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1. Introduction

Injection molding is a manufacturing process for producing parts from both thermoplastic
and thermosetting plastic materials. When the material is in contact with the mold wall
surface, one has three choices: (i) no slip (which implies that thematerial sticks to the surface)
(ii) partial slip, and (iii) complete slip [1–5]. Navier [6] in 1827 first proposed a partial slip
condition for rough surfaces, relating the tangential velocity vα to the local tangential shear
stress τα3

vα = −βτα3, (1.1)

where β indicates the amount of slip. When β = 0, (1.1) reduces to the no-slip boundary
condition. A nonzero β implies partial slip. As β → ∞, the solid surface tends to full slip.

There is a full description of the injection molding process in [3] and in our paper [7].
The formulation of this process as an elliptic system is given here in after.
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Problem 1. Find functions θ and p defined in Ω such that

−Δθ = k(θ)
∣
∣∇p

∣
∣
r + q(x) in Ω, (1.2)

−div
{(

k(θ)
∣
∣∇p

∣
∣
r−2 + β(x)

∣
∣∇p

∣
∣
r0−2

)

∇p
}

= 0 in Ω, (1.3)

θ = θ0, p = p0 on ∂Ω. (1.4)

Here we assume that Ω is a bounded domain in R
N with a C1 boundary. We assume

also that q, θ0, p0, β, and k are given functions, while r is a given positive constant related to
the power law index; p is the pressure of the flow, and θ is the temperature. The leading order
term β(x)|∇p|r0−2 of the PDE (1.3) is derived from a nonlinear slip condition of Navier type.
Similar derivations based on the Navier slip condition occur elsewhere, for example, [8, 9],
[10, equation (2.4)].

The mathematical model for this system was established in [7]. Some related papers,
both rigorous and formal, are [3, 11–13]. In [11, 13], existence results in no-slip surface, β = 0,
are obtained, while in [3, 7], Navier’s slip conditions, β /= 0 and r0 = 0, are investigated,
and numerical, existence, uniqueness, and regularity results are given. Although the
physical models are two dimensional, we shall carry out our proofs in the case of N

dimension.
In Section 2, we introduce some notations and lemmas needed in later sections. In

Section 3, we investigate the existence, uniqueness, stability, and continuity of solution p

to the nonlinear equation (1.3). In Section 4, we study the existence of weak solutions to
Problem 1.

Using Rothe’s method of time discretization and an existence result for Problem 1, one
can establish existence of week solutions to the following time-dependent problem.

Problem 2. Find functions θ and p defined in ΩT such that

θt −Δθ = k(θ)
∣
∣∇p

∣
∣
r + q(x) in ΩT ,

−div
{(

k(θ)
∣
∣∇p

∣
∣
r−2 + β(x)

∣
∣∇p

∣
∣
r0−2

)

∇p
}

= 0 in ΩT ,

θ = θ0, p = p0 on ∂Ω × (0, T),

θ = ϕ on Ω × {0}.

(1.5)

The proof is only a slight modification of the proofs given in [11, 13] and is omitted
here.
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2. Notations and Preliminaries

2.1. Notations

In this paper, for s > 1, let H1,s(Ω) and H1,s
0 (Ω) denote the usual Sobolev space equipped

with the standard norm. Let

σ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

N − 1
, if 1 < r < N,

r

r − 1
, if r > N,

qN

qN − q +N
, if r = N,

(2.1)

where N < q < ∞. The conjugate exponent of σ is

σ∗ =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N, if 1 < r < N,

r, if r > N,

qN

q −N
, if r = N.

(2.2)

We assume that the boundary values θ0 and p0 for Problem 1 can be extended to
functions defined on Ω such that

θ0 ∈ H1,σ(Ω), p0 ∈ H1,τ(Ω). (2.3)

We further assume that there exist positive numbers k2 > k1 > 0 and β0 such that

k1 < k(θ) < k2, ∀θ ∈ R1,

0 ≤ β(x) ≤ β0.
(2.4)

Finally, we assume that for θm, θ ∈ H1,σ
0 (Ω) + θ0, limm→∞θm = θ a.e. in Ω indicates

lim
m→∞

k(θm) = k(θ) a.e. in Ω. (2.5)

