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1. Introduction

The theory of fractional differential equations has been emerging as an important area
of investigation in recent years. Let us mention that this theory has many applications
in describing numerous events and problems of the real world. For example, fractional
differential equations are often applicable in engineering, physics, chemistry, and biology.
See Hilfer [1], Glockle and Nonnenmacher [2], Metzler et al. [3], Podlubny [4], Gaul et al.
[5], among others. Fractional differential equations are also often an object of mathematical
investigations; see the papers of Agarwal et al. [6], Ahmad and Nieto [7], Ahmad and Otero-
Espinar [8], Belarbi et al. [9], Belmekki et al [10], Benchohra et al. [11–13], Chang and Nieto
[14], Daftardar-Gejji and Bhalekar [15], Figueiredo Camargo et al. [16], and the monographs
of Kilbas et al. [17] and Podlubny [4].

Applied problems require definitions of fractional derivatives allowing the utilization
of physically interpretable initial conditions, which contain y(0), y

′
(0), and so forth. the same

requirements of boundary conditions. Caputo’s fractional derivative satisfies these demands.
For more details on the geometric and physical interpretation for fractional derivatives of
both the Riemann-Liouville and Caputo types, see [18, 19].
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In this paper we investigate the existence of solutions for boundary value problems
with fractional order differential equations and nonlinear integral conditions of the form

cDry (t) = f
(
t, y (t)

)
, for each t ∈ J = [0, T] ,

y (0) − y
′
(0) =

∫T

0
g
(
s, y (s)

)
ds,

y (T) + y
′
(T) =

∫T

0
h
(
s, y (s)

)
ds,

(1.1)

where cDr, 1 < r ≤ 2 is the Caputo fractional derivative, f , g, and h : J × E → E are given
functions satisfying some assumptions that will be specified later, and E is a Banach space
with norm ‖ · ‖.

Boundary value problems with integral boundary conditions constitute a very
interesting and important class of problems. They include two, three, multipoint, and
nonlocal boundary value problems as special cases. Integral boundary conditions are often
encountered in various applications; it is worthwhile mentioning the applications of those
conditions in the study of population dynamics [20] and cellular systems [21].

Moreover, boundary value problems with integral boundary conditions have been
studied by a number of authors such as, for instance, Arara and Benchohra [22], Benchohra
et al. [23, 24], Infante [25], Peciulyte et al. [26], and the references therein.

In our investigation we apply the method associated with the technique of measures
of noncompactness and the fixed point theorem of Mönch type. This technique was mainly
initiated in the monograph of Bana and Goebel [27] and subsequently developed and used in
many papers; see, for example, Bana and Sadarangoni [28], Guo et al. [29], Lakshmikantham
and Leela [30], Mönch [31], and Szufla [32].

2. Preliminaries

In this section, we present some definitions and auxiliary results which will be needed in the
sequel.

Denote by C(J, E) the Banach space of continuous functions J → E, with the usual
supremum norm

∥∥y
∥∥
∞ = sup

{‖y (t) ‖, t ∈ J
}
. (2.1)

Let L1(J, E) be the Banach space of measurable functions y : J → E which are Bochner
integrable, equipped with the norm

∥∥y
∥∥
L1 =

∫T

0
‖y (s) ‖ds. (2.2)
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Let L∞(J, E) be the Banach space of measurable functions y : J → E which are bounded,
equipped with the norm

∥
∥y

∥
∥
L∞ = inf

{
c > 0 : ‖y (t) ‖ ≤ c, a.e. t ∈ J

}
. (2.3)

Let AC1(J, E) be the space of functions y : J → E, whose first derivative is absolutely
continuous.

Moreover, for a given set V of functions v : J → E let us denote by

V (t) = {v (t) , v ∈ V } , t ∈ J,

V (J) = {v (t) : v ∈ V } , t ∈ J.
(2.4)

Now let us recall some fundamental facts of the notion of Kuratowski measure of
noncompactness.

Definition 2.1 (see [27]). Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] defined by

α (B) = inf
{
ε > 0 : B ⊆

⋃n

i=1
Bi and diam (Bi) ≤ ε

}
; here B ∈ ΩE. (2.5)

Properties

The Kuratowski measure of noncompactness satisfies some properties (for more details see
[27]).

(a) α(B) = 0 ⇔ B is compact (B is relatively compact).

(b) α(B) = α(B).

(c) A ⊆ B ⇒ α(A) ≤ α(B).

(d) α(A + B) ≤ α(A) + α(B).

(e) α(cB) = |c|α(B); c ∈ R.

(f) α(coB) = α(B).

Here B and coB denote the closure and the convex hull of the bounded set B, respectively.
For completeness we recall the definition of Caputo derivative of fractional order.

