as a non-Newtonian fluid and plasma in the peripheral region as a Newtonian
fluid.

Kapur [15] reported that Casson fluid model and Herschel-Bulkley fluid model are
the fluid models with nonzero yield stress and they are more suitable for the studies of the
blood flow through narrow arteries. It has been reported by Iida [16] that Casson fluid model
is simple to apply for blood flow problems, because of the particular form of its constitutive
equation, whereas, Herschel-Bulkley fluid model’s constitutive equation is not easy to apply
because of the form of its empirical relation, since, it contains one more parameter than the
Casson fluid model. It has been demonstrated by Scott-Blair [17] and Copley [18] that the
parameters appropriate to Casson fluid—viscosity, yield stress and power law—are adequate
for the representation of the simple shear behavior of blood. It has been established by Merrill
et al. [19] that Casson fluid model holds satisfactorily for blood flowing in tubes of diameter
130–1300μm, whereas Herschel-Bulkley fluid model could be used in tubes of diameter 20–
100μm.

Sankar and Lee [20] have developed a two-fluid model for pulsatile blood flow
through arterial stenosis treating the fluid in the core region as Herschel-Bulkley fluid. Thus,
in this paper, we extend this study to two-fluid Casson model and compare these models and
discuss the advantages of the two-fluid Casson model over the two-fluid Herschel-Bulkley
(H-B) model.

2. Mathematical Formulation

Consider an axially symmetric, laminar, pulsatile, and fully developed flow of blood
(assumed to be incompressible) in the z direction through a rigid-walled circular artery with
an axially symmetric mild stenosis. The geometry of the arterial stenosis is shown in Figure 1.
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We have used the cylindrical polar coordinates (r, φ, z). Blood is represented by a two-fluid
model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid
and the plasma in the peripheral region as a Newtonian fluid. The non-Newtonian fluid in the
core region is represented by (i) Casson fluid model and (ii) Herschel-Bulkley fluid model.
The geometry of the stenosis in the peripheral region (in dimensionless form) and core region
are, respectively, given by

R(z)=

⎧
⎪⎪⎨

⎪⎪⎩

R0 in the normal artery region,

R0−
(
δP

2

)[

1+ cos
(

2π

L0

){

z − d −
(
L0

2

)}]

in d ≤ z ≤ d + L0,
(2.1)

R1(z)=

⎧
⎪⎪⎨

⎪⎪⎩

βR0 in the normal artery region,

βR0−
(
δC

2

)[

1+ cos
(

2π

L0

){

z−d−
(
L0

2

)}]

in d ≤ z ≤ d + L0,
(2.2)

where R(z) and R1 are the radii of the stenosed artery with the peripheral region and core
region, respectively; R0 and βR0 are the radii of the normal artery and core region of the
normal artery, respectively; β is the ratio of the central core radius to the normal artery radius;
L0 is the length of the stenosis; d indicates the location of the stenosis; δP and δC are the
maximum projections of the stenosis in the peripheral region and core region, respectively,
such that [δP/R0] � 1 and [δC/R0] � 1.

2.1. Two-Fluid Casson Model

2.1.1. Governing Equations

It can be shown that the radial velocity is negligibly small and can be neglected for a low
Reynolds number flow. The basic momentum equations governing the flow are

ρC

(
∂uC

∂t

)

= −
(
∂p

∂z

)

−
(

1
r

)(
∂
(
rτC

)

∂r

)

in 0 ≤ r ≤ R1
(
z
)
,

ρN

(
∂uN

∂t

)

= −
(
∂p

∂z

)

−
(

1
r

)(
∂
(
rτN

)

∂r

)

in R1
(
z
)
≤ r ≤ R

(
z
)
,

(2.3)

where the shear stress τ = |τrz| = −τrz (since τ = τC or τ = τN); p is the pressure; uC and uN

are the axial velocities of the fluid in the core region and peripheral region, respectively;
τC and τN are the shear stresses of the Casson fluid and Newtonian fluid, respectively;
ρC and ρN are the densities of the Casson fluid and Newtonian fluid, respectively; t is the
time. The relationships between the shear stress and strain rate of the fluids in motion in the



4 Boundary Value Problems

core region (Casson fluid) and peripheral region (Newtonian fluid) are given by

√

τC =

√

−μC

(
∂uC

∂r

)

+
√

τy if τC ≥ τy, Rp ≤ r ≤ R1(z), (2.4)

(
∂uC

∂r

)

= 0 if τC ≤ τy, 0 ≤ r ≤ Rp, (2.5)

τN = −μN

(
∂uN

∂r

)

if R1(z) ≤ r ≤ R(z), (2.6)

where μC and μN are the viscosities of the Casson and Newtonian fluids, respectively; τy is
the yield stress; RP is the plug core radius. The boundary conditions are

τC is finite and
∂uC

∂r
= 0 at r = 0,

uN = 0 at r = R,

τC = τN, uC = uN at r = R1.

