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1. Introduction

It is well known that a number of problems inmechanics lead to studying the completeness of
all or part of the eigenvectors and joint vectors of certain polynomial operator groups and the
completeness of elementary solutions of the operator-differential equations corresponding
to these groups (see, e.g., [1, 2], and their references). In this case, it is first necessary to
investigate the correct solvability of Cauchy or boundary-value problems for these equations,
and only after this it will be possible to proceed to the abovementioned problems. The present
paper is dedicated to the problem of correct solvability of the boundary-value problem for
one class of operator-differential equations of the fourth order, considered on a semiaxis.

Let H be a separable Hilbert space and A be a self-adjoint positively defined operator
in H.
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Let us consider the following operator-differential equation of the fourth order:

Q

(
d

dt

)
u(t) ≡

(
d

dt
−A

)(
d

dt
+A

)3

u(t) +
3∑

s=1

As
d4−su(t)
dt4−s

= f(t), t ∈ R+ = [0;+∞), (1.1)

with the boundary conditions

dku(0)
dtk

= 0, k = 0, 1, 2, (1.2)

where f(t) ∈ L2(R+;H), u(t) ∈ W4
2 (R+;H), As, s = 1, 2, 3, are linear and generally

unbounded operators in H. Under L2(R+;H) and W4
2 (R+;H), the following Hilbert spaces

can be described:

L2(R+;H) =

{
f(t) :

∥∥f∥∥L2(R+;H) =
(∫+∞

0

∥∥f(t)∥∥2
Hdt

)1/2

< +∞
}
,

W4
2 (R+;H) =

⎧⎪⎨
⎪⎩u(t) : ‖u‖W4

2 (R+;H) =

⎛
⎝

∫+∞

0

⎛
⎝

∥∥∥∥∥
d4u(t)
dt4

∥∥∥∥∥
2

H

+
∥∥∥A4u(t)

∥∥∥2

H

⎞
⎠dt

⎞
⎠

1/2

< +∞

⎫⎪⎬
⎪⎭
(1.3)

(see [3–5]).

Definition 1.1. If the vector function u(t) ∈ W4
2 (R+;H) satisfies (1.1) almost everywhere in R+, then

it is called a regular solution of (1.1).

Definition 1.2. If for any f(t) ∈ L2(R+;H), there exists a regular solution of (1.1) which satisfies
boundary condition (1.2) in the sense that

lim
t→ 0

∥∥∥∥∥A7/2−k dku(t)
dtk

∥∥∥∥∥
H

= 0, k = 0, 1, 2, (1.4)

and the inequality

‖u‖W4
2 (R+;H) ≤ const

∥∥f∥∥L2(R+;H) (1.5)

holds, then it can be said that problem (1.1), (1.2) is regularly solvable.
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Let us define the following subspaces of the space W4
2 (R+;H):

o

W4
2 (R+;H) =

{
u(t) : u(t) ∈ W4

2 (R+;H),
dju(0)
dtj

= 0, j = 0, 1, 2, 3

}
,

o

W4
2 (R+;H; {k}) =

{
u(t) : u(t) ∈ W4

2 (R+;H),
dku(0)
dtk

= 0, k = 0, 1, 2

}
.

(1.6)

It should be noted that the solvability theory for the Cauchy problem and the
boundary-value problems for first- and second-order operator-differential equations have
been studied in more detail elsewhere. In addition to books [6, 7], these problems have been
considered also by Agmon and Nirenberg [8], Gasymov and Mirzoev [9], Kostyuchenko
and Shkalikov [10], and in works in their bibliographies. Other papers in which issues
of the solvability of various problems for operator-differential equations of higher order
have been studied have appeared alongside these works, and sufficiently interesting results
have been obtained. Among these papers are those by Gasymov [11, 12], Dubinskii
[13], Mirzoev [14], Shakhmurov [15], Shkalikov [16], Aliev [17, 18], Agarwal et al. [19],
Favini and Yakubov [20], the book by Yakubov [7], and other works listed in their
bibliographies.