Definition 2.2 (see [17]). The fractional order integral of the function h ∈ L1([a, b]) of order
r ∈ R+; is defined by

Irah (t) =
1

Γ (r)

∫ t

a

h (s)

(t − s)1−r
dt, (2.6)
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where Γ is the gamma function. When a = 0, we write Irh(t) = [h ∗ ϕr](t),where

ϕr (t) =
tr−1

Γ (r)
for t > 0, (2.7)

ϕr(t) = 0 for t ≤ 0, and ϕr → δ(t) as r → 0.

Here δ is the delta function.

Definition 2.3 (see [17]). For a function h given on the interval [a, b], the Caputo fractional-
order derivative of h, of order r > 0, is defined by

cDr
a+h (t) =

1
Γ (n − r)

∫ t

a

h(n) (s)ds

(t − s)1−n+r
. (2.8)

Here n = [r] + 1 and [r] denotes the integer part of r.

Definition 2.4. A map f : J × E → E is said to be Carathéodory if

(i) t �→ f(t, u) is measurable for each u ∈ E;

(ii) u �→ f(t, u) is continuous for almost each t ∈ J.

For our purpose we will only need the following fixed point theorem and the important
Lemma.

Theorem 2.5 (see [31, 33]). Let D be a bounded, closed and convex subset of a Banach space such
that 0 ∈ D, and letN be a continuous mapping of D into itself. If the implication

V = coN (V ) or V = N (V ) ∪ {0} =⇒ α (V ) = 0 (2.9)

holds for every subset V of D, thenN has a fixed point.

Lemma 2.6 (see [32]). Let D be a bounded, closed, and convex subset of the Banach space C(J, E),
G a continuous function on J × J, and a function f : J ×E → E satisfies the Carathéodory conditions,
and there exists p ∈ L1(J,R+) such that for each t ∈ J and each bounded set B ⊂ E one has

lim
k→ 0+

α
(
f (Jt,k × B)

) ≤ p (t)α (B) ; where Jt,k = [t − k, t] ∩ J. (2.10)

If V is an equicontinuous subset of D, then

α

({∫

J

G (s, t) f
(
s, y (s)

)
ds : y ∈ V

})

≤
∫

J

‖G (t, s)‖ p (s)α (V (s))ds. (2.11)
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3. Existence of Solutions

Let us start by defining what we mean by a solution of the problem (1.1).

Definition 3.1. A function y ∈ AC1(J, E) is said to be a solution of (1.1) if it satisfies (1.1).

Let σ, ρ1, ρ2 : J → E be continuous functions and consider the linear boundary value
problem

cDry (t) = σ (t) , t ∈ J,

y (0) − y
′
(0) =

∫T

0
ρ1 (s)ds,

y (T) + y
′
(T) =

∫T

0
ρ2 (s)ds.

(3.1)

Lemma 3.2 (see [11]). Let 1 < r ≤ 2 and let σ, ρ1, ρ2 : J → E be continuous. A function y is a
solution of the fractional integral equation

y (t) = P (t) +
∫T

0
G (t, s)σ (s)ds (3.2)

with

P (t) =
(T + 1 − t)

T + 2

∫T

0
ρ1 (s)ds +

(t + 1)
T + 2

∫T

0
ρ2 (s)ds, (3.3)

G (t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t − s)r−1

Γ (r)
− (1 + t) (T − s)r−1

(T + 2) Γ (r)
− (1 + t) (T − s)r−2

(T + 2) Γ (r − 1)
, 0 ≤ s ≤ t,

− (1 + t) (T − s)r−1

(T + 2) Γ (r)
− (1 + t) (T − s)r−2

(T + 2) Γ (r − 1)
, t ≤ s ≤ T,

(3.4)

if and only if y is a solution of the fractional boundary value problem (3.1).

Remark 3.3. It is clear that the function t �→ ∫T
0 |G(t, s)|ds is continuous on J , and hence is

bounded. Let

G̃ := sup

{∫T

0
|G (t, s)|ds, t ∈ J

}

. (3.5)
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For the forthcoming analysis, we introduce the following assumptions

(H1) The functions f, g, h : J × E → E satisfy the Carathéodory conditions.

(H2) There exist pf , pg, ph ∈ L∞(J,R+), such that

‖f (
t, y

) ‖ ≤ pf (t) ‖y‖ for a.e. t ∈ J and each y ∈ E,

‖g (
t, y

) ‖ ≤ pg (t) ‖y‖, for a.e. t ∈ J and each y ∈ E,

‖h (t, y) ‖ ≤ ph (t) ‖y‖, for a.e. t ∈ J and each y ∈ E.