For the convenience of exposition, we assume that

1 < r0 < r < τ < ∞. (2.6)

Next, we recall some previous results which will be needed in the rest of the paper.
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2.2. Preliminaries

An important inequality (e.g., see [11, page 550] ) in the study of p-Laplacian is as follows:

(

|x|r−2x − ∣
∣y

∣
∣
r−2

y
)(

x − y
) ≥

⎧

⎪⎪⎨

⎪⎪
⎩

a
∣
∣x − y

∣
∣
r
, if r ≥ 2,

a
∣
∣x − y

∣
∣
2

(

b + |x| + ∣
∣y

∣
∣
)2−r , if 1 < r < 2,

(2.7)

where a > 0 and b > 0 are certain constants.
To establish coercivity condition, we will use the following inequality:

(a + b)r ≤ 2r(ar + br), (2.8)

where r > 0, a > 0, and b > 0.
Using the Sobolev Embedding Theorem and Hölder’s Inequality, we can derive the

following results (for more details, see [11, Lemma 3.4] and [13, Lemma 4.2]).

Lemma 2.1. The following statements hold
(i) For any positive numbers α and ς, if u ∈ Lα(Ω) and v ∈ Lς(Ω), then

uv ∈ Lγ , where γ =
(
1
α
+
1
ς

)−1
; (2.9)

moreover, ‖uv‖Lγ (Ω)≤‖u‖Lα(Ω)‖v‖Lς(Ω).

(ii) If p ∈ H1,r(Ω) and 1 < r < N, then p|∇p|r−2∇p ∈ [LN/(N−1)(Ω)]N ; moreover,

∥
∥
∥p

∣
∣∇p

∣
∣
r−2∇p

∥
∥
∥
LN/(N−1)(Ω)

≤ ∥
∥p

∥
∥
LNr/(N−r)(Ω)

∥
∥∇p

∥
∥
r−1
Lr(Ω). (2.10)

(iii) If p ∈ H1,r(Ω) and 1 < r < ∞, then |∇p|r−2∇p∇p0 ∈ Lζ(Ω), where

ζ =
(

1
r∗

+
1
τ

)−1
, (2.11)

and r∗ denotes the conjugate of r, namely, r∗ = r/(r − 1) for 1 < r < ∞; moreover,

∥
∥
∥

∣
∣∇p

∣
∣
r−2∇p∇p0

∥
∥
∥
Lζ(Ω)

≤ ∥
∥∇p

∥
∥
r−1
Lr(Ω)

∥
∥∇p0

∥
∥
Lτ (Ω). (2.12)

(iv) If p ∈ H1,r(Ω) and n ≤ r < ∞, then

p
∣
∣∇p

∣
∣
r−2∇p ∈

[

Lr∗(Ω)
]n
, r > n,

p
∣
∣∇p

∣
∣
r−2∇p ∈ [Ls(Ω)]n, r = n,

(2.13)
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where s = (1/r∗ + 1/q)−1 and r < q < ∞. Moreover

∥
∥
∥p

∣
∣∇p

∣
∣
r−2∇p

∥
∥
∥
Lr∗ (Ω)

≤ C
∥
∥∇p

∥
∥
r−1
Lr(Ω), r > n,

∥
∥
∥p

∣
∣∇p

∣
∣
r−2∇p

∥
∥
∥
Ls(Ω)

≤ ∥
∥p

∥
∥
Lq(Ω)

∥
∥∇p

∥
∥
r−1
Lr(Ω), r = n.

(2.14)

The existence proof will use the following general result of monotone operators [14,
Corollary III.1.8, page 87] and [15, Proposition 17.2].

Proposition 2.2. LetK ⊂ X be a closed convex set (/=φ), and letΛ : K → X′ be monotone, coercive,
and weakly continuous on K. Then there exists

u ∈ K : 〈Λu, v − u〉 ≥ 0 for any v ∈ K. (2.15)

The uniqueness proof is based on a supersolution argument (similar definition can be
found in [15, Chapter 3]).