(2.7)

Since the pressure gradient is a function of z and t, we assume

−
(
∂p

∂z

)

= q
(
z
)
f
(
t
)
, (2.8)

where q(z) = −(∂p/∂z)(z, 0). Since any periodic function can be expanded in a Fourier sine
series, it is reasonable to choose 1+A sinωt as a good approximation for f(t),where A and ω
are the amplitude and angular frequency of the flow, respectively. We introduce the following
nondimensional variables:

z =
z

R0

, R(z) =
R
(
z
)

R0

, R1(z) =
R1

(
z
)

R0

, r =
r

R0

, d =
d

R0

, L0 =
L0

R0

,

q(z) =
q
(
z
)

q0
, εC = α2

C =
R

2
0ωρC
μC

, εN = α2
N =

R
2
0ωρN
μN

, RP =
RP

R0

,

δP =
δP

R0

, δC =
δC

R0

, uC =
uC

q0R
2
0/4μC

, uN =
uN

q0R
2
0/4μN

,

τC =
τC

q0R0/2
, τN =

τN

q0R0/2
, θ =

τy

q0R0/2
, t = ωt,

(2.9)

where q0 is the negative of the pressure gradient in the normal artery; αC and αN are the
pulsatile Reynolds numbers of the Casson fluid and Newtonian fluid, respectively. Using the
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nondimensional variables, (2.1)–(2.4) are simplified to

εC

(
∂uC

∂t

)

= 4q(z)f(t) −
(
2/r

)
∂
(
rτC

)

∂r
if 0 ≤ r ≤ R1(z), (2.10)

√
τC =

√(
− 1/2

)
∂uC

∂r
+
√
θ if τC ≥ θ, Rp ≤ r ≤ R1(z), (2.11)

∂uC

∂r
= 0 if τC ≤ θ, 0 ≤ r ≤ Rp, (2.12)

εN∂uN

∂t
= 4q(z)f(t) −

(
2/r

)
∂
(
rτN

)

∂r
,

τN = −
(

1
2

)(
∂uN

∂r

)

,

if R1(z) ≤ r ≤ R(z), (2.13)

where

f(t) = 1 +A sin t. (2.14)

The boundary conditions (in the dimensionless form) are

τC is finite and
∂uC

∂r
= 0 at r = 0,

τC = τN, uC = uN at r = R1,

uN = 0 at r = R.

(2.15)

The geometry of the stenosis in the peripheral region and core region (in the dimensionless
form) are given by

R(z) =

⎧
⎪⎨

⎪⎩

1 in the normal artery region,

1 −
(
δP
2

){

1 + cos
[(

2π
L0

)(

z − d −
(
L0

2

))]}

in d ≤ z ≤ d + L0,

R1(z) =

⎧
⎪⎨

⎪⎩

β in the normal artery region,

β −
(
δC
2

){

1 + cos
[(

2π
L0

)(

z − d −
(
L0

2

))]}

in d ≤ z ≤ d + L0.

(2.16)

The nondimensional volume flow rate Q is given by

Q = 4
∫R(z)

0
u(r, z, t) r dr, (2.17)

where Q = Q/(πR
4
0q0/8μ0); Q is the volume flow rate.
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2.1.2. Method of Solution

When we nondimensionalize the constitutive (2.1), (2.2), εC and εN occur naturally and these
are time dependent and hence, it is more appropriate to expand (2.10)–(2.13) about εC and
εN . Let us expand the plug core velocity up and the velocity in the core region uC in the
perturbation series of εC as follows: (where εC � 1)

up(z, t) = u0p(z, t) + εC u1p(z, t) + · · · ,

uC(r, z, t) = u0C(r, z, t) + εCu1C(r, z, t) + · · · .
(2.18)

Similarly, one can expand uN, τP , τC, τN, and RP in powers of εC and εN , where εN � 1.
Using the perturbation series in (2.10), (2.11) and then equating the constant terms and εC
terms, the differential equations of the core region become

∂
(
rτ0C

)

∂r
= 2q(z)f(t)r,

∂u0C

∂t
= −

(
2/r

)
∂
(
rτ1C

)

∂r
,

−∂u0C

∂r
= 2

(
τ0C − 2

√
θτ0C + θ

)
, −∂u1C

∂r
= 2τ1C

(

1 −
√

θ

τ0C

)

.