Sufficient coefficient conditions for regular solvability of the boundary-value problem
stated in (1.1) and (1.2) are presented in this paper. To obtain these conditions, the main
challenge is to find the exact values of the norms of operators of intermediate derivatives in

subspaces
o

W4
2 (R+;H),

o

W4
2 (R+;H; {k}), the norms of which are expressed by the main part of

(1.1). This problem has its own mathematical interest (see, e.g., [21, 22], and works given in
their bibliographies). Estimation of the norms of operators of intermediate derivatives, which
are involved in the perturbed part of (1.1), is performed with the help of a factorization
method for one class of polynomial operator groups of eighth order, depending on a real
parameter. A similar approach has been presented in [9, 14], which makes it possible to
formulate solvability theorems for the boundary-value problems, with conditions which can
be easily checked.

It should be noted that if the main part of the equation has the operator in the form
(−d2/dt2 +A2)2, then a biharmonic equation results, which is of mathematical interest not
only theoretically, and also from a practical point of view. Many problems of elasticity
theory (e.g., the theory of bending of thin elastic slabs [23]) can be reduced to studying
the boundary-value problems for such equations. Much research has been performed to
investigate the solvability of such problems, for example, that reported in [24]. Operator-
differential equations, which are studied in the present paper, include the fourth-order
equations which arise when solving the stability problems of plates made of plastic material
(see [25, pages 185–196]). It is very difficult to solve such problems because the differential
equation must be solved in a more complete form, that is, when the main part of the equation
has terms containing du(t)/dt and d3u(t)/dt3. As a result, the equation has more complex
characteristics, and (1.1) is of this type.

Furthermore, let us denote by σ(A) the spectrum of the operator A.
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2. Auxiliary Results

First, let us study the main part of (1.1):

Q0

(
d

dt
;A

)
u(t) ≡

(
d

dt
−A

)(
d

dt
+A

)3

u(t) = f(t), (2.1)

where f(t) ∈ L2(R+;H).
The following theorem is true.

Theorem 2.1. Operator Q(k)
0 , acting from the space

o

W4
2 (R+;H; {k}) to L2(R+;H) in the following

way:

Q
(k)
0 u(t) ≡ Q0

(
d

dt
;A

)
u(t), u(t) ∈

o

W4
2 (R+;H; {k}), (2.2)

is an isomorphism between the spaces
o

W4
2 (R+;H; {k}) and L2(R+;H).

Proof. It holds that Q(k)
0 u(t) = f(t) has a solution u(t) ∈

o

W4
2 (R+;H; {k}) for any f(t) ∈

L2(R+;H). In fact, the vector function

v(t) =
1
2π

∫+∞

−∞
(−iξE +A)−3(−iξE −A)−1

(∫+∞

0
f(s)e−iξsds

)
eitξdξ, t ∈ R, (2.3)

satisfies the equation

(
d

dt
−A

)(
d

dt
+A

)3

v(t) = f(t) (2.4)

in R+ almost everywhere. Let us prove that v(t) ∈ W4
2 (R;H) (R = (−∞;+∞)). As is made

clear here, this means that

L2(R;H) =

{
f(t) :

∥∥f∥∥L2(R;H) =
(∫+∞

−∞

∥∥f(t)∥∥2
Hdt

)1/2

< +∞
}
,

W4
2 (R;H) =

⎧⎪⎨
⎪⎩u(t) : ‖u‖W4

2 (R;H) =

⎛
⎝

∫+∞

−∞

⎛
⎝

∥∥∥∥∥
d4u(t)
dt4

∥∥∥∥∥
2

H

+
∥∥∥A4u(t)

∥∥∥2

H

⎞
⎠dt

⎞
⎠

1/2

< +∞

⎫⎪⎬
⎪⎭.

(2.5)
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From the Plancherel theorem, it follows that it is sufficient to show that A4ṽ(ξ), ξ4ṽ(ξ) ∈
L2(R;H), where ṽ(ξ) is the Fourier transform of the vector function v(t). From the spectral
theory of self-adjoint operators,

∥∥∥A4ṽ(ξ)
∥∥∥
L2(R;H)

=
∥∥∥A4(−iξE +A)−3(−iξE −A)−1f̃(ξ)

∥∥∥
L2(R;H)

≤
∥∥∥A4(−iξE +A)−3(−iξE −A)−1

∥∥∥
H→H

∥∥∥f̃(ξ)∥∥∥
L2(R;H)

≤ sup
σ∈σ(A)

∣∣∣σ4(−iξ + σ)−3(−iξ − σ)−1
∣∣∣
∥∥∥f̃(ξ)

∥∥∥
L2(R;H)

= const
∥∥∥f̃(ξ)∥∥∥

L2(R;H)
= const

∥∥f∥∥L2(R;H).