Definition 2.3. A function u ∈ H1,r
loc
(Ω) is a weak supersolution of the equation

−div
{(

k(θ)|∇u|r−2 + β(x)|∇u|r0−2
)

∇u
}

= 0 (2.16)

in Ω if

∫

Ω

(

k(θ)|∇u|r−2 + β(x)|∇u|r0−2
)

∇u · ∇ϕdx ≥ 0, (2.17)

whenever ϕ ∈ C∞
0 (Ω) is nonnegative.

3. A Dirichlet Boundary Value Problem

We study the following Dirichlet boundary value problem:

−div
{(

k(θ)
∣
∣∇p

∣
∣
r−2 + β(x)

∣
∣∇p

∣
∣
r0−2

)

∇p
}

= 0 in Ω,

p = p0 on ∂Ω.

(3.1)

Definition 3.1. We say that pθ − p0 ∈ H1,r
0 (Ω) is a weak solution to (3.1) if

∫

Ω

(

k(θ)
∣
∣∇pθ

∣
∣
r−2 + β(x)

∣
∣∇pθ

∣
∣
r0−2

)

∇pθ · ∇ξ dx = 0 (3.2)

for all ξ ∈ H1,r
0 (Ω) and a given θ ∈ H1,σ

0 (Ω) + θ0.
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Theorem 3.2. Assume that conditions (2.1)–(2.6) are satisfied. Then there exists a unique weak
solution pθ to the Dirichlet boundary value problem (3.1) in the sense of Definition 3.1. In addition,
the solution pθ satisfies the following properties.

(1) we have

∥
∥pθ

∥
∥
H1,r(Ω) ≤ C, (3.3)

where C is a constant independent of θ and pθ;
(2) if limm→∞θm = θ a.e. in Ω, then

lim
m→∞

pθm = pθ strongly in H1,r(Ω). (3.4)

The idea behind the existence proof is related to [15, 16]. We will first consider the
following Obstacle Problem.

Problem 3. Find a function p in Kψ,p0 such that

∫

Ω

(

k(θ)
∣
∣∇p

∣
∣
r−2 + β(x)

∣
∣∇p

∣
∣
r0−2

)

∇p∇(

ξ − p
)

dx ≥ 0 (3.5)

for all ξ ∈ Kψ,p0 . Here

Kψ,p0(Ω) =
{

p ∈ H1,r(Ω) : p ≥ ψ a.e. in Ω, p − p0 ∈ H1,r
0 (Ω)

}

. (3.6)

Lemma 3.3. If Kψ,p0 is nonempty, then there is a unique solution p to the Problem 3 inKψ,p0 .

Proof of Lemma 3.3. Our proof will use Proposition 2.2.
Let X = Lr(Ω;Rn) and write

K =
{∇v : v ∈ Kψ,p0

}

. (3.7)

It follows from the proof in [15, Proposition 17.2] that K ⊂ X is a closed convex set.
Next we define a mapping Λ : K → X′ by

〈Λv, u〉 =
∫

Ω

(

k(θ)|v|r−2 + β(x)|v|r0−2
)

vudx ∀u ∈ X. (3.8)

By Hölder’s inequality,

|〈Λv, u〉| ≤ k2‖v‖r−1Lr(Ω)‖u‖Lr(Ω) + β0‖v‖r0−1Lr0 (Ω)‖u‖Lr0 (Ω)

≤ C
(

‖v‖r−1Lr(Ω) + ‖v‖r0−1Lr0 (Ω)

)

‖u‖Lr(Ω).
(3.9)

Here we used Assumption (2.6), that is, 1 < r0 < r < τ < ∞. Therefore we have Λv ∈ X′

whenever v ∈ K. Moreover, it follows from inequality (2.7) that Λ is monotone.
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To show that Λ is coercive on K, fix ϕ ∈ K. Then

〈Λu −Λϕ, u − ϕ〉

=
∫

Ω

[(

k(θ)|u|r−2 + β|u|r0−2
)

u −
(

k(θ)
∣
∣ϕ

∣
∣
r−2 + β

∣
∣ϕ

∣
∣
r0−2

)

ϕ
](

u − ϕ
)

dx

=
∫

Ω
k(θ)

(

|u|r−2u − ∣
∣ϕ

∣
∣
r−2

ϕ
])(

u − ϕ
)

dx +
∫

Ω
β
(

|u|r0−2u − ∣
∣ϕ

∣
∣
r0−2ϕ

])(

u − ϕ
)

dx

≥
∫

Ω
k(θ)

