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1. Introduction

The problem of contrast structures is a singularly perturbed problem whose solutions with
both internal transition layers and boundary layers. In recent years, the study of contrast
structures is one of the hot research topics in the study of singular perturbation theory. In
western society, most works on internal layer solutions concentrate on singularly perturbed
parabolic systems by geometric method (see [1] and the references therein). In Russia, the
works on singularly perturbed ordinary equations are concerned by boundary function
method [2–5]. One of the basic difficulties for such a problem is unknown ofwhere an internal
transition layer is in advance.

Butuzov and Vasil’eva initiated the concept of contrast structures in 1987 [6] and
studied the following boundary value problem of a second-order semilinear equation with a
step-like contrast structure, which is called a monolayer solution in [1]

μ2y′′ = F
(
y, t

)
, 0 ≤ t ≤ 1,

y
(
0, μ

)
= y0, y

(
1, μ

)
= y1,

(1.1)

where μ > 0 is a small parameter and F has a desired smooth scalar function on its arguments.



2 Boundary Value Problems

Suppose that the reduced equation F(y, t) = 0 has two isolated solutions y = ϕi(t) (i =
1, 2) on 0 ≤ t ≤ 1, which satisfy the following condition:

ϕ1(t) < ϕ2(t), Fy

(
ϕi(t), t

)
> 0, i = 1, 2. (1.2)

The condition (1.2) indicates that there exist two saddle equilibria Mi(ϕi(t), 0) (i =
1, 2) in the phase plane (ỹ, z̃) of the associated equations given by

dỹ

dτ
= z̃,

dz̃

dτ
= F

(
ỹ, t

)
, 0 < t < 1, (1.3)

where t is fixed and −∞ < τ < +∞.
It is shown in [6] that the existence of an internal transition layer for the problem (1.1)

is closely related to the existence of a heteroclinic orbit connectingM1 andM2. The principal
value t0 of an internal transition time t∗ is determined by an equation as follows:

∫ϕ2(t0)

ϕ1(t0)
F
(
y, t0

)
dy = 0. (1.4)

In [7], Vasil’eva further studied the existence of step-like contrast structures for a class
of singularly perturbed equations given by

μ
du

dt
= f(u, v, t),

μ
dv

dt
= g(u, v, t), 0 ≤ t ≤ 1,

(1.5)

where f and g are scalar functions. For (1.5), we may impose either a first class of boundary
condition or a second class of boundary condition.

Suppose that there exist two solutions {ϕi(t), ψi(t)} (i = 1, 2) of the reduced equations
f(u, v, t) = 0; g(u, v, t) = 0, and Mi(ϕi(t), ψi(t)) (i = 1, 2) are two saddle equilibria in the
phase plane (ũ, ṽ) of the associated equations given by

dũ

dτ
= f

(
ũ, ṽ, t

)
;

dṽ

dτ
= f

(
ũ, ṽ, t

)
,

(1.6)

where t is fixed with 0 < t < 1. This indicates that the eigenvalues λik(t) (i, k = 1, 2) of the
Jacobian matrix

A
(
t
)
=

(
fũ fṽ

gũ gṽ

)

ũ=ϕi(t), ṽ=ψi(t)

(1.7)
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satisfy the condition as follows:

either λi1
(
t
)
> 0, λi2

(
t
)
< 0, or λi1

(
t
)
< 0, λi2

(
t
)
> 0. (1.8)

If (1.6) is a Hamilton equation, that is, gũ = −fṽ, it implies that gdũ−fdṽ = dH(ũ, ṽ, t).
Then, the equation to determine t0 is given by

H
(
ϕ1(t0), ψ1(t0), t0

)
= H

(
ϕ2(t0), ψ2(t0), t0

)
. (1.9)

Geometrically, (1.9) is also a condition for the existence of a heteroclinic orbit connecting
M1(ϕ1(t), ψ1(t)) and M2(ϕ2(t), ψ2(t)).

Unfortunately, for a high dimensional singularly perturbed system, we cannot always
find such an equation like (1.9) to determine t0 at which there exists a heteroclinic orbit. This is
one difficulty to further study the problem on step-like contrast structures. On the other hand,
we know that the existence of a spike-like or a step-like contrast structure of high dimension
is closely related to the existence of a homoclinic or heteroclinic orbit in its corresponding
phase space, respectively. However, the existence of a homoclinic or heteroclinic orbit in high
dimension space and how to construct such an orbit are themselves open in general in the
qualitative analysis (geometric method) theory [8–10]. To explore these high dimensional
contrast structure problems, we just start from some particular class of singularly perturbed
system and are trying to develop some approach to construct a desired heteroclinic orbit
by using a first integral method for such a class of the system and determine its internal
transition time t0.

2. Problem Formulation

We consider a class of semilinear singularly perturbed system as follows:

μ2y′′
1 = f1

(
y1, y2, . . . , yn, t

)
;

μ2y′′
2 = f2

(
y1, y2, . . . , yn, t

)
;

...