(2.6)

Here f̃(ξ) is the Fourier transform of the vector function f(t). Analogously, it is possible to
prove that ξ4ṽ(ξ) ∈ L2(R;H). Consequently, v(t) ∈ W4

2 (R;H). Furthermore, let us denote by
u1(t) the narrowing of the vector function v(t) on [0;+∞). It is clear that u1(t) ∈ W4

2 (R+;H).
Now,

u(t) = u1(t) + e−tAη0 + tAe−tAη1 + t2A2e−tAη2, t ∈ R+, (2.7)

where the vectors ηl ∈ D(A7/2−l), l = 0, 2, and are defined by the condition u(t) ∈
o

W4
2 (R+;H; {k}). This is why the following system of equations can be obtained relatively

to ηl, l = 0, 2:

u1(0) + η0 = 0,

du1(0)
dt

−Aη0 +Aη1 = 0,

d2u1(0)
dt2

+A2η0 − 2A2η1 + 2A2η2 = 0.

(2.8)

From this, it is possible to obtain the operator equation,

M(E)η = ζ, (2.9)

where

M(E) =

⎛
⎜⎜⎝

E 0 0

−E E 0

E −2E 2E

⎞
⎟⎟⎠, η =

⎛
⎜⎜⎝

η0

η1

η2

⎞
⎟⎟⎠, ζ =

⎛
⎜⎜⎜⎜⎜⎝

−u1(0)

−A−1du1(0)
dt

−A−2d
2u1(0)
dt2

⎞
⎟⎟⎟⎟⎟⎠

. (2.10)

Because u1(t) ∈ W4
2 (R+;H), then from the theorem on trace [3–5, Chapter 1], it follows

that all elements of the vector ζ belong to D(A7/2). Continuing this process, it is apparent
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that the operator matrix M(E) is boundedly invertible in H3 =
⊕3

p=1H. Therefore, all

ηl ∈ D(A7/2), l = 0, 2. Consequently, u(t) ∈
o

W4
2 (R+;H; {k}). In the same way, it can be

established that the equation Q
(k)
0 u(t) = 0 has only a trivial solution.

Operator Q(k)
0 is bounded, because

∥∥∥Q(k)
0 u

∥∥∥2

L2(R+;H)
=

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+ 4

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

+ 4
∥∥∥∥A3du

dt

∥∥∥∥
2

L2(R+;H)
+
∥∥∥A4u

∥∥∥2

L2(R+;H)

+ 4Re

(
d4u

dt4
, A

d3u

dt3

)
L2(R+;H)

− 4Re

(
d4u

dt4
, A3du

dt

)
L2(R+;H)

− 2Re

(
d4u

dt4
, A4u

)
L2(R+;H)

− 8Re

(
A
d3u

dt3
, A3du

dt

)
L2(R+;H)

− 4Re

(
A
d3u

dt3
, A4u

)
L2(R+;H)

+ 4Re
(
A3du

dt
,A4u

)
L2(R+;H)

≤ 3

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+ 6

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

+ 6

∥∥∥∥∥A2d
2u

dt2

∥∥∥∥∥
2

L2(R+;H)

+ 4
∥∥∥∥A3du

dt

∥∥∥∥
2

L2(R+;H)
+
∥∥∥A4u

∥∥∥2

L2(R+;H)

≤ const ‖u‖2
W4

2 (R+;H),

(2.11)

because for u(t) ∈
o

W4
2 (R+;H; {k})

2Re

(
d4u

dt4
, A3du

dt

)
L2(R+;H)

= 0, 2Re

(
d4u

dt4
, A4u

)
L2(R+;H)

= 2

∥∥∥∥∥A2d
2u

dt2

∥∥∥∥∥
2

L2(R+;H)

,

2Re

(
A
d3u

dt3
, A3du

dt

)
L2(R+;H)

= −2
∥∥∥∥∥A2d

2u

dt2

∥∥∥∥∥
2

L2(R+;H)

, 2Re

(
A
d3u

dt3
, A4u

)
L2(R+;H)

= 0,

2Re
(
A3du

dt
,A4u

)
L2(R+;H)

= 0.