(

|u|r−2u − ∣
∣ϕ

∣
∣
r−2

ϕ
])(

u − ϕ
)

dx

≥ k1
(‖u‖r + ∥

∥ϕ
∥
∥
r) − k2

(

‖u‖r−1∥∥ϕ∥∥ +
∥
∥ϕ

∥
∥
r−1‖u‖

)

≥ k12−r
∥
∥u − ϕ

∥
∥
r − k22r−1

∥
∥ϕ

∥
∥

(∥
∥u − ϕ

∥
∥
r−1 +

∥
∥ϕ

∥
∥
r−1) − k2

∥
∥ϕ

∥
∥
r−1(∥

∥ϕ − u
∥
∥ +

∥
∥ϕ

∥
∥
)

.

(3.10)

Inequality (2.8) is used to arrive at the last step. This implies that Λ is coercive on K.
Finally, we show that Λ is weakly continuous on K. Let ui ∈ K be a sequence that

converges to an element u ∈ K in Lr(Ω). Select a subsequence uij such that uij → u a.e. in Ω.
Then it follows that

k(θ)
∣
∣
∣uij

∣
∣
∣

r−2
uij + β

∣
∣
∣uij

∣
∣
∣

r0−2
uij −→ k(θ)|u|r−2u + β|u|r0−2u (3.11)

a.e. in Ω. Moreover,

∫

Ω

∣
∣
∣
∣
k(θ)

∣
∣
∣uij

∣
∣
∣

r−2
uij + β

∣
∣
∣uij

∣
∣
∣

r0−2
uij

∣
∣
∣
∣

r/(r−1)
dx ≤ C

∫

Ω

(∣
∣
∣uij

∣
∣
∣

r
+
∣
∣
∣uij

∣
∣
∣

r×(r0−1)/(r−1)
)

dx

≤ C

[∫

Ω

∣
∣
∣uij

∣
∣
∣

r
dx +

(∫

Ω

∣
∣
∣uij

∣
∣
∣

r
dx

)(r0−1)/(r−1)
]

≤ C.

(3.12)

Thus we have that

k(θ)
∣
∣
∣uij

∣
∣
∣

r−2
uij + β

∣
∣
∣uij

∣
∣
∣

r0−2
uij ⇀ k(θ)|u|r−2u + β|u|r0−2u (3.13)

weakly in Lr/(r−1)(Ω). Since the weak limit is independent of the choice of the subsequence,
it follows that

k(θ)|ui|r−2ui + β|ui|r0−2ui ⇀ k(θ)|u|r−2u + β|u|r0−2u (3.14)

weakly in Lr/(r−1)(Ω). Hence Λ is weakly continuous on K. We may apply Proposition 2.2 to
obtain the existence of p.
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Our uniqueness proof is inspired by [15, Lemmas 3.11, 3.22, and Theorem 3.21]. Since
(k(θ)|∇u|r−2 + β(x)|∇u|r0−2)∇u does not satisfy condition (3.4) ofA operator in [15], we need
to prove the following lemma, which is equivalent to [15, Lemma 3.11]. Then uniqueness can
follow immediately from [15, Lemma 3.22].

Lemma 3.4. If u ∈ H1,r(Ω) is a supersolution of (2.16) in Ω, then

∫

Ω

(

k(θ)|∇u|r−2 + β(x)|∇u|r0−2
)

∇u · ∇ϕdx ≥ 0 (3.15)

for all nonnegative ϕ ∈ H1,r
0 (Ω).

Proof. Let ϕ ∈ H1,r
0 (Ω) and choose nonnegative sequence φi ∈ C∞

0 (Ω) such that ϕi → ϕ in
H1,r(Ω). Equation (2.6) and Hölder inequality imply that

∣
∣
∣
∣

∫

Ω

(

k(θ)|∇u|r−2 + β|∇u|r0−2
)

∇u · ∇ϕdx −
∫

Ω

(

k(θ)|∇u|r−2 + β|∇u|r0−2
)

∇u · ∇ϕidx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω
k(θ)|∇u|r−2∇u · ∇(

ϕ − ϕi

)

dx +
∫

Ω
β|∇u|r0−2∇u · ∇(

ϕ − ϕi

)

dx

∣
∣
∣
∣

≤ k2‖∇u‖r−1Lr(Ω)

∥
∥∇(ϕ − ϕi)

∥
∥
Lr(Ω) + β0‖∇u‖r0−1Lr0 (Ω)

∥
∥∇(ϕ − ϕi)

∥
∥
Lr0 (Ω)

≤ C
(

‖∇u‖r−1Lr(Ω) + β0‖∇u‖r0−1Lr0 (Ω)

)∥
∥∇(ϕ − ϕi)

∥
∥
Lr(Ω).