μ2y′′
n = fn

(
y1, y2, . . . , yn, t

)
,

(2.1)

with a first class of boundary condition given by

yk

(
0, μ

)
= y0

k, k = 1, 2, . . . , n;

y′
j

(
0, μ

)
= z0j j = 1, 2, . . . , n − 1;

y′
n

(
1, μ

)
= z1n,

(2.2)

where μ > 0 is a small parameter.
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The class of system (2.1) in question has a strong application background in
engineering. For example, in the study of smart materials of variated current of liquid [11, 12],
its math model is a kind of such a system like (2.1), where the small parameter μ indicates a
particle. The given boundary condition (2.2) corresponds the stability condition [H3] listed
later to ensure that there exists a solution for the problem in question.

For our convenience, the system (2.1) can also be written in the following equivalent
form,

μy′
1 = z1;

μy′
2 = z2;

...

μy′
n = zn;

μz′1 = f1
(
y1, y2, . . . , yn, t

)
;

μz′2 = f2
(
y1, y2, . . . , yn, t

)
;

...

μz′n = fn
(
y1, y2, . . . , yn, t

)
.

(2.3)

Then, the corresponding boundary condition (2.2) is now written as

yk

(
0, μ

)
= y0

k, zj
(
0, μ

)
= μz0j , zn

(
1, μ

)
= μz1n; k = 1, 2, . . . , n, j = 1, 2, . . . , n − 1. (2.4)

The following assumptions are fundamental in theory for the problem in question.
[H1] Suppose that the functions fi (i = 1, 2, . . . , n) are sufficiently smooth on the

domain D = {(y1, y2, . . . , yn, t) | |yi| ≤ li, 0 ≤ t ≤ 1, i = 1, 2, . . . , n}, where li > 0 are real
numbers.

[H2] Suppose that the reduced system of (2.1) given by

f1
(
y1, y2, . . . , yn, t

)
= 0;

f2
(
y1, y2, . . . , yn, t

)
= 0;

...

fn
(
y1, y2, . . . , yn, t

)
= 0

(2.5)

has two isolated solutions on D:

{
y1 = a1

1(t), y2 = a1
2(t), . . . , yn = a1

n(t)
}
,

{
y1 = a2

1(t), y2 = a2
2(t), . . . , yn = a2

n(t)
}
. (2.6)
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[H3] Suppose that the characteristic equation of the system (2.3) given by

∣
∣
∣
∣∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−λ · · · 0 1 · · · 0

...
. . .

...
...

. . .
...

0 · · · −λ 0 · · · 1

f1y1 · · · f1yn −λ . . .
...

...
. . .

...
...

. . . 0

fny1 · · · fnyn 0 · · · −λ

∣
∣
∣
∣∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
y1=ai1(t),y2=ai2(t),...,yn=ain(t)

= 0; (i = 1, 2) (2.7)

has 2n real valued solutions λk(t), k = 1, 2, . . . , 2n, where

Re λk(t) < 0, k = 1, 2, . . . , 2n − 1;

Re λ2n(t) > 0.
(2.8)

Remark 2.1. [H3] is called as a stability condition. For a more general stability condition given
by

Re λ1(t) < 0, . . . ,Re λk(t) < 0;

Re λk+1(t) > 0, . . . ,Re λ2n(t) > 0, 1 < k < 2n,
(2.9)

it will be studied in the other paper because of more complicated dynamic performance
presented.

Under the assumption of [H3], there may exist a solution y(t, μ) with only two
boundary layers that occurred at t = 0 and t = 1, for which the detailed discussion has
been given by [13, Theorem 4.2], or it may consults [5, Theorem 2.4, page 49]. We are only
interested in a solution y(t, μ) with a step-like contrast structure in this paper. That is, there
exists t∗ ∈ (0, 1) such that the following limit holds:

lim
μ→ 0

y
(
t, μ

)
=

⎧
⎨

⎩

a1(t), 0 < t < t∗,

a2(t), t∗ < t < 1.
(2.10)

We regard the solution y(t, μ) defined above with such a step-like contrast structure as
being smoothly connected by two pure boundary solutions: y(−)(t, μ), 0 ≤ t < t∗ and y(+)(t, μ),
t∗ < t ≤ 1. That is,

y(−)(t∗, μ
)
= y(+)(t∗, μ

)
; z(−)

(
t∗, μ

)
= z(+)

(
t∗, μ

)
. (2.11)
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The assumption [H3] ensures that the corresponding associated system given by

dỹk

dτ
= z̃k, 0 < t < 1,

dz̃k
dτ

= fk
(
ỹ1, ỹ2, . . . , ỹn, t

)
, k = 1, 2, . . . , n,

(2.12)

has two equilibria Mi(ai
1(t), a

i
2(t), . . . , a

i
n(t), 0, . . . , 0) (i = 1, 2), where t is fixed. They are both

hyperbolic saddle points. From [13, Theorem 4.2] (or [5, Theorem 2.4]), it yields that there
exists a stable manifold Ws(Mi) of 2n − 1 dimensions and an unstable manifold Wu(Mi) of
one-dimension in a neighborhood ofMi. To get a heteroclinic orbit connectingM1 andM2 in
the corresponding phase space, we need some more assumptions as follows.