(3.6)

(H3) For almost each t ∈ J and each bounded set B ⊂ E we have

lim
k→ 0+

α
(
f (Jt,k × B)

) ≤ pf (t)α (B) ,

lim
k→ 0+

α
(
g (Jt,k × B)

) ≤ pg (t)α (B) ,

lim
k→ 0+

α (h (Jt,k × B)) ≤ ph (t)α (B) .

(3.7)

Theorem 3.4. Assume that assumptions (H1)–(H3) hold. If

T (T + 1)
T + 2

[∥∥pg
∥∥
L∞ +

∥∥ph
∥∥
L∞

]
+ G̃

∥∥pf
∥∥
L∞ < 1, (3.8)

then the boundary value problem (1.1) has at least one solution.

Proof. We transform the problem (1.1) into a fixed point problem by defining an operator
N : C(J, E) → C(J, E) as

(
Ny

)
(t) = Py (t) +

∫T

0
G (t, s) f

(
s, y (s)

)
ds, (3.9)

where

Py (t) =
(T + 1 − t)

T + 2

∫T

0
g
(
s, y (s)

)
ds +

(t + 1)
T + 2

∫T

0
h
(
s, y (s)

)
ds, (3.10)

and the function G(t, s) is given by (3.4). Clearly, the fixed points of the operator N are
solution of the problem (1.1). Let R > 0 and consider the set

DR =
{
y ∈ C (J, E) :

∥∥y
∥∥
∞ ≤ R

}
. (3.11)

Clearly, the subset DR is closed, bounded, and convex. We will show that N satisfies the
assumptions of Theorem 2.5. The proof will be given in three steps.
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Step 1. N is continuous.
Let {yn} be a sequence such that yn → y in C(J, E). Then, for each t ∈ J ,

∣
∣(Nyn

)
(t) − (

Ny
)
(t)

∣
∣ ≤ T + 1

T + 2

∫T

0

∥
∥g

(
s, yn (s)

) − g
(
s, y (s)

)∥∥ds

+
T + 1
T + 2

∫T

0

∥
∥h

(
s, yn (s)

) − h
(
s, y (s)

)∥∥ds

+
∫T

0
|G (t, s)|∥∥f (

s, yn (s)
) − f

(
s, y (s)

)∥∥ds.

(3.12)

Let ρ > 0 be such that

∥∥yn

∥∥
∞ ≤ ρ,

∥∥y
∥∥
∞ ≤ ρ. (3.13)

By (H2) we have

∥∥g
(
s, yn (s)

) − g
(
s, y (s)

)∥∥ ≤ 2ρpg (s) := σ1 (s) ; σ1 ∈ L1 (J,R+) ,
∥∥h

(
s, yn (s)

) − h
(
s, y (s)

)∥∥ ≤ 2ρph (s) := σ2 (s) ; σ2 ∈ L1 (J,R+) ,

|G (·, s)|∥∥f (
s, yn (s)

) − f
(
s, y (s)

)∥∥ ≤ 2ρ |G (·, s)| pf (s) := σ3 (s) ; σ3 ∈ L1 (J,R+) .

(3.14)

Since f, g, and h are Carathéodory functions, the Lebesgue dominated convergence
theorem implies that

∥∥N(yn) −N(y)
∥∥
∞ −→ 0 as n −→ ∞. (3.15)

Step 2. N maps DR into itself.
For each y ∈ DR, by (H2) and (3.8) we have for each t ∈ J

‖N (
y
)
(t) ‖ ≤ T + 1

T + 2

∫T

0

∥∥g
(
s, y (s)

)∥∥ds +
T + 1
T + 2

∫T

0

∥∥h
(
s, y (s)

)∥∥ds

+
∫T

0
|G (t, s)|∥∥f (

s, y (s)
)∥∥ds

≤ R

[
T (T + 1)
T + 2

∥∥pg
∥∥
L∞ +

T (T + 1)
T + 2

∥∥ph
∥∥
L∞ + G̃

∥∥pf
∥∥
L∞

]

< R.

(3.16)

Step 3. N(DR) is bounded and equicontinuous.
By Step 2, it is obvious that N(DR) ⊂ C(J, E) is bounded.
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For the equicontinuity of N(DR). Let t1, t2 ∈ J , t1 < t2 and y ∈ DR. Then

‖ (Ny
)
(t2) −

(
Ny

)
(t1) ‖ =

∥∥
∥
∥
∥
− t2 − t1
T + 2

∫T

0
g
(
s, y (s)

)
ds +

t2 − t1
T + 2

∫T

0
h
(
s, y (s)

)
ds

+
∫T

0
[G (t2, s) −G (t1, s)] f

(
s, y (s)

)
ds

∥
∥
∥
∥∥

≤ t2 − t1
T + 2

TR
[∥
∥pg

∥
∥
L∞ +

∥
∥ph

∥
∥
L∞

]

+ R
∥
∥pf

∥
∥
L∞

∫T

0
|G (t2, s) −G (t1, s)|ds.