(3.16)

Because limi→∞‖∇(ϕ − ϕi)‖Lr(Ω) = 0, we obtain

∫

Ω

(

k(θ)|∇u|r−2 + β|∇u|r0−2
)

∇u · ∇ϕdx = lim
i→∞

∫

Ω

(

k(θ)|∇u|r−2 + β|∇u|r0−2
)

∇u · ∇ϕidx ≥ 0

(3.17)

and the lemma follows.

Similar to [15, Corollary 17.3, page 335], one can also obtain the following Corollary.

Corollary 3.5. Let Ω be bounded and p0 ∈ H1,r(Ω). There is a weak solution pθ ∈ H1,r
0 (Ω) + p0 to

(3.1) in the sense of Definition 3.1.

Proof of Theorem 3.2. The existence result is given in Corollary 3.5, and we now turn to proof
of uniqueness. For a given θ, assume that there exists another solution p1

θ
. Then we have that

Δ :=
∫

Ω

[

k

(

θ
∣
∣∇pθ

∣
∣
r−2∇pθ −

∣
∣
∣∇p1θ

∣
∣
∣

r−2∇p1θ

)

+β
(
∣
∣∇pθ

∣
∣
r0−2∇pθ −

∣
∣
∣∇p1θ

∣
∣
∣

r0−2∇p1θ

)]

· ∇ξ dx = 0

(3.18)
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for all ξ ∈ H1,r
0 (Ω). If we take ξ = pθ − p1θ in above equation, from inequality (2.7), we have

the following.
(i)when r ≥ 2,

0 = Δ

≥
∫

Ω
k(θ)

(
∣
∣∇pθ

∣
∣
r−2∇pθ −

∣
∣
∣∇p1θ

∣
∣
∣

r−2∇p1θ

)

·
(

∇pθ − ∇p1θ

)

dx

≥ C

∫

Ω

∣
∣
∣∇pθ − ∇p1θ

∣
∣
∣

r
dx,

(3.19)

where C is a positive constant;
(ii)when 1 < r < 2,

0 = Δ

≥
∫

Ω
k(θ)

(
∣
∣∇pθ

∣
∣
r−2∇pθ −

∣
∣
∣∇p1θ

∣
∣
∣

r−2∇p1θ

)

·
(

∇pθ − ∇p1θ

)

dx

≥ C

∫

Ω

∣
∣
∣∇pθ − ∇p1θ

∣
∣
∣

2(
b +

∣
∣∇pθ

∣
∣ +

∣
∣
∣∇p1θ

∣
∣
∣

)r−2
dx

≥ C

(∫

Ω

∣
∣
∣∇p1θ − ∇pθ

∣
∣
∣

r
dx

)2/r(∫

Ω

(

b +
∣
∣∇pθ

∣
∣ +

∣
∣
∣∇p1θ

∣
∣
∣

)r
dx

)(r−2)/r
.

(3.20)

Here the Hölder inequality for 0 < t < 1, namely,

∣
∣
∣
∣

∫

Ω
fgdx

∣
∣
∣
∣
≥
(∫

Ω

∣
∣f
∣
∣
t
dx

)1/t(∫

Ω

∣
∣g
∣
∣
t∗
dx

)1/t∗

, t∗ =
t

t − 1
(3.21)

is applied to the last inequality.
Poincaré’s inequality implies that pθ = p1θ a.e. We complete the uniqueness proof.
Next we prove (3.3). Taking ξ = pθ − p0 in (3.2), we have

∫

Ω
k(θ)

∣
∣∇pθ

∣
∣
r
dx ≤

∫

Ω
k(θ)