(2.19)

Similarly, using the perturbation series expansions in (2.13) and then equating the constant
terms and εN terms, the differential equations of the peripheral region become

∂
(
rτ0N

)

∂r
= 2q(z)f(t)r,

∂u0N

∂t
= −

(
2/r

)
∂
(
rτ1N

)

∂r
,

−∂u0N

∂r
= 2τ0N, −∂u1N

∂r
= 2τ1N.

(2.20)

Substituting the perturbation series expansions in (2.15) and then equating the constant terms
and εC and εN terms, we get

τ0p and τ1p are finite and
∂u0P

∂r
= 0,

∂u1P

∂r
= 0 at r = 0,

τ0C = τ0N, τ1C = τ1N, u0C = u0N, u1C = u1N at r = R1,

u0N = u1N = 0 at r = R.

(2.21)

Solving the system of (2.19) and (2.20) using (2.21) for the unknowns u0C, u1C, τ0C, τ1C,
u0N, u1N, τ0N, and τ1N, one can obtain

τ0p = ψR0p, τ0C = ψr, τ0N = ψr, (2.22)

u0N = ψR2(1 − ξ2), (2.23)

u0C = ψR2
{
(
1 −Ω2) + Ω2

[
(
1 − ξ2

1

)
−
(

8
3

)

σ1/2
1

(
1 − σ3/2

1

)
+ 2σ1

(
1 − ξ1

)
]}

, (2.24)
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u0P = ψR2
{
(
1 −Ω2) + Ω2

[
(
1 − χ2) −

(
8
3

)

σ1/2
1

(
1 − χ3/2) + 2σ1(1 − χ)

]}

, (2.25)

τ1p = −ψBR3
{(

1
4

)

σ
(
1 −Ω2) + Ω3σ1

[(
1
4

)

−
(

1
3

)

σ1/2
1 +

(
1
12

)

σ2
1

]}

, (2.26)

τ1C=−ψBR3
{(

1
4

)

ξ
(
1−Ω2)−

(
1
8

)

Ω3
[

2ξ1−ξ3
1−σ

4
1ξ

−1
1 −

(
8
21

)

σ1/2
1

(
7ξ1−4ξ5/2

1 −3σ7/2
1 ξ−1

1

)
]}

,

(2.27)

τ1N =−ψBR2R1

{[(
1
4

)

ξ1−
(

1
8

)

Ω2ξ−1
1 −

(
1
8

)

Ω2ξ3
1

]

+ξ−1
1 Ω2

[(
1
8

)

−
(

1
7

)

σ1/2
1 +

(
1

56

)

σ4
1

]}

,

(2.28)

u1N = −ψBR3R1

{[(
1
4

)

Ω−1(1 − ξ2) −
(

1
4

)

Ω3 log ξ−1 −
(

1
16

)

Ω−1(1 − ξ4)
]

−Ω3 log ξ

[(
1
4

)

−
(

2
7

)

σ1/2
1 +

(
1

28

)

σ4
1

]}

,

(2.29)

u1C = −ψBR3R1

{[(
3
16

)

Ω−1 −
(

1
4

)

Ω +
(

1
16

)

Ω3 +
(

1
4

)

Ω3 logΩ
]

− Ω3 logΩ
[(

1
4

)

−
(

2
7

)

σ1/2
1 +

(
1

28

)

σ4
1

]

+ Ω
(
1 −Ω2)

[(
1
4

)
(
1 − ξ2

1

)
−
(

1
3

)

σ1/2
1

(
1 − ξ3/2

1

)
]

+ Ω3
[(

1
4

)
(
1 − ξ2

1

)
−
(

1
3

)

σ1/2
1

(
1 − ξ3/2

1

)
−
(

1
16

)
(
1 − ξ4

1

)

+
(

53
294

)

σ1/2
1

(
1 − ξ7/2

1

)
−
(

1
3

)
(
1 − ξ2

1

)
+
(

4
9

)

σ1
(
1 − ξ3/2

1

)

−
(

8
63

)

σ1
(
1 − ξ3

1

)
−
(

1
28

)

σ4
1 log ξ1 +

(
1
14

)