[H4] Suppose that the associated system (2.12) has a first integral

Φ
(
ỹ1, . . . , ỹn, z̃1, . . . , z̃n, t

)
= C, (2.13)

where C is an arbitrary constant and Φ is a smooth function on its arguments.
Then, the first integral passing through Mi (i = 1, 2) can be represented by

Φ
(
ỹ1, . . . , ỹn, z̃1, . . . , z̃n, t

)
= Φ

(
Mi, t

)
. (2.14)

[H5] Suppose that (2.14) is solvable with respect to z̃n, which is denoted by

z̃n = h
(
ỹ1, . . . , ỹn, z̃1, . . . , z̃n−1, t,Mi

)
, (i = 1, 2). (2.15)

Let z̃(−)n = h(−)(ỹ(−)
1 , . . . , ỹ

(−)
n , z̃

(−)
1 , . . . , z̃

(−)
n−1, t,M1) and z̃

(+)
n = h(+)(ỹ(+)

1 , . . . , ỹ
(+)
n , z̃

(+)
1 , . . .,

z̃
(+)
n−1, t,M2) be the parametric expressions of orbit passing through the hyperbolic saddle

points M1 and M2, respectively.
Corresponding to the given boundary condition (2.2), we consider the following initial

value relation at τ = 0

ỹ
(−)
k (0) = ỹ

(+)
k (0), k = 1, . . . , n; z̃

(−)
j (0) = z̃

(+)
j (0), j = 1, . . . , n − 1. (2.16)

Let

H
(
t
)
= h(−) − h(+) = 0, (2.17)

where

h(−) = h(−)
(
ỹ
(−)
1 (0), . . . , ỹ(−)

n (0), z̃(−)1 (0), . . . , z̃(−)n−1(0), t,M1

)
;

h(+) = h(+)
(
ỹ
(+)
1 (0), . . . , ỹ(+)

n (0), z̃(+)1 (0), . . . , z̃(+)n−1(0), t,M2

)
.

(2.18)
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[H6] Suppose that (2.17) is solvable with respect to t and it yields a solution t = t0.
That is, H(t0) = 0 and H ′(t0)/= 0.

Remark 2.2. It is easy to see from (2.14) and (2.17) that the necessary condition of the existence
of a heteroclinic orbit connecting M1 and M2 can also be expressed as “the equation

Φ
(
M1, t

)
= Φ

(
M2, t

)
(2.19)

is solvable with respect to t = t0.”

3. Construction of Asymptotic Solution

We seek an asymptotic solution of the problem (2.1)-(2.2) of the form

yk

(
t, μ

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

l=0

μl
[
y
(−)
kl (t) + Πlyk(τ0) +Q

(−)
l

yk(τ)
]
, 0 ≤ t ≤ t∗;

∞∑

l=0

μl
[
y
(+)
kl (t) + Rlyk(τ1) +Q

(+)
l yk(τ)

]
, t∗ ≤ t ≤ 1,

zk
(
t, μ

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

l=0

μl
[
z
(−)
kl (t) + Πlzk(τ0) +Q

(−)
l zk(τ)

]
, 0 ≤ t ≤ t∗;

∞∑

l=0

μl
[
z
(+)
kl (t) + Rlzk(τ1) +Q

(+)
l

zk(τ)
]
, t∗ ≤ t ≤ 1,

(3.1)

where τ0 = t/μ, τ = (t − t∗)/μ, τ1 = (t − 1)/μ; and for k = 1, 2, . . . , n, y(∓)
kl (t) (0 < t < 1)

are coefficients of regular terms; Πlyk(τ0) (τ0 ≥ 0) are coefficients of boundary layer terms
at t = 0; Rlyk(τ1) (τ1 ≤ 0) are coefficients of boundary layer terms at t = 1; and Q

(∓)
l

yk(τ)
(−∞ < τ < +∞) are left and right coefficients of internal transition terms at t = t∗. Meanwhile,
similar definitions are for z(∓)

kl
(t),Πlzk(τ0), Rlzk(τ1), and Q

(∓)
l

zk(τ).
The position of a transition time t∗ ∈ (0, 1) is unknown in advance. It needs being

determined during the construction of an asymptotic solution. Suppose that t∗ has also an
asymptotic expression of the form

t∗ = t0 + μt1 + μ2t2 + · · · , (3.2)

where tl (l = 0, 1, 2, . . .) are temporarily unknown at the moment andwill be determined later.
Meanwhile, let

y1(t∗) = y∗
10 + μy∗

11 + μ2y∗
12 + · · · , (3.3)

where y∗
1l (l = 0, 1, 2, . . .) are all constants, independent of μ, and y1(t∗) takes value between

a1
1(t

∗) and a2
1(t

∗). For example, y1(t∗) = (1/2)(a1
1(t

∗) + a2
1(t

∗)).
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Then, we will determine the asymptotic solution (3.1) step by step using “a smooth
connection method” based on the boundary function method [13] or [5]. The smooth
connection condition (2.11) can be written as

Q
(−)
0 yk(0) + a1

k(t0) = Q
(+)
0 yk(0) + a2

k(t0), Q
(−)
0 zk(0) = Q

(+)
0 zk(0);