∣
∣∇pθ

∣
∣
r−2∇pθ∇p0dx +

∫

Ω
β
∣
∣∇pθ

∣
∣
r0−2∇pθ∇p0dx. (3.22)

From (2.4), and the Hölder inequality, we obtain

k1

∫

Ω

∣
∣∇pθ

∣
∣
r
dx ≤ k2

(∫

Ω

∣
∣∇pθ

∣
∣
r
dx

)(r−1)/r(∫

Ω

∣
∣∇p0

∣
∣
r
dx

)1/r

+ β0

(∫

Ω

∣
∣∇pθ

∣
∣
r
dx

)(r0−1)/r(∫

Ω
|∇p0|r/(r−r0+1)dx

)(r−r0+1)/r
.

(3.23)
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Young’s inequality with ε implies

k1

∫

Ω

∣
∣∇pθ

∣
∣
r
dx ≤ ε

∫

Ω

∣
∣∇pθ

∣
∣
r
dx + C

(∫

Ω

∣
∣∇p0

∣
∣
r
dx +

∫

Ω

∣
∣∇p0

∣
∣
r/(r−r0+1)dx

)

(3.24)

and (3.3) follows immediately from (2.3) and (2.6).
Finally, we prove (3.4). From weak solution definition (3.2), we know that

∫

Ω

(

k(θm)
∣
∣∇pθm

∣
∣
r−2 + β

∣
∣∇pθm

∣
∣
r0−2

)

∇pθm∇ξ dx

=
∫

Ω

(

k(θ)
∣
∣∇pθ

∣
∣
r−2 + β

∣
∣∇pθ

∣
∣
r0−2

)

∇pθ∇ξ dx = 0.

(3.25)

Setting ξ = pθm − pθ and subtracting
∫

Ω(k(θm)|∇pθ|r−2 + β|∇pθ|r0−2)∇pθ∇ξ dx from both sides,
we obtain that

∫

Ω

[

k(θm)
(∣
∣∇pθm

∣
∣
r−2∇pθm − ∣

∣∇pθ
∣
∣
r−2∇pθ

)

+ β
(∣
∣∇pθm

∣
∣
r0−2pθm − ∣

∣∇pθ
∣
∣
r0−2∇pθ

)]

∇(

pθm − pθ
)

dx

=
∫

Ω
(k(θ) − k(θm))

∣
∣∇pθ

∣
∣
r−2∇pθ∇

(

pθm − pθ
)

dx.

(3.26)

Denote the right-hand side by Δ1. Similar to arguments in the uniqueness proof, we arrive at
the folloing:

(i)when r ≥ 2,

C

∫

Ω

∣
∣∇pθm − ∇pθ

∣
∣
r
dx ≤ Δ1; (3.27)

(ii)when 1 < r < 2,

C

(∫

Ω

∣
∣∇pθm − ∇pθ

∣
∣
r
dx

)2/r(∫

Ω

(

b +
∣
∣∇pθ

∣
∣ +

∣
∣∇pθm

∣
∣
)r
dx

)(r−2)/r
≤ Δ1. (3.28)

Egorov’s Theorem implies that for all ε > 0, there is a closed subsetΩε ofΩ such that |Ω\Ωε| <
ε and k(θm) → k(θ) uniformly onΩε. Application of the absolute continuity of the Lebesgue
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Integral implies

Δ1 ≤
∫

Ωε

+
∫

Ω\Ωε

|k(θm) − k(θ)|∣∣∇pθ
∣
∣
r−1∣

∣∇(

pθm − pθ
)∣
∣dx

≤ ε

[(∫

Ω

∣
∣∇pθ

∣
∣
r
dx

)(r−1)/r
+ 2k2

](∫

Ω

∣
∣∇(pθm − pθ)

∣
∣
r
dx

)1/r

−→ 0 as θm −→ θ.

(3.29)

Theorem 3.2 is proved.