(2.12)
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The theorem on intermediate derivatives [3–5, Chapter 1] can be used to obtain the last
inequality, with the inequality

∥∥∥∥∥Aj d
4−ju
dt4−j

∥∥∥∥∥
L2(R+;H)

≤ cj‖u‖W4
2 (R+;H), j = 0, 4, (2.13)

assumed. Moreover, the Bunyakovsky-Schwartz and Young inequalities,

Re

(
d4u

dt4
, A

d3u

dt3

)
L2(R+;H)

≤
∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
L2(R+;H)

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
L2(R+;H)

≤ 1
2

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+
1
2

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

,

(2.14)

are used in the expression Re (d4u/dt4, A(d3u/dt3))L2(R+;H).

As a result, Q
(k)
0 is bounded and acts mutually and uniquely from the space

o

W4
2 (R+;H; {k}) to the space L2(R+;H). Then, taking into account the Banach theorem on

the inverse operator, it can be established that the operator Q(k)
0 carries out the isomorphism

from the space
o

W4
2 (R+;H; {k}) to L2(R+;H). Thus, the theorem is proved.

Denoting by Q
(k)
1 the operator which acts from

o

W4
2 (R+;H; {k}) to L2(R+;H) in the

following way:

Q
(k)
1 u(t) ≡

3∑
s=1

As
d4−su(t)
dt4−s

, u(t) ∈
o

W4
2 (R+;H; {k}), (2.15)

the following statement results.

Lemma 2.2. Let AsA
−s, s = 1, 2, 3, be bounded operators inH. Then the operator Q(k)

1 is a bounded

operator from
o

W4
2 (R+;H; {k}) to L2(R+;H).

Proof. Because for any vector function u(t) ∈
o

W4
2 (R+;H; {k}),

∥∥∥Q(k)
1 u

∥∥∥
L2(R+;H)

≤
3∑

s=1

∥∥∥A4−sA−4+s
∥∥∥
H→H

∥∥∥∥A4−s d
su

dts

∥∥∥∥
L2(R+;H)

, (2.16)
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then, from the theorem on intermediate derivatives [3–5, Chapter 1], and from (2.16), we get

∥∥∥Q(k)
1 u

∥∥∥
L2(R+;H)

≤ const ‖u‖W4
2 (R+;H). (2.17)

Thus, the lemma is proved.

Now certain properties of polynomial operator groups will be investigated, which will
have in the future a special role.

Let the following hold:

as =
1
256

ss(4 − s)4−s, s = 1, 2, 3. (2.18)

Consider the following polynomial operator groups which depend on the parameter α ∈
[0;a−1

s ), s = 1, 2, 3:

Qs(λ;α;A) =
(
λ2E −A2

)4 − α(iλ)2sA8−2s, s = 1, 2, 3 (2.19)

The following can then be established.

Lemma 2.3. Let α ∈ [0;a−1
s ), s = 1, 2, 3. Then the polynomial operator groups Qs(λ;α;A), s =

1, 2, 3, are invertible on the imaginary axis and can be represented as follows:

Qs(λ;α;A) = Fs(λ;α;A)Fs(−λ;α;A), s = 1, 2, 3; (2.20)

moreover,

Fs(λ;α;A) =
4∏

n=1

(λE −ωs,n(α)A)

≡ λ4E + d1,s(α)λ3A + d2,s(α)λ2A2 + d3,s(α)λA3 +A4,

(2.21)

where Reωs,n(α) < 0, n = 1, 2, 3, 4, and the numbers d1,s(α), d2,s(α), d3,s(α) satisfy the following
systems of equations:

(1) for k = 1

−d2
1,1(α) + 2d2,1(α) + 4 = 0,

d2
2,1(α) − 2d1,1(α)d3,1(α) − 4 = 0,

−d2
3,1(α) + 2d2,1(α) + 4 = α;

(2.22)
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(2) for k = 2

2d2,2(α) − d2
1,2(α) + 4 = 0,

d2
2,2(α) − 2d1,2(α)d3,2(α) − 4 = −α,

−d2
3,2(α) + 2d2,2(α) + 4 = 0;

(2.23)

(3) for k = 3

−d2
1,3(α) + 2d2,3(α) + 4 = α,

d2
2,3(α) − 2d1,3(α)d3,3(α) − 4 = 0,

−d2
3,3(α) + 2d2,3(α) + 4 = 0.