σ9/2
1

(
1 − ξ−1/2

1

)
]}

,

(2.30)

u1P = −ψBR3R1

{((
3

16

)

Ω−1 −
(

1
4

)

Ω +
(

1
16

)

Ω3 +
(

1
4

)

Ω3 logΩ
)

−Ω3 logΩ
((

1
4

)

−
(

2
7

)

σ1/2
1 +

(
1
28

)

σ4
1

)

+ Ω
(
1 −Ω2)

[(
1
4

)
(
1 − σ2

1

)
−
(

1
3

)

σ1/2
1

(
1 − σ3/2

1

)
]

+ Ω3
[(

1
4

)
(
1 − σ2

1

)
−
(

1
3

)

σ1/2
1

(
1 − σ3/2

1

)
−
(

1
16

)
(
1 − σ4

1

)

−
(

53
294

)

σ1/2
1

(
1 − σ7/2

1

)
−
(

1
3

)
(
1 − σ2

1

)
+
(

4
9

)

σ1
(
1 − σ3/2

1

)

+
(

8
63

)

2σ1
(
1 − σ3

1

)
−
(

1
28

)

σ4
1 logσ1 +

(
1

14

)

σ9/2
1

(
1 − σ−1/2

1

)
]}

,

(2.31)
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where ψ = q(z)f(t), k2 = r|r0p=θ = R0p = θ/[q(z)f(t)], B = [1/f(t)](df(t)/dt), ξ = r/R, ξ1 =
r/R1,Ω = R1/R, σ = k2/R, σ = k2/R1, and χ = R0p/R1. The wall shear stress τw can be
obtained as follows:

τw =
(
τ0N + εNτ1N

)

r=R = τ0w + εNτ1w

= ψ

{

R −
(

1
8

)

BR3εN
(
1 −Ω4) −

(
1
8

)

BR3
1εNΩ

[

1 −
(

8
7

)

σ1/2
1 +

(
1
7

)

σ4
1

]}

.
(2.32)

Using (2.23)–(2.25) and (2.29)–(2.31) in (2.17), the volume flow rate is obtained as

Q = ψR4
{
(
1 −Ω2)(1 + 3Ω2) + Ω4

[

1 −
(

16
7

)

σ1/2
1 +

(
4
3

)

σ1 −
(

1
21

)

σ4
1

]}

− εC∇BR3R3
1

{[(
3
8

)

Ω−1 −
(

1
2

)

Ω +
(

1
8

)

Ω3 +
(

1
2

)

Ω3 logΩ
]

−Ω3 logΩ
[(

1
2

)

−
(

4
7

)

σ1/2
1 +

(
1

14

)

σ4
1

]

+ Ω
(
1 −Ω2)

[(
1
4

)

−
(

2
7

)

σ1/2
1 +

(
1

28

)

σ4
1

]

+ Ω3
[(

1
6

)

−
(

30
77

)

σ1/2
1 +

(
8

35

)

σ1 −
(

1
3

)

σ5/2
1 +

(
1

14

)

σ4
1

+
(

5
21

)

σ9/2
1 −

(
41

770

)

σ6
1 −

(
1
14

)

σ6
1 logσ1+

(
1

14

)

σ4
1

(
1 − σ2

1

)
log k

]}

− εNψBR5R1

{[(
1
6

)

Ω−1 −
(

3
8

)

Ω +
(

5
24

)

Ω5 −
(

1
2

)

Ω3(1 −Ω2) logR1

]

+ Ω4(1 −Ω2)(1 + 2 logR1
)
[(

1
4

)

−
(

2
7

)

σ1/2
1 +

(
1

28

)

σ4
1

]}

.

(2.33)

The shear stress τC = τ0C + εHτ1C at r = Rp is given by

∣
∣τ0C + εCτ1C

∣
∣
r=Rp

= θ. (2.34)

Using Taylor’s series of τ0C and τ1C about R0p and using τ0C|r=R0p
= θ, we get

R1p =
−τ1C |r=R0p

ψ
. (2.35)

Using (2.22), (2.27), and (2.35) in the two term approximated perturbation series of RP , the
expression for RP can be obtained as

Rp = k2 −
(

1
4

)

BεCR
3
[

σ2(1 −Ω2) + Ω3
(

σ1 −
4σ3/2

1

3
+
σ3

1

3

)]

. (2.36)
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The resistance to flow is given by

Λ =
[Δp f(t)]

Q
, (2.37)

where Δp is the pressure drop. When R1 = R, the present model reduces to the single fluid
Casson model and in such case, the expressions obtained in the present model for velocity
uC, shear stress τC, wall shear stress τw, flow rate Q and plug core radius Rp are in good
agreement with those of Chaturani and Samy [12].