4. Nonlinear Elliptic Dirichlet System

Definition 4.1. We say that {θ, p} is a weak solution to Problem 1 if

θ − θ0 ∈ H1,σ
0 (Ω), p − p0 ∈ H1,r

0 (Ω), (4.1)

and for all v ∈ C∞
0 (Ω)

−
∫

Ω
∇θ · ∇v dx =

∫

Ω

(

k(θ)
∣
∣∇p

∣
∣
r + q

)

v dx, (4.2)

and for all ξ ∈ H1,r
0 (Ω)

∫

Ω

(

k(θ)
∣
∣∇p

∣
∣
r−2 + β(x)

∣
∣∇p

∣
∣
r0−2

)

∇p · ∇ξ dx = 0. (4.3)

Theorem 4.2. Assume that (2.1)–(2.6) hold. Then there exists a weak solution to Problem 1 in the
sense of Definition 4.1.

We shall bound the critical growth, |∇p|r , on the right-hand side of (4.2).

Lemma 4.3. Suppose that θ and p satisfy

θ − θ0 ∈ H1,σ
0 (Ω), p − p0 ∈ H1,r

0 (Ω), (4.4)
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and (4.3). Then, under the conditions of Theorem 4.2, for all v ∈ C1(Ω)

∫

Ω
k(θ)

∣
∣∇p

∣
∣
r
vdx =

∫

Ω
k(θ)

∣
∣∇p

∣
∣
r−2∇p · ∇p0v dx

−
∫

Ω
k(θ)

∣
∣∇p

∣
∣
r−2∇p

(

p − p0
) · ∇v dx

−
∫

Ω
β
∣
∣∇p

∣
∣
r0−2∇p · ∇(

p − p0
)

v dx

−
∫

Ω
β
∣
∣∇p

∣
∣
r0−2∇p

(

p − p0
) · ∇v dx.

(4.5)

Moreover, there exists a polynomial F that is independent of θ and p such that

∫

Ω
k(θ)

∣
∣∇p

∣
∣
r
v dx ≤ F

(∥
∥p

∥
∥
H1,r(Ω)

)

‖v‖H1,σ∗ (Ω). (4.6)

Proof. We first show (4.5). Letting ξ = v(p − p0) in (4.3), we obtain

∫

Ω
k(θ)

∣
∣∇p

∣
∣
r−2∇p · [v ∇(

p − p0
)

+
(

p − p0
)∇v

]

dx

+
∫

Ω
β
∣
∣∇p

∣
∣
r−2∇p · [v ∇(

p − p0
)

+
(

p − p0
)∇v

]

dx = 0.

(4.7)

After some straightforward computations this yields exactly (4.5).
We now show (4.6). We denote the four terms on the right-hand side of equation (4.5)

by I, II, III, and IV, respectively. Under the conditions of Lemma 4.3, we have

∣
∣∇p

∣
∣
r−2∇p ∈ Lr∗(Ω), ∇p0 ∈ Lτ(Ω), r∗ =

r

r − 1
. (4.8)

Part (iii) of Lemma 2.1 and Sobolev’s imbedding theorems indicate

|I| ≤ k2
∥
∥∇p

∥
∥
r−1
Lr(Ω)

∥
∥∇p0

∥
∥
Lτ (Ω)‖v‖Lζ∗ (Ω)

≤ C
∥
∥∇p

∥
∥
r−1
Lr(Ω)

∥
∥∇p0

∥
∥
Lτ (Ω)‖v‖H1,σ∗ (Ω)

≤ C
∥
∥∇p

∥
∥
r−1
Lr(Ω)‖v‖H1,σ∗ (Ω),

(4.9)

where ζ∗ = τr/(τ − r) satisfies (r − 1)/r + 1/τ + 1/ζ∗ = 1.
According to Sobolev’s imbedding theorems, the integrability of (p − p0) depends on

N. We estimate II in three different cases.
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Case 1 (1 < r < N).

|II| ≤ C
∥
∥p − p0

∥
∥
LNr/(N−r)(Ω)

∥
∥∇p

∥
∥
r−1
Lr(Ω)‖∇v‖LN(Ω)

≤ C
(

‖p‖r
H1,r(Ω) + ‖p‖r−1

H1,r(Ω)

)

‖v‖H1,N(Ω).
(4.10)

Case 2 (r = N).

|II| ≤ C
∥
∥p − p0

∥
∥
Lq(Ω)

∥
∥∇p

∥
∥
r−1
Lr(Ω)‖∇v‖

Lqr/(q−r)(Ω) r < q < ∞

≤ C
(

‖p‖r
H1,r(Ω) + ‖p‖r−1

H1,r(Ω)

)

‖v‖
H1,qr/(q−r)(Ω).