Q
(−)
l

yk(0) +
[
y
′(−)
1l (t0)tl + ξ

(−)
1l

]
= Q

(−)
0 yk(0) +

[
y
′(+)
1l (t0)tl + ξ

(+)
1l

]
;

Q
(−)
l

zk(0) +
[
z
′(−)
1l (t0)tl + η

(−)
1l

]
= Q

(−)
0 zk(0) +

[
z
′(+)
1l (t0)tl + η

(+)
1l

]
,

(3.4)

where k = 1, 2, . . . , n, l = 1, 2, . . .; ξ(∓)1l = ξ
(∓)
1l (t0, . . . , tl−1), and ξ

(∓)
1l = ξ

(∓)
1l (t0, . . . , tl−1) are all the

known functions depending only on t0, . . . , tl−1.
Substituting (3.1) into (2.1)-(2.2) and equating separately the terms depending on

t, τ0, τ1, and τ by the boundary function method, we can obtain the equations to deter-
mine {y(∓)

kl
(t), z(∓)

kl
(t)}; {Πlyk(τ0),Πlzk(τ0)}, {Rlyk(τ1), Rlzk(τ1)}, and {Q(∓)

l
yk(τ), Q

(∓)
l

zk(τ)},
respectively. The equations to determine the zero-order coefficients of regular terms
{y(∓)

k0 (t), z
(∓)
k0 (t)} (k = 1, 2, . . . , n) are given by

z
(∓)
10 (t) = z

(∓)
20 (t) = · · · = z

(∓)
n0 (t) = 0;

f1
(
y
(∓)
10 , y

(∓)
20 , . . . , y

(∓)
n0 , t

)
= 0;

f2
(
y
(∓)
10 , y

(∓)
20 , . . . , y

(∓)
n0 , t

)
= 0;

...

fn
(
y
(∓)
10 , y

(∓)
20 , . . . , y

(∓)
n0 , t

)
= 0.

(3.5)

It is clear to see that (3.6) coincides with the reduced system (2.11). Therefore, by [H2],
(3.6) has the solution

{
y
(∓)
10 , y

(∓)
20 , . . . , y

(∓)
n0

}
=
{
ai
1(t), a

i
2(t), . . . , a

i
n(t)

}
, i = 1, 2. (3.6)

The equations to determine {y(∓)
kl (t),z

(∓)
kl (t)} (k = 1, 2, . . . , n; l = 1, 2, . . .) are given by

y′
1l−1 = z1l, y

′
2l−1 = z2l, . . . , y

′
nl−1 = znl;

z′1l−1 = f1y1
(t)y1l + f1y2

(t)y2l + · · · + f1yn
(t)ynl + h1l(t);

z′2l−1 = f2y1
(t)y1l + f2y2

(t)y2l + · · · + f2yn
(t)ynl + h2l(t);

...

z′nl−1 = fny1
(t)y1l + fny2

(t)y2l + · · · + fnyn
(t)ynl + hnl(t).

(3.7)
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Here the superscript (∓) is omitted for the variables y
(∓)
kl and z

(∓)
kl in (3.8) for simplicity in

notation. To understand ykl and zkl, we agree that they take (−) when 0 ≤ t ≤ t0; while they
take (+) when t0 ≤ t ≤ 1. The terms hkl(t) (k = 1, 2, . . . , n; l = 1, 2, . . .) are expressed in terms
of ykm and zkm (k = 1, 2, . . . , n; m = 0, 1, . . . , l − 1). Also f (·)(t) are known functions that take
value at (ai

1(t), a
i
2(t), . . . , a

i
n(t)), where i = 1 when 0 ≤ t ≤ t0 and i = 2 when t0 ≤ t ≤ 1.

Since (3.8) is an algebraic linear system, the solution {y(∓)
kl

(t), z(∓)
kl

(t)} (k = 1, 2, . . . , n;
l = 1, 2, . . .) is uniquely solvable by [H3].

Next, we give the equations and their conditions for determining the zero-order
coefficient of an internal transition layer {Q(−)

0 yk(τ), Q
(−)
0 zk(τ)} as follows:

d

dτ
Q

(−)
0 yk = Q

(−)
0 zk, −∞ < τ ≤ 0;

d

dτ
Q

(−)
0 zk = fk

(
a1
1(t0) +Q

(−)
0 y1, . . . , a

1
n(t0) +Q

(−)
0 yn, t0

)
,

Q
(−)
0 y1(0) = y∗

10 − a1
1(t0);

Q
(−)
0 yk(−∞) = 0, Q(−)

0 zk(−∞) = 0, k = 1, 2, . . . , n.

(3.8)

We rewrite (3.9) in a different form by making the change of variables

ỹ
(−)
k = a1

k(t0) +Q
(−)
0 yk, z̃

(−)
k = Q

(−)
0 zk, k = 1, 2, . . . , n. (3.9)

Then, (3.9) is further written in these new variables as

dỹ
(−)
k

dτ
= z̃

(−)
k , −∞ < τ ≤ 0;

dz̃
(−)
k

dτ
= fk

(
ỹ
(−)
1 , ỹ

(−)
2 , . . . , ỹ

(−)
n , t0

)
,

(3.10)

ỹ
(−)
0 (0) = y∗

10;

ỹ
(−)
k (−∞) = a1

k(t0), z̃
(−)
k (−∞) = 0, k = 1, 2, . . . , n.