2.2. Two-Fluid Herschel-Bulkley Model

The basic momentum equations governing the flow and the constitutive equations in the
nondimensional form are

εH

(
∂uH

∂t

)

= 4q(z)f(t) −
(

2
r

)(
∂
(
rτH

)

∂r

)

if 0 ≤ r ≤ R1(z), (2.38)

εH

(
∂uN

∂t

)

= 4q(z)f(t) −
(

2
r

)(
∂
(
rτN

)

∂r

)

if R1(z) ≤ r ≤ R(z), (2.39)

τH =
n

√

−
(

1
2

)(
∂uH

∂r

)

+ θ if τH ≥ θ, Rp ≤ r ≤ R1(z), (2.40)

∂uH

∂r
= 0 if τH ≤ θ, 0 ≤ r ≤ Rp, (2.41)

τN = −
(

1
2

)(
∂uN

∂r

)

if R1(z) ≤ r ≤ R(z). (2.42)

The boundary conditions (in dimensionless form) of this model are similar to the
boundary conditions of the two-fluid Casson model given in (2.7). Equations (2.38)–(2.42) are
also solved using perturbation method with the help of the appropriate boundary conditions
as in the case of the two-fluid Casson model. The details of the derivation of the expressions
for shear stress, velocity, flow rate, plug core radius, wall shear stress and resistance to flow
are given in Sankar and Lee [20].

3. Results and Discussion

The objective of the present analysis is to compare and bring out the advantages of the two-
fluid Casson model over the two-fluid Herschel-Bulkley model. It is observed that the typical
value of the power law index n for blood flow models is taken as 0.95 [3]. The value 0.1
is used for the nondimensional yield stress θ in this study. Even though the range of the
amplitude A is from 0 to 1, we have used the value 0.5. The value 0.5 is used for the pulsatile
Reynolds numbers αH, αC and pulsatile Reynolds number ratio α of both the two-fluid models
[11]. The value of the ratio β of central core radius βR0 to the normal artery radius R0 in the
unobstructed artery is generally taken as 0.95 [15]. Following Shukla et al. [21], relations
R1 = βR and δc = βδp are used to estimate R1 and δc. The maximum thickness of the stenosis
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Figure 2: Variation of pressure drop in a time cycle of the two-fluid Casson and H-B models.

in the peripheral region δP is taken as 0.1 [11]. The steady flow rate QS value is taken as
1.0 [12]. It is observed that in the expression of the flow rate of the two-fluid Casson model,
f(t), R and θ are the knowns, and Q and q(z) are the unknowns to be determined. A careful
analysis of the flow rate expression reveals the fact that q(z) is the pressure gradient of the
steady flow. Thus, if steady flow is assumed, then the expression of the flow rate can be solved
for q(z) [3, 12]. For steady flow, the expression for flow rate of the two-fluid Casson model
reduces to

(
R4−4R2R2

1 + 3R4
1

)
y4 +

[
(
R1y

)4−
(

16
7

)√
θ
(√

R1y
)7

+
(

4
3

)

θ
(
R1y

)3−
(

1
21

)

θ4
]

−QSy
3 = 0.

(3.1)

The similar equation of the two-fluid Herschel-Bulkley model is

(
R2 − R2

1

)
⌊

4
(
θ

Ω

)2

+
(
R2 − R2

1

)
⌋

y3 +
[

4
(n + 2)(n + 3)

]

,

{
(n + 2)

(
R1y

)n+3 − n(n + 3)θ
(
R1y

)n+2 +
(
n2 + 2n − 2

)
θn+2} −QSy

3 = 0.