(4.11)

Case 3 (r > N). p − p0 is a bounded continuous function, so

|II| ≤ C
∥
∥∇p

∥
∥
r−1
Lr(Ω)‖∇v‖Lr(Ω). (4.12)

We next estimate III:

|III| ≤
∣
∣
∣
∣

∫

Ω
β
∣
∣∇p

∣
∣
r0v dx

∣
∣
∣
∣
+
∣
∣
∣
∣

∫

Ω
β
∣
∣∇p

∣
∣
r0−2∇p · ∇p0v dx

∣
∣
∣
∣

≤ β0
∥
∥∇p

∥
∥
r0−1
Lr(Ω)‖v‖Lr/(r−r0)(Ω) + C

∥
∥∇p

∥
∥
r−1
Lr(Ω)‖v‖H1,σ∗ (Ω).

(4.13)

The estimate of the first term used Hölder inequality and Sobolev’s imbedding theorems. The
argument of the second estimate is similar to that of I.

Recall that 1 < r0 < r. Similar to II, we estimate IV in three different cases.

Case 1 (1 < r < N).

|IV| ≤ C
∥
∥p − p0

∥
∥
LNr/(N−r)(Ω)

∥
∥∇p

∥
∥
r0−1
Lr(Ω)‖∇v‖LNr/(N(r−r0)+r)(Ω). (4.14)

Since Nr/(N(r − r0) + r) < N, we have

|IV| ≤ C
(

‖p‖r0
H1,r(Ω) + ‖p‖r0−1

H1,r(Ω)

)

‖v‖H1,N(Ω). (4.15)

Case 2 (r = N).

|IV| ≤ C
∥
∥p − p0

∥
∥
Lq(Ω)

∥
∥∇p

∥
∥
r0−1
Lr(Ω)‖∇v‖Lqr/(q(r−r0)+q−r)(Ω) r < q < ∞. (4.16)

Since qr/(q(r − r0) + q − r) < qr/(q − r), we have

|IV| ≤ C
(

‖p‖r0
H1,r(Ω) + ‖p‖r0−1

H1,r(Ω)

)

‖v‖
H1,qr/(q−r)(Ω). (4.17)
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Case 3 (r > N).

|IV| ≤ C
∥
∥∇p

∥
∥
r0−1
Lr(Ω)‖∇v‖Lr(Ω). (4.18)

These estimates lead to

|I| + |II| + |III| + |IV| ≤ F
(∥
∥p

∥
∥
H1,r(Ω)

)

‖v‖H1,σ∗ (Ω) (4.19)

for some polynomial F.

Proof of Theorem 4.2. Using Theorem 3.2, let z ∈ H1,σ
0 (Ω) + θ0, then for (3.2) there exists a

unique solution pz satisfying

∥
∥pz

∥
∥
H1,r(Ω) ≤ C. (4.20)

Moreover, if limm→∞zm = z a.e. in Ω, then

lim
m→∞

pzm = pz strongly in H1,r(Ω). (4.21)

Next, using Lemma 4.3, we can define a linear functional Fz ∈ (H1,σ∗
(Ω))∗ determined

by

〈Fz, v〉 =
∫

Ω
k(θ)

∣
∣∇pz

∣
∣
r−2∇pz · ∇p0v dx

−
∫

Ω
k(θ)

∣
∣∇pz

∣
∣
r−2∇pz

(

pz − p0
) · ∇v dx

−
∫

Ω
β
∣
∣∇pz

∣
∣
r0−2∇pz · ∇

(

pz − p0
)

v dx

−
∫

Ω
β
∣
∣∇pz

∣
∣
r0−2∇pz

(

pz − p0
) · ∇v dx,

(4.22)

for all v ∈ H1,σ∗
(Ω). By virtue of (4.6), Fz is well defined, and there exists a constant C > 0

independent of z such that

|〈Fz, v〉| ≤ C‖v‖H1,σ∗ (Ω). (4.23)

We notice that (4.2) is the same as [11, equation (1.6)]. Therefore, arguments after [11,
equation (3.19)] can be used to complete the proof of Theorem 4.2.
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