(3.11)

From [H3], it yields that the equilibrium (a1
1(t0), . . . , a

1
n(t0), 0, . . . , 0) of the autonomous

system (3.11) is a hyperbolic saddle point. Therefore, there exists an unstable one-
dimensional manifold Wu(M1). For the existence of a solution of (3.11) satisfying (3.12), we
need the following assumption.

[H7] Suppose that the hyperplane ỹ
(−)
1 (0) = y∗

10 intersects the manifoldWu(M1) in the
phase space (ỹ(−)

1 (t0), ỹ
(−)
2 (t0), . . . , ỹ

(−)
n (t0)) × (z̃(−)1 (t0), z̃

(−)
2 (t0), . . . , z̃

(−)
n (t0)), where t0 ∈ (0, 1) is

a parameter.
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Then, {ỹ(−)
k (0), z̃(−)k (0)} (k = 1, 2, . . . , n) are known values after {ỹ(−)

k (τ), z̃(−)k (τ)} being
solved by [H7]. We can get the equations and the corresponding boundary conditions to
determine {Q(+)

0 yk(τ), Q
(+)
0 zk(τ)} as follows:

d

dτ
Q

(+)
0 yk = Q

(+)
0 zk, 0 ≤ τ < +∞;

d

dτ
Q

(+)
0 zk = fk

(
a2
1(t0) +Q

(+)
0 y1, . . . , a

2
n(t0) +Q

(+)
0 yn, t0

)
,

(3.12)

Q
(+)
0 yk(0) = y

(−)
k (0) − a2

k(t0), k = 1, 2, . . . , n;

Q
(+)
0 zj(0) = z̃

(−)
j (0), j = 1, 2, . . . , n − 1;

Q
(+)
0 yk(+∞) = 0, Q

(+)
0 zk(+∞) = 0, k = 1, 2, . . . , n.

(3.13)

Introducing a similar transformation as doing for (3.9), we can get

dỹ
(+)
k

dτ
= z̃

(+)
k , 0 ≤ τ < +∞;

dz̃
(+)
k

dτ
= fk

(
ỹ
(+)
1 , ỹ

(+)
2 , . . . , ỹ

(+)
n , t0

)
,

(3.14)

ỹ
(+)
k (0) = ỹ

(−)
k (0), k = 1, 2, . . . , n;

z̃
(+)
j (0) = z̃

(−)
j (0), j = 1, 2, . . . , n − 1;

ỹ
(+)
k (+∞) = a2

k(t0), z̃
(+)
k (+∞) = 0, k = 1, 2, . . . , n.

(3.15)

To ensure that the existence of a solution of (3.15)-(3.16), we need the following
assumption.

[H8] Suppose that the hypercurve {ỹ(+)
1 (0) = ỹ

(−)
1 (0), . . . , ỹ(+)

n (0) = ỹ
(−)
n (0), z̃(+)1 (0) =

z̃
(−)
1 (0), . . . , z̃(+)n (0) = z̃

(−)
n (0)} intersects the manifold Ws(M2) in the phase space

(ỹ(+)
1 (t0), ỹ

(+)
2 (t0), . . . , ỹ

(+)
n (t0)) × (z̃(+)1 (t0), z̃

(+)
2 (t0), . . . , z̃

(+)
n (t0)), where t0 ∈ (0, 1) is a parameter.

Here it should be emphasized that under the conditions of [H7] and [H8], the solutions
{Q(∓)

0 yk(τ), Q
(∓)
0 zk(τ)} (k = 1, 2, . . . , n) not only exist but also decay exponentially [13], or [5].

If the parameter t0 is determined, {Q(∓)
0 yk(τ), Q

(∓)
0 zk(τ)} (k = 1, 2, . . . , n) are

completely known. To determine t0, it is closely related to the existence of a heteroclinic orbit
connecting M1 and M2 in the phase space.

By the given initial values (3.14) or (3.16), we have already obtained

ỹ
(+)
k (0) = ỹ

(−)
k (0), k = 1, 2, . . . , n,

z̃
(+)
j (0) = z̃

(−)
j (0), j = 1, 2, . . . , n − 1.

(3.16)
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If we show z̃
(+)
n (0) = z̃

(−)
n (0), the smooth connection condition (2.11) for the zero-order is

satisfied. By [H4] and [H5], we have

z̃
(∓)
n = h(∓)

(
ỹ
(∓)
1 , . . . , ỹ

(∓)
n , z̃

(∓)
1 , . . . , z̃

(∓)
n−1, t0,M1,2

)
. (3.17)

Since ỹ
(∓)
k

(k = 1, 2, . . . , n) and z̃
(∓)
j (j = 1, 2, . . . , n − 1) only depend on y∗

10, while y∗
10 only

depends on t0, the necessary condition for existence of a heteroclinic orbit connecting M1

and M2 at τ = 0 is given by

h(−)(y∗
10(t0), t0,M1

)
= h(+)(y∗

10(t0), t0,M2
)
, (3.18)

or

Φ(M1, t0) = Φ(M2, t0). (3.19)

However (3.19) or (3.20) is the one to determine t0. Then, by [H6], there exists an
t0 = t∗0 from (3.19) or (3.20). We can see that the process of determining t0 is the one of
a smooth connection. Therefore, all the zero-order terms {Q(∓)

0 yk(τ), Q
(∓)
0 zk(τ)} have now

been completely determined by the smooth connection for the zero-order coefficients of the
asymptotic solution.