(3.2)

The variation of pressure drop in a time cycle of the two-fluid Herschel-Bulkley (H-B)
and Casson models with θ = δP = 0.1,A = 0.5, and β = 0.95 is shown in Figure 2. It is observed
that for both the two-fluid models the pressure drop increases as time t (in degrees) increases
from 0◦ to 90◦, then it decreases as t increases from 90◦ to 270◦, and again the pressure drop
increases as t increases further from 270◦ to 360◦. The pressure drop is maximum at 90◦ and
minimum at 270◦. It is found that, at any time, the pressure drop of the two-fluid Casson
model is considerably much lower than that of the two-fluid H-B model while all the other
parameters held constant. Figure 3 depicts the variation of the plug core radius with axial
distance of the two-fluid H-B and Casson models with θ = δP = 0.1,A = 0.5, and β = 0.95. It
is noticed that the plug core radius decreases as the axial variable z increases from 4 to 5 and
it increases symmetrically when the axial variable increases from 5 to 6. It is noted that for
a given set of values of the parameters, the plug core radius values of the two-fluid Casson
model are significantly much lower than that of the two-fluid H-B model.
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Figure 3: Variation of plug core radius with axial distance of the two-fluid Casson and Herschel-Bulkley
models.
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Figure 4: Variation of plug flow velocity in a time cycle of the two-fluid Casson and two fluid Herschel-
Bulkley models.

3.1. Plug Flow Velocity

The variation of the plug flow velocity in a time cycle of the two-fluid Casson and H-B models
with θ = δP = 0.1, A = 0.5, α = αH = αC = 0.5, αN = 0.25, β = 0.95, and z = 5 is depicted in
Figure 4. It is seen that the plug flow velocity decreases as time t (in degrees) increases from
0◦ to 90◦, then it increases as t increases from 90◦ to 270◦, and then again it decreases from
270◦ to 360◦. The plug flow velocity is minimum at 90◦ and maximum at 270◦. It is noted that
the plug flow velocity of the two-fluid Casson model is considerably higher than that of the
two-fluid H-B model.

3.2. Wall Shear Stress

Figure 5 shows the variation of the wall shear stress in a time cycle of the two-fluid Casson
and H-B models with θ = δP = 0.1,A = 0.5, α = αH = αC = 0.5, αN = 0.25, β = 0.95, and
z = 5. The behavior of the wall shear stress is just reversed of the two-fluid models, that we
observed in Figure 4 for the plug flow velocity.
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3.3. Velocity Distribution

The velocity distributions of the two-fluid H-B and Casson models with θ = δP = 0.1,A = 0.5,
α = αH = αC = 0.5, αN = 0.25, β = 0.95, and t = 45◦ are sketched in Figure 6. One can notice
the plug flow around the tube axis for both the fluid models. It is further recorded that, for
a given set values of the parameters, a significantly high-magnitude velocity profile is found
in the two-fluid Casson model than in the two-fluid H-B model.

3.4. Resistance to Flow

The variation of resistance to flow with peripheral layer stenosis height of the two-fluid
Casson and H-B models with θ = δP = 0.1,A = 0.5, α = αH = αC = 0.5, αN = 0.25, β = 0.95, and
t = 45◦ is shown in Figure 7. It is observed that the resistance to flow increases nonlinearly
with the increase of the peripheral stenosis height. It is of interest to note that, for any value
of the stenosis height, the resistance to flow of the two-fluid Casson model is considerably
much lower than that of the H-B model.
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Table 1: Estimates of the wall shear stress (τw) and percentage of increase in the wall shear stress (τw) of the
two-fluid Casson model and two-fluid Herschel-Bulkley model over uniform diameter tube for different
stenosis sizes with A = α = αH = 0.5, β = 0.985, θ = 0.1, and t = 45◦.

Stenosis
height
δp

Estimates of the wall shear stress Estimates of the percentage of increase in wall shear stress
Two-fluid

Casson model
Two-fluid H-B

model with n = 0.95
Two-fluid Casson

model
Two-fluid H-B

model with n = 0.95

0.025 1.677 3.0057 5.45 7.43
0.050 1.8058 3.1852 11.42 15.70
0.075 1.9495 3.3826 17.99 24.93
0.100 2.1102 3.6005 25.24 35.25
0.125 2.2907 3.8416 33.26 46.84
0.150 2.4939 4.1093 42.16 59.89

3.5. Quantification of the Wall Shear Stress and Resistance to Flow

The wall shear stress (τw) and resistance to flow (Λ) are physiologically important quantities
which play an important role in the formation of platelets [22]. High wall shear stress not
only damages the vessel wall and causes intimal thickening but also activates platelets, causes
platelet aggregation, and finally results in the formation of thrombus [6]. Estimates of the wall
shear stress (τw) and the percentage of increase in the wall shear stress of the two-fluid Casson
model and two-fluid Herschel-Bulkley model with n = 0.95 for different stenosis heights with
β = 0.985, A = α = αH = 0.5, θ = 0.1 and t = 45◦ are computed in Table 1. It is found that
for the range 0.025–0.15 of the stenosis height, the corresponding range of the percentage
of increase in the estimates of the wall shear stress of the two-fluid Casson model and two-
fluid Herschel-Bulkley model with n = 0.95 are 5.45–42.16 and 7.43–59.89, respectively. One
can notice that both the estimates of the wall shear stress and the percentage of increase in
the wall shear stress of the two-fluid Casson model are significantly lower than those of the
two-fluid Herschel-Bulkley model.