(2.24)

Proof. Characteristic polynomials of the operator groups Qs(λ;α;A), s = 1, 2, 3, are

Qs(λ;α;σ) =
(
λ2 − σ2

)4 − α(iλ)2sσ8−2s, s = 1, 2, 3, (2.25)

where σ ∈ σ(A). Let λ = iξ, ξ ∈ R = (−∞;+∞). Then it is clear that for these characteristic
polynomials, the following correlations are true:

Qs(λ;α;σ) = Qs(iξ;α;σ)

= σ8

(
ξ2

σ2
+ 1

)4[
1 − α

(ξ2/σ2)s

(ξ2/σ2 + 1)4

]

≥ σ8

(
ξ2

σ2
+ 1

)4[
1 − α sup

ξ2/σ2≥0

(ξ2/σ2)s

(ξ2/σ2 + 1)4

]
, s = 1, 2, 3.

(2.26)

Because

sup
ξ2/σ2≥0

(ξ2/σ2)s

(ξ2/σ2 + 1)4
= as, s = 1, 2, 3, (2.27)

then

Qs(iξ;α;σ) > 0 (2.28)

for α ∈ [0;a−1
s ), s = 1, 2, 3. From (2.28), it becomes clear that the polynomials Qs(λ;α;σ) do

not have roots on the imaginary axis for α ∈ [0;a−1
s ), s = 1, 2, 3. Each of the characteristic

polynomials Qs(λ;α;σ) for σ ∈ σ(A) has exactly four roots from the left semiplane. Because
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these polynomials are homogeneous with respect to the arguments λ and σ, they can be stated
in the following form:

Qs(λ;α;σ) = Fs(λ;α;σ)Fs(−λ;α;σ), s = 1, 2, 3, (2.29)

where

Fs(λ;α;σ) =
4∏

n=1

(λ −ωs,n(α)σ)

≡ λ4 + d1,s(α)λ3σ + d2,s(α)λ2σ2 + d3,s(α)λσ3 + σ4,

(2.30)

and moreover Re ωs,n(α) < 0, n = 1, 2, 3, 4, and the numbers d1,s(α), d2,s(α), d3,s(α) satisfy
the systems of equations shown in Lemma 2.3, which are obtained from (2.29) in the process
of comparing the coefficients for the same degrees. Then, from the spectral decomposition
of operator A, the proof of the lemma can be obtained from (2.29). Thus, the lemma is
proved.

The next step is to prove the theorem, which will play an important role in future
investigations and will show the special importance of the spectral properties of the
polynomial operator groups Qs(λ;α;A) and Fs(λ;α;A), s = 1, 2, 3.

Theorem 2.4. Let α ∈ [0;a−1
s ). Then for any u(t) ∈ W4

2 (R+;H), the following equality is true:

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

− α

∥∥∥∥A4−s d
su

dts

∥∥∥∥
2

L2(R+;H)

=
∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
+
(
Rs(α)ϕ, ϕ

)
H4 ,

(2.31)

where

H4 =
4⊕

p=1

H,

Rs(α) =

⎛
⎜⎜⎜⎜⎜⎝

d3,s(α) − 2 d2,s(α) d1,s(α) + 2 2

d2,s(α) d2,s(α)d3,s(α) − d1,s(α) − 2 d1,s(α)d3,s(α) + 2 d3,s(α) + 2

d1,s(α) + 2 d1,s(α)d3,s(α) + 2 d1,s(α)d2,s(α) − d3,s(α) − 2 d2,s(α)

2 d3,s(α) + 2 d2,s(α) d1,s(α) − 2

⎞
⎟⎟⎟⎟⎟⎠

,

ϕ =

(
ϕl = A4−l−1/2d

lu(0)
dtl

)3

l=0

.

(2.32)
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Proof. First define the space D4(R+;H) as the set of infinitely differentiable functions with
values in D(A4), having compact support in R+. Because the space D4(R+;H) is dense in
W4

2 (R+;H) (see [3–5, Chapter 1]), it is sufficient to prove the theorem for the vector functions
u(t) ∈ D4(R+;H). Then

∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)

=

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+ d2
1,s(α)

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

+ d2
2,s(α)

∥∥∥∥∥A2d
2u

dt2

∥∥∥∥∥
2

L2(R+;H)

+ d2
3,s(α)

∥∥∥∥A3du

dt

∥∥∥∥
2

L2(R+;H)
+
∥∥∥A4u

∥∥∥2

L2(R+;H)
+ 2d1,s(α)Re

(
d4u

dt4
, A

d3u

dt3

)
L2(R+;H)