For the high-order terms {Q(∓)
l

yk(τ), Q
(∓)
l

zk(τ)} (l = 1, 2, . . .), we have the equations
and their boundary conditions as follows:

d

dτ
Q

(−)
l yk = Q

(−)
l zk, −∞ < τ ≤ 0;

d

dτ
Q

(−)
l

zk = f̃
(−)
ky1

(τ)Q(−)
l

y1 + f̃
(−)
ky2

(τ)Q(−)
l

y2 + · · · f̃ (−)
kyn

(τ)Q(−)
l

yn + G̃
(−)
lk (τ),

Q
(−)
l y1(0) = y∗

1l −
[
y1l(t0)tl + ξ1l(t0, . . . , tl−1)

]
;

Q
(−)
l yk(−∞) = 0, Q

(−)
l zk(−∞) = 0, k = 1, 2, . . . , n,

d

dτ
Q

(+)
l yk = Q

(+)
l zk, 0 ≤ τ < +∞;

d

dτ
Q

(+)
l zk = f̃

(+)
ky1

(τ)Q(+)
l y1 + f̃

(+)
ky2

(τ)Q(+)
l y2 + · · · f̃ (+)

kyn
(τ)Q(−)

l yn + G̃
(+)
lk (τ),

Q
(+)
l yk(0) = y∗

kl(0) −
[
y′
kl(t0)tl + ξkl(t0, . . . , tl−1)

]
, k = 1, 2, . . . , n;

Q
(+)
l

zj(0) = z̃∗jl −
[
z′kl(t0)tl + ηkl(t0, . . . , tl−1)

]
, j = 1, 2, . . . , n − 1;

Q
(+)
l yk(+∞) = 0, Q

(+)
l zk(+∞) = 0, k = 1, 2, . . . , n,

(3.20)

where f̃
(∓)
(·) (τ) represent known functions that take value at (ai

1(t0) + Q
(∓)
0 y1(τ), . . . , ai

n(t0) +

Q
(∓)
0 yn(τ)); G̃

(∓)
lk

(τ) are the known functions that only depend on those asymptotic terms
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whose subscript is 0, 1, . . . , l − 1; and ξkl and ηkl are all the known functions. Since (3.21) are
all linear boundary value problems, it is not difficult to prove the existence of solution and
the exponential decaying of solution without imposing any extra condition.

As for boundary functions Πy(τ0) and Ry(τ1), it is easy to obtain their constructions
by using the normal boundary function method. So we would not discuss the details on them
here [13] or [5]. However, it is worth mentioning that the coefficients tl (l = 1, 2, . . .) in (2.3)
will be determined by an equation as follows:

H ′(t0)tl = ξ(t0, . . . , tl−1). (3.21)

Then, tl can be solved from (3.22) by [H6]. Then, we have so far constructed the asymptotic
expansion of a solution with an internal transition layer for the problem (2.1)-(2.2) and the
asymptotic expansion of an internal transition time t∗.

4. Existence of Step-Like Solution and Its Limit Theorem

Wementioned in Section 2that the solution with a step-like contrast structure can be regarded
as a smooth connection by two solutions of pure boundary value problem from left and right,
respectively. To this end, we establish the following two associated problems.

For the left associated problem,

μ
(
y
(−)
k

)′
= z

(−)
k

;

μ
(
z
(−)
k

)′
= fk

(
y
(−)
1 , . . . , y

(−)
n , t

)
,

(4.1)

y
(−)
k

(
0, μ

)
= y0

k, k = 1, 2, . . . , n;

z
(−)
j

(
0, μ

)
= μz0j , j = 1, 2, . . . , n − 1;

y
(−)
1

(
t∗, μ

)
= y1(t∗),

(4.2)

where 0 ≤ t ≤ t∗ < 1, t∗ is a parameter, such a solution {y(−)
k

(t, μ), z(−)
k

(t, μ)} of (4.1) and (4.2)
exists by [H1]–[H3] [14, 15]. Then, we have {y(−)

k (t∗, μ), z(−)k (t∗, μ)}, k = 1, 2, . . . , n.
For the right associated problem,

μ
(
y
(+)
k

)′
= z

(+)
k

;

μ
(
z
(+)
k

)′
= fk

(
y
(+)
1 , . . . , y

(+)
n , t

)
,

(4.3)

y
(+)
k

(
t∗, μ

)
= y

(−)
k (t∗), k = 1, 2, . . . , n;

z
(+)
j

(
t∗, μ

)
= z

(−)
j (t∗), j = 1, 2, . . . , n − 1;

z
(+)
n

(
1, μ

)
= μz1n,

(4.4)
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where 0 < t∗ ≤ t ≤ 1, t∗ is still a parameter, the similar reason is for the existence of
{y(+)

k
(t, μ), z(+)

k
(t, μ)} of (4.3) and (4.4) [14, 15].