(3.17)

As t1 → t2, the right-hand side of the above inequality tends to zero.
Now let V be a subset of DR such that V ⊂ co(N(V ) ∪ {0}).

V is bounded and equicontinuous, and therefore the function v → v(t) = α(V (t)) is
continuous on J . By (H3), Lemma 2.6, and the properties of the measure α we have for each
t ∈ J

v (t) ≤ α (N (V ) (t) ∪ {0})
≤ α (N (V ) (t))

≤
∫T

0

∣∣∣∣
T + 1 − t

T + 2

∣∣∣∣ pg (s)α (V (s))ds +
∫T

0

∣∣∣∣
t + 1
T + 2

∣∣∣∣ ph (s)α (V (s))ds

+
∫T

0
|G (t, s)| pf (s)α (V (s))ds

≤ T (T + 1)
T + 2

∥∥pg
∥∥
L∞v (s) +

T (T + 1)
T + 2

∥∥ph
∥∥
L∞v (s) + G̃

∥∥pf
∥∥
L∞v (s)

≤ ‖v‖∞
[
T (T + 1)
T + 2

[∥∥pg
∥
∥
L∞ +

∥∥ph
∥
∥
L∞

]
+ G̃

∥∥pf
∥
∥
L∞

]
.

(3.18)

This means that

‖v‖∞
(
1 −

[
T (T + 1)
T + 2

[∥∥pg
∥∥
L∞ +

∥∥ph
∥∥
L∞

]
+ G̃

∥∥pf
∥∥
L∞

])
≤ 0. (3.19)

By (3.8) it follows that ‖v‖∞ = 0, that is, v(t) = 0 for each t ∈ J , and then V (t) is relatively
compact in E. In view of the Ascoli-Arzelà theorem, V is relatively compact in DR. Applying
now Theorem 2.5 we conclude that N has a fixed point which is a solution of the problem
(1.1).
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4. An Example

In this section we give an example to illustrate the usefulness of our main results. Let us
consider the following fractional boundary value problem:

cDry (t) =
2

19 + et
∣
∣y (t)

∣
∣ , t ∈ J := [0, 1] , 1 < r ≤ 2,

y (0) − y
′
(0) =

∫1

0

1
5 + e5s

∣∣y (s)
∣∣ds,

y (1) + y
′
(1) =

∫1

0

1
3 + e3s

∣
∣y (s)

∣
∣ds.

(4.1)

Set

f (t, x) =
2

19 + et
x, (t, x) ∈ J × [0,∞) ,

g (t, x) =
1

5 + e5t
x, (t, x) ∈ [0, 1] × [0,∞) ,

h (t, x) =
1

3 + e3t
x, (t, x) ∈ [0, 1] × [0,∞) .

(4.2)

Clearly, conditions (H1),(H2) hold with

pf (t) =
2

19 + et
, pg (t) =

1
5 + e5t

, ph (t) =
1

3 + e3t
. (4.3)

From (3.4) the function G is given by

G (t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t − s)r−1

Γ (r)
− (1 + t) (1 − s)r−1

3Γ (r)
− (1 + t) (1 − s)r−2

3Γ (r − 1)
, 0 ≤ s ≤ t,

− (1 + t) (1 − s)r−1

3Γ (r)
− (1 + t) (1 − s)r−2

3Γ (r − 1)
, t ≤ s ≤ 1.

(4.4)

From (4.4), we have

∫1

0
G (t, s)ds =

∫ t

0
G (t, s)ds +

∫1

t

G (t, s)ds

=
tr

Γ (r + 1)
+
(1 + t) (1 − t)r

3Γ (r + 1)
− (1 + t)
3Γ (r + 1)

+
(1 + t) (1 − t)r−1

3Γ (r)
− (1 + t)

3Γ (r)

− (1 + t) (1 − t)r

3Γ (r + 1)
− (1 + t) (1 − t)r−1

3Γ (r)
.

(4.5)
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A simple computation gives

G∗ <
3

Γ (r + 1)
+

2
Γ (r)

. (4.6)

Condition (3.8) is satisfied with T = 1. Indeed

T (T + 1)
T + 2

[∥
∥pg

∥
∥
L∞ +

∥
∥ph

∥
∥
L∞

]
+ G̃

∥
∥pf

∥
∥
L∞ <

2
3

[
1
6
+
1
4

]
+

3
10Γ (r + 1)

+
2

10Γ (r)

=
5
18

+
3

10Γ (r + 1)
+

1
5Γ (r)

< 1,

(4.7)

which is satisfied for each r ∈ (1, 2]. Then by Theorem 3.4 the problem (4.1) has a solution on
[0, 1].
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