+ 2d2,s(α)Re

(
d4u

dt4
, A2d

2u

dt2

)
L2(R+;H)

+ 2d3,s(α)Re

(
d4u

dt4
, A3du

dt

)
L2(R+;H)

+ 2Re

(
d4u

dt4
, A4u

)
L2(R+;H)

+ 2d1,s(α)d2,s(α)Re

(
A
d3u

dt3
, A2d

2u

dt2

)
L2(R+;H)

+ 2d1,s(α)d3,s(α)Re

(
A
d3u

dt3
, A3du

dt

)
L2(R+;H)

+ 2d1,s(α)Re

(
A
d3u

dt3
, A4u

)
L2(R+;H)

+ 2d2,s(α)d3,s(α)Re

(
A2d

2u

dt2
, A3du

dt

)
L2(R+;H)

+ 2d2,s(α)Re

(
A2d

2u

dt2
, A4u

)
L2(R+;H)

+ 2d3,s(α)Re
(
A3du

dt
,A4u

)
L2(R+;H)

.

(2.33)

After integration by parts,

∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
=

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+
(
d2
1,s(α) − 2d2,s(α)

) ∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

+
(
d2
3,s(α) − 2d2,s(α)

)∥∥∥∥A3du

dt

∥∥∥∥
2

L2(R+;H)
+
∥∥∥A4u

∥∥∥2

L2(R+;H)

+
(
2 − 2d1,s(α)d3,s(α) + d2

2,s(α)
)∥∥∥∥∥A2d

2u

dt2

∥∥∥∥∥
2

L2(R+;H)
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− d1,s(α)
∥∥ϕ3

∥∥2 − 2d2,s(α)Re
(
ϕ3, ϕ2

)

+ (d3,s(α) − d1,s(α)d2,s(α))
∥∥ϕ2

∥∥2

− 2d3,s(α)Re
(
ϕ3, ϕ1

) − 2Re
(
ϕ3, ϕ0

)

+ (2 − 2d1,s(α)d3,s(α))Re
(
ϕ2, ϕ1

) − 2d1,s(α)Re
(
ϕ2, ϕ0

)

+ (d1,s(α) − d2,s(α)d3,s(α))
∥∥ϕ1

∥∥2

− 2d2,s(α)Re
(
ϕ1, ϕ0

) − d3,s(α)
∥∥ϕ0

∥∥2
.

(2.34)

Calculating ‖(d/dt −A)(d/dt +A)3u‖2L2(R+;H) analogously to ‖Fs(d/dt;α;A)u‖2L2(R+;H),

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

=

∥∥∥∥∥
d4u

dt4

∥∥∥∥∥
2

L2(R+;H)

+ 4

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
2

L2(R+;H)

+ 6

∥∥∥∥∥A2d
2u

dt2

∥∥∥∥∥
2

L2(R+;H)

+ 4
∥∥∥∥A3du

dt

∥∥∥∥
2

L2(R+;H)
+
∥∥∥A4u

∥∥∥2

L2(R+;H)
− 2

∥∥ϕ3
∥∥2

− 2
∥∥ϕ2

∥∥2 + 4Re
(
ϕ3, ϕ1

)
+ 2Re

(
ϕ3, ϕ0

)

+ 6Re
(
ϕ2, ϕ1

)
+ 4Re

(
ϕ2, ϕ0

) − 2
∥∥ϕ1

∥∥2 − 2
∥∥ϕ0

∥∥2
.

(2.35)

Substituting (2.35) into (2.34), from Lemma 2.3, (2.31) can be obtained. Thus, the theorem is
proved.

From Theorem 2.4, it follows that:

Corollary 2.5. If u(t) ∈
o

W4
2 (R+;H) and α ∈ [0;a−1

s ), then

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

− α

∥∥∥∥A4−s d
su

dts

∥∥∥∥
2

L2(R+;H)
=
∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
. (2.36)

Note that from Theorem 2.1, ‖Q(k)
0 u‖

L2(R+;H) is the norm in the space
o

W4
2 (R+;H; {k}),

which is equivalent to the initial norm ‖u‖W4
2 (R+;H). Because the operators of the intermediate
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derivatives

A4−s d
s

dts
:

o

W4
2 (R+;H; {k}) −→ L2(R+;H), s = 1, 2, 3, (2.37)

are continuous [3–5, Chapter 1], then the norms of these operators can be estimated
using ‖Q(k)

0 u‖
L2(R+;H). It is also easy to demonstrate that the norms ‖u‖W4

2 (R+;H) and

‖(d/dt −A)(d/dt +A)3u‖L2(R+;H) are equivalent in the space
o

W4
2 (R+;H).