Then, we write the asymptotic expansion of {y(∓)
k

(t, μ), z(∓)
k

(t, μ)} as follows:

yk

(
t, μ

)
=

⎧
⎪⎨

⎪⎩

y
(−)
k

(
t, μ

)
= a1

k(t) + Π0yk(τ0) +Q
(−)
0 yk(τ) +O

(
μ
)
, 0 ≤ t ≤ t∗;

y
(+)
k

(
t, μ

)
= a2

k(t) + R0yk(τ1) +Q
(+)
0 yk(τ) +O

(
μ
)
, t∗ ≤ t ≤ 1,

(4.5)

zk
(
t, μ

)
=

⎧
⎪⎨

⎪⎩

z
(−)
k

(
t, μ

)
= Π0zk(τ0) +Q

(−)
0 zk(τ) +O

(
μ
)
, 0 ≤ t ≤ t∗;

z
(+)
k

(
t, μ

)
= R0zk(τ1) +Q

(+)
0 zk(τ) +O

(
μ
)
, t∗ ≤ t ≤ 1,

(4.6)

where τ0 = t/μ, τ1 = (t − 1)/μ and τ = (t − t∗)/μ.
We proceed to show that there exists an t∗ indeed in the neighborhood of t0 such

that the solution {y(−)
k

(t, μ), z(−)
k

(t, μ)} of the left associated problem (4.1) and (4.2) and the
solution {y(+)

k
(t, μ), z(+)

k
(t, μ)} of the right associated problem (4.3) and (4.4) smoothly connect

at t∗, from which we obtain the desired step-like solution.
From the asymptotic expansion of (4.5) and (4.6), we know that {a1

1(t), a
1
2(t), . . . , a

1
n(t)}

and {a2
1(t), a

2
2(t), . . . , a

2
n(t)} are the solutions of the reduced system (2.5). In the neighborhood

of t0, the boundary functions {Π0yk(τ0),Π0zk(τ0)} and {R0yk(τ1), R0zk(τ1)} are both
exponentially small. Thus, they can be omitted in the neighborhood of t0.

We are now concerned with the equations and the boundary conditions for
which {Q(−)

0 yk(τ), Q
(−)
0 zk(τ)} satisfy. They can be obtained easily from (3.9) just with the

replacement of t0 by t∗,

d

dτ
Q

(−)
0 yk = Q

(−)
0 zk, −∞ < τ ≤ 0;

d

dτ
Q

(−)
0 zk = fk

(
a1
1(t

∗) +Q
(−)
0 y1, . . . , a

1
n(t

∗) +Q
(−)
0 yn, t

∗
)
,

Q
(−)
0 y1(0) = y∗

10 − a1
1(t

∗);

Q
(−)
0 yk(−∞) = 0, Q

(−)
0 zk(−∞) = 0, k = 1, 2, . . . , n.

(4.7)

After the change of variables given by

ỹ
(−)
k

= a1
k(t

∗) +Q
(−)
0 yk(τ); z̃

(−)
k

= Q
(−)
0 zk(τ); k = 1, 2, . . . , n, (4.8)
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then (4.7) can be written as

dỹ
(−)
k

dτ
= z̃

(−)
k

, −∞ < τ ≤ 0;

dz̃
(−)
k

dτ
= fk

(
ỹ
(−)
1 , . . . , ỹ

(−)
n , t∗

)
,

(4.9)

ỹ
(−)
1 = y1(t∗);

ỹ
(−)
k (−∞) = a1

k(t
∗), z̃

(−)
k (−∞) = 0, k = 1, 2, . . . , n.

(4.10)

It is similar to get the equations and the boundary conditions for which
{Q(+)

0 yk(τ), Q
(+)
0 zk(τ)} satisfy

d

dτ
Q

(+)
0 yk = Q

(+)
0 zk, 0 ≤ τ < +∞;

d

dτ
Q

(+)
0 zk = fk

(
a2
1(t

∗) +Q
(+)
0 y1, . . . , a

2
n(t

∗) +Q
(+)
0 yn, t

∗
)
,

Q
(+)
0 yk(0) = y

(−)
k (0) − a2

k(t
∗), k = 1, 2, . . . , n;

Q
(+)
0 zj(0) = z̃

(−)
j (0), j = 1, 2, . . . , n − 1;

Q
(+)
0 yk(+∞) = 0, Q

(+)
0 zk(+∞) = 0.

(4.11)

After the transformation given by

ỹ
(+)
k = a2

k(t
∗) +Q

(+)
0 yk(τ); z̃

(+)
k = Q

(+)
0 zk(τ); k = 1, 2, . . . , n, (4.12)

then (4.11) can be written as

dỹ
(+)
k

dτ
= z̃

(+)
k , 0 ≤ τ < +∞;

dz̃
(+)
k

dτ
= fk

(
ỹ1, . . . , ỹn, t

∗),

(4.13)

ỹ
(+)
k (0) = y

(−)
k (0), k = 1, 2, . . . , n;

z̃
(+)
k (0) = z̃

(−)
j (0), j = 1, 2, . . . , n − 1;

ỹ
(+)
k (+∞) = 0, z̃

(+)
k (+∞) = 0.