Estimates of the resistance to flow (Λ) and the percentage of increase in the resistance
to flow for the two-fluid Casson model and two-fluid Herschel-Bulkley model with n = 0.95
for different stenosis heights with β = 0.985, A = α = αH = 0.5, θ = 0.1, and t = 45◦ are given in
Table 2. It is observed that, for the range 0.025–0.15 of the stenosis height, the corresponding
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Table 2: Estimates of the resistance and percentage of increase in the resistance to flow (Λ) of the two-fluid
Casson model and two-fluid Herschel-Bulkley model over uniform diameter tube for different stenosis
heights with A = α = αH = 0.5, β = 0.985, θ = 0.1, and t = 45◦.

Stenosis
height
δp

Estimates of the resistance Estimates of the percentage of increase in resistance
Two-fluid Casson

model
Two-fluid H-B

model with n = 0.95
Two-fluid Casson

model
Two-fluid H-B

model with n = 0.95

0.025 2.4795 2.9371 4.16 5.16
0.050 2.6135 3.0650 8.69 10.843
0.075 2.7616 3.2049 13.66 17.12
0.100 2.9258 3.3584 19.10 24.09
0.125 3.10868 3.5275 25.10 31.85
0.150 3.3131 3.7143 31.72 40.52

ranges of the percentage of increase in the estimates of the resistance to flow of the two-
fluid Casson model and two-fluid Herschel-Bulkley model are 4.16–25.10 and 5.16–31.85,
respectively. It is clear that both the estimates of the wall shear stress and the percentage
of increase in the wall shear stress of the two-fluid Casson model are significantly lower than
those of the two-fluid Herschel-Bulkley model. Hence, it is clear that the two-fluid Casson
model layer is useful in the functioning of the diseased arterial system.

4. Conclusion

The pulsatile flow of blood through stenosed arteries is analyzed by assuming blood as a (i)
two-fluid Casson model and (ii) two-fluid Herschel-Bulkley model. It is observed that, for a
given set of values of the parameters, the velocity distribution of the two-fluid Casson model
is considerably higher than that of the two-fluid Herschel-Bulkley fluid model. Further, it
is noticed that the pressure drop, plug core radius, wall shear stress, and the resistance to
flow of the two-fluid Casson model are significantly much lower than those of the two-fluid
Herschel-Bulkley model.

It is of interest to note that the estimates of the wall shear stress and resistance to flow
of the two-fluid Casson model are considerably lower than those of the two-fluid Herschel-
Bulkley model. It is also worthy to note that the estimates of the percentage of increase in
the wall shear stress and the percentage of increase in the resistance to flow of the two-
fluid Casson model are considerably lower than those of the two-fluid Herschel-Bulkley
model. Further, it is observed that the difference between the estimates of the wall shear
stress, resistance to flow, percentage of increase in the estimates of the wall shear stress, and
resistance to flow of the two-fluid Casson model and two-fluid Herschel-bulkley model is
substantial. Hence, the two-fluid Casson model would be more useful in the mathematical
analysis of the diseased arterial system.

References

[1] P. K. Mandal, “An unsteady analysis of non-Newtonian blood flow through tapered arteries with a
stenosis,” International Journal of Non-Linear Mechanics, vol. 40, no. 1, pp. 151–164, 2005.

[2] I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Y. Xu, “MRI and CFD studies of
pulsatile flow in healthy and stenosed carotid bifurcation models,” Journal of Biomechanics, vol. 37,
no. 5, pp. 679–687, 2004.



Boundary Value Problems 15

[3] D. S. Sankar and K. Hemalatha, “Pulsatile flow of Herschel-Bulkey fluid through stenosed arteries—a
mathematical model,” International Journal of Non-Linear Mechanics, vol. 41, no. 8, pp. 979–990, 2006.

[4] M. S. Moayeri and G. R. Zendehbudi, “Effects of elastic property of the wall on flow characteristics
through arterial stenoses,” Journal of Biomechanics, vol. 36, no. 4, pp. 525–535, 2003.

[5] S. Chakravarty and P. K. Mandal, “Two-dimensional blood flow through tapered arteries under
stenotic conditions,” International Journal of Non-Linear Mechanics, vol. 35, no. 5, pp. 779–793, 2000.

[6] G.-T. Liu, X.-J. Wang, B.-Q. Ai, and L.-G. Liu, “Numerical study of pulsating flow through a tapered
artery with stenosis,” Chinese Journal of Physics, vol. 42, no. 4, pp. 401–409, 2004.

[7] Q. Long, X. Y. Xu, K. V. Ramnarine, and P. Hoskins, “Numerical investigation of physiologically
realistic pulsatile flow through arterial stenosis,” Journal of Biomechanics, vol. 34, no. 10, pp. 1229–1242,
2001.

[8] R. K. Dash, G. Jayaraman, and K. N. Mehta, “Flow in a catheterized curved artery with stenosis,”
Journal of Biomechanics, vol. 32, no. 1, pp. 49–61, 1999.

[9] C. Tu and M. Deville, “Pulsatile flow of non-Newtonian fluids through arterial stenoses,” Journal of
Biomechanics, vol. 29, no. 7, pp. 899–908, 1996.

[10] S. Chien, “Hemorheology in clinical medicine,” Recent Advances in Cardiovascular Diseases, vol. 2, pp.
21–26, 1981.

[11] V. P. Srivastava and M. Saxena, “Two-layered model of Casson fluid flow through stenotic blood
vessels: applications to the cardiovascular system,” Journal of Biomechanics, vol. 27, no. 7, pp. 921–928,
1994.

[12] P. Chaturani and R. P. Samy, “Pulsatile flow of Casson’s fluid through stenosed arteries with
applications to blood flow,” Biorheology, vol. 23, no. 5, pp. 499–511, 1986.

[13] G. Bugliarello and J. Sevilla, “Velocity distribution and other characteristics of steady and pulsatile
blood flow in fine glass tubes,” Biorheology, vol. 7, no. 2, pp. 85–107, 1970.

[14] G. R. Cokelet, The Rheology of Human Blood, Prentice-Hall, Englewood Cliffs, NJ, USA, 1972.
[15] J. N. Kapur, Mathematical Models in Biology and Medicine, Affiliated East West Press, New Delhi, India,

1992.
[16] N. Iida, “Influence of plasma layer on steady blood flow in micro vessels,” Japanese Journal of Applied

Physics, vol. 17, no. 1, pp. 203–214, 1978.
[17] G. W. Scott-Blair, “An equation for the flow of blood, plasma and serum through glass capillaries,”

Nature, vol. 183, no. 4661, pp. 613–614, 1959.
[18] A. L. Copley, “Apparent viscosity and wall adherence of blood systems,” in Flow Properties of Blood

and Other Biological Systems, A. L. Copley and G. Stainsby, Eds., Pergamon Press, Oxford, UK, 1960.
[19] E. W. Merrill, A. M. Benis, E. R. Gilliland, T. K. Sherwood, and E. W. Salzman, “Pressure-flow relations

of human blood in hollow fibers at low flow rates,” Journal of Applied Physiology, vol. 20, no. 5, pp. 954–
967, 1965.

[20] D. S. Sankar and U. Lee, “Two-phase non-linear model for the flow through stenosed blood vessels,”
Journal of Mechanical Science and Technology, vol. 21, no. 4, pp. 678–689, 2007.

[21] J. B. Shukla, R. S. Parihar, and S. P. Gupta, “Effects of peripheral layer viscosity on blood flow through
the artery with mild stenosis,” Bulletin of Mathematical Biology, vol. 42, no. 6, pp. 797–805, 1980.

[22] T. Karino and H. L. Goldsmith, “Flow behavior of blood cells and rigid spheres in annular vortex,”
Philosophical Transactions of the Royal Society of London. Series B, vol. 279, no. 967, pp. 413–445, 1977.


	1. Introduction
	2. Mathematical Formulation
	2.1. Two-Fluid Casson Model
	2.1.1. Governing Equations
	2.1.2. Method of Solution

	2.2. Two-Fluid Herschel-Bulkley Model

	3. Results and Discussion
	3.1. Plug Flow Velocity
	3.2. Wall Shear Stress
	3.3. Velocity Distribution
	3.4. Resistance to Flow
	3.5. Quantification of the Wall Shear Stress and Resistance to Flow

	4. Conclusion
	References