3. Norms of the Operators of Intermediate Derivatives

The rest of this paper will be related to the calculation of the following numbers:

m0,s = sup
0/=u∈

o

W4
2 (R+;H)

∥∥∥∥A4−s d
su

dts

∥∥∥∥
L2(R+;H)

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
−1

L2(R+;H)

,

mk,s = sup
0/=u∈

o

W4
2 (R+;H;{k})

∥∥∥∥A4−s d
su

dts

∥∥∥∥
L2(R+;H)

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
−1

L2(R+;H)

.

(3.1)

First, let us calculate m0,s.

Lemma 3.1. It holds that m0,s = a1/2
s , s = 1, 2, 3.

Proof. As (2.36) goes to the limit as α → a−1
s , it is apparent that for any vector function

u(t) ∈
o

W4
2 (R+;H), the following inequality:

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

≥ a−1
s

∥∥∥∥A4−s d
su

dts

∥∥∥∥
2

L2(R+;H)
(3.2)

is true. Thus, m0,s ≤ a1/2
s , s = 1, 2, 3. Furthermore, it is necessary to show that here the

equalities m0,s = a1/2
s , s = 1, 2, 3 also hold. This can be done by taking an arbitrary number

δ > 0 and showing that there exists a vector function uδ(t) ∈
o

W4
2 (R+;H) such that the

following holds functional:

Λ(uδ) ≡
∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

uδ

∥∥∥∥∥
2

L2(R+;H)

−
(
a−1
s + δ

)∥∥∥∥A4−s d
suδ

dts

∥∥∥∥
2

L2(R+;H)
< 0. (3.3)
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Let the vector ς ∈ D(A8) and ‖ς‖ = 1, h(t) be the numeral function; moreover, h(t)ς ∈
W4

2 (R;H). Then using the Parseval equality, it is possible to obtain

Λ(h(t)ς) =

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

h(t)ς

∥∥∥∥∥
2

L2(R;H)

−
(
a−1
s + δ

)∥∥∥∥A4−s d
sh(t)
dts

ς

∥∥∥∥
2

L2(R;H)

=
∫+∞

−∞

[
(Q0(−iξ;A)ς,Q0(−iξ;A)ς)

∣∣∣h̃(ξ)
∣∣∣2 − (

a−1
s + δ

)
ξ2s

(
A4−sς,A4−sς

)∣∣∣h̃(ξ)
∣∣∣2
]
dξ

=
∫+∞

−∞

(
Q0(−iξ;A)Q0(−iξ;A)ς −

(
a−1
s + δ

)
ξ2sA8−2sς, ς

)∣∣∣h̃(ξ)
∣∣∣2dξ

=
∫+∞

−∞
φ(ξ; ς)

∣∣∣h̃(ξ)
∣∣∣2dξ,

(3.4)

where φ(ξ; ς) = (Qs(iξ;a−1
s + δ;A)ς, ς).

It will next be shown that φ(ξ; ς) for a given vector ς has negative values in some
interval (ε0; ε1). If μ0 is an eigenvalue of the operator A(μ0 > 0), and if ς is its eigenvector,
then it is obvious that

φ(ξ; ς) =
(
Qs

(
iξ;a−1

s + δ;A
)
ς, ς

)
=
(
Qs

(
iξ;a−1

s + δ;μ0

)
ς, ς

)
, (3.5)

and, as can be seen from the properties of the polynomial Qs(iξ;α;μ0), is negative for α =
a−1
s + δ for sufficiently small δ > 0. If μ0 ∈ σ(A) is not the eigenvalue, then μ0 is close to an

eigenvalue, that is, there exists ςδ such that ‖ςδ‖ = 1 and

φ(ξ; ςδ) = Qs

(
iξ;a−1

s + δ;μ0

)
ςδ + o(δ) as δ −→ 0, (3.6)

because in this case, for sufficiently small δ, the smallest value is negative for some ςδ. Then
there exists an interval (ε0; ε1) such that φ(ξ; ς) < δ for ξ ∈ (ε0; ε1).

Now consider the four times differentiable function h̃(ξ), support of which comes from
the interval (ε0; ε1). Then from (3.4) and from the negativity of φ(ξ; ςδ) in the interval (ε0; ε1),
it can be determined that

Λ(h(t)ςδ) =
∫ ε1

ε0

φ(ξ; ςδ)
∣∣∣h̃(ξ)

∣∣∣2dξ < 0. (3.7)

Consequently, m0,s = a1/2
s , s = 1, 2, 3, and the lemma is proved.
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Because
o

W4
2 (R+;H) ⊂

o

W4
2 (R+;H; {k}), then mk,s ≥ m0,s = a1/2

s , s = 1, 2, 3. It is

necessary to note that, for any vector function u(t) ∈
o

W4
2 (R+;H; {k}) and α ∈ [0;a−1

s ), the
equality

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

− α

∥∥∥∥A4−s d
su

dts

∥∥∥∥
2

L2(R+;H)

=
∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
+
(
Rs(α; k)ϕ̃, ϕ̃

)
H

(3.8)

is true, whereRs(α; k) = d1,s(α)−2 is obtained fromRs(α) by removing the first three rows and
columns, ϕ̃ = A1/2(d3u(0)/dt3). The correctness of (3.8) follows directly from Theorem 2.4.

The following statement indicates when the numbers mk,s, s = 1, 2, 3, can be equal to
a1/2
s , s = 1, 2, 3.

Lemma 3.2. To establish the condition mk,s = a1/2
s , it is necessary and sufficient that Rs(α; k) be

positive for any α ∈ [0;a−1
s ).

Proof. Necessity will be shown first. Let mk,s = a1/2
s . Then, from (3.8), for any vector function

u(t) ∈
o

W4
2 (R+;H; {k}) and α ∈ [0;a−1

s ),

∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
+
(
Rs(α; k)ϕ̃, ϕ̃

)
H ≥

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

(
1−αm2

k,s

)
>0.

(3.9)

Because the polynomial operator group Fs(λ;α;A) for α ∈ [0;a−1
s ) has the form

Fs(λ;α;A) =
4∏

n=1

(λE −ωs,n(α)A) (3.10)

(see Lemma 2.3), where Reωs,n(α) < 0, n = 1, 2, 3, 4, then the Cauchy problem,

Fs

(
d

dt
;α;A

)
u(t) = 0, (3.11)

dku(0)
dtk

= 0, k = 0, 1, 2, (3.12)

d3u(0)
dt3

= A−1/2ϕ̃, ϕ̃ ∈ H, (3.13)

has a unique solution uα(t) ∈ W4
2 (R+;H), which can be presented in the form

uα(t) = eωs,1(α)tAψ0 + eωs,2(α)tAψ1 + eωs,3(α)tAψ2 + eωs,4(α)tAψ3, (3.14)
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where ψ0, ψ1, ψ2, ψ3 ∈ D(A7/2) are uniquely determined from the conditions at zero in
(3.12) and (3.13). As a result, writing inequality (3.9) for the vector function uα(t), for
α ∈ [0;a−1

s )(Rs(α; k)ϕ̃, ϕ̃)H > 0. Necessity is thereby proved.
Now sufficiency must be proved. If for any α ∈ [0;a−1

s ), Rs(α; k) is positive, then from

(3.8), it follows that for all u(t) ∈
o

W4
2 (R+;H; {k}) and α ∈ [0;a−1

s ),

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

≥ α

∥∥∥∥A4−s d
su

dts

∥∥∥∥
2

L2(R+;H)
. (3.15)

As this expression goes to the limit as α → a−1
s , it can be observed that mk,s ≤ a1/2

s , and from
this, mk,s = a1/2

s . Sufficiency is thereby proved, and thus the lemma is completely proved.
It is interesting that for some s, it may occur thatmk,s > a1/2

s .

Lemma 3.3. It holds that mk,s > a1/2
s if and only if Rs(α; k) = 0 has a solution in the interval

(0;a−1
s ); moreover, this root is equal tom−2

k,s
.

Proof. Let mk,s > a1/2
s , thenm−2

k,s
∈ (0;a−1

s ). From (3.8), for α ∈ (0;m−2
k,s
),

∥∥∥∥Fs

(
d

dt
;α;A

)
u

∥∥∥∥
2

L2(R+;H)
+
(
Rs(α; k)ϕ̃, ϕ̃

)
H ≥

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

u

∥∥