(4.14)

[H3] and [H4] imply that there exists a first integral

Φ
(
ỹ
(−)
1 , . . . , ỹ

(−)
n , z̃

(−)
1 , . . . , z̃

(−)
n , t∗

)
= Φ(M1, t

∗) (4.15)
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of the system (4.9) that approaches M1(a1
1(t

∗), a1
2(t

∗), . . . , a1
n(t

∗), 0, . . . , 0) as τ → −∞; and
there exists a first integral

Φ
(
ỹ
(+)
1 , . . . , ỹ

(+)
n , z̃

(+)
1 , . . . , z̃

(+)
n , t∗

)
= Φ(M2, t

∗) (4.16)

of the system (4.13) that approaches M2(a2
1(t

∗), a2
2(t

∗), . . . , a2
n(t

∗), 0, . . . , 0) as τ → +∞.
In views of [H5], from (4.15) and (4.16) we have

z̃
(∓)
n = h(∓)

(
ỹ
(∓)
1 , . . . , ỹ

(∓)
n , z̃

(∓)
1 , . . . , z̃

(∓)
n−1, t

∗,M1,2

)
. (4.17)

Then, we know from (4.2) and (4.4) that y(−)
k

(t∗, μ) = y
(+)
k

(t∗, μ), k = 1, 2, . . . , n; and z
(−)
j (t, μ) =

z
(+)
j (t, μ), j = 1, 2, . . . , n−1 for the solutions {y(∓)

k (t, μ), z(∓)k (t, μ)} of the left and right associated
problems. For a smooth connection of the solutions, the remaining is to prove

z
(−)
n

(
t∗, μ

)
= z

(+)
n

(
t∗, μ

)
. (4.18)

Let

Δ(t∗) = z
(−)
n

(
t∗, μ

) − z
(+)
n

(
t∗, μ

)
. (4.19)

Substituting (4.6) into (4.19), we have

Δ(t∗) = Q
(−)
0 zn(0) −Q

(+)
0 zn(0) +O

(
μ
)
= h(−) − h(+) +O

(
μ
)

= H(t∗) +O
(
μ
)
= H(t0) +H ′(t0)(t∗ − t0) +O(t∗ − t0)

2 +O
(
μ
)
,

(4.20)

where O(μ) can be regarded as Cμ for simplicity.
If we take t∗ = t0 ±Kμ in (4.20), we have

Δ(t∗) = ±H ′(t0)Kμ +O
(
μ
)
. (4.21)

Since the sign of H ′(t0) is fixed, (4.21) has an opposite sign when K is sufficiently large, for
example, K > C, and μ is sufficiently small. That is,

(
H ′(t0)Kμ +O

(
μ
))(−H ′(t0)Kμ +O

(
μ
))

< 0, as K > C, μ 
 1. (4.22)

Then, there exists t̂ ∈ [t0 −Kμ, t0 +Kμ] such that Δ(t̂) = 0 by applying the intermediate value
theorem to (4.21). This implies in turn that (4.18) holds.

Therefore, we have shown that there exists a step-like contrast structure for the
problem (2.1)-(2.2). We summarize it as the following main theorem of this paper.
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Theorem 4.1. Suppose that [H1]–[H8] hold. Then, there exists an μ0 > 0 such that there exists a step-
like contrast structure solution yk(t, μ) (k = 1, 2, . . . , n) of the problem (2.1)-(2.2) when 0 < μ < μ0.
Moreover, the following asymptotic expansion holds

yk

(
t, μ

)
=

⎧
⎨

⎩

a1
k(t) + Π0yk(τ0) +Q

(−)
0 yk(τ) +O

(
μ
)
, 0 ≤ t ≤ t̂;

a2
k(t) + R0yk(τ1) +Q

(+)
0 yk(τ) +O

(
μ
)
, t̂ ≤ t ≤ 1.

(4.23)

Remark 4.2. Only existence of solution with a step-like contrast structures is guarantied
under the conditions of [H1]–[H8]. There may exists a spike-like contrast structure, or the
combination of them [16] for the problem (2.1)-(2.2). They need further study.

5. Conclusive Remarks

The existence of solution with step-like contrast structures for a class of high-dimensional
singular perturbation problem investigated in this paper shows that how to get a heteroclinic
orbit connecting saddle equilibria M1 and M2 in the corresponding phase space is a key
to find a step-like internal layer solution. Using only one first integral of the associated
system, this demands only bit information on solution, is our first try to construct a
desired heteroclinic orbit in high-dimensional phase space. It needs surely further study for
this interesting connection between the existence of a heteroclinic orbit of high-dimension
in qualitative theory and the existence of a step-like contrast structure (internal layer
solution) in a high-dimensional singular perturbation boundary value problem of ordinary
differential equations. The particular boundary condition we adopt in this paper is just for
the corresponding stability condition, which ensures the existence of solution of the problem
in this paper. For the other type of boundary condition, we need some different stability
condition to ensure the existence of solution of the problem in question, which we also need
to study separately. Finally, if we want to construct a higher-order asymptotic expansion, it is
similar with obvious modifications in which only more complicated techniques involved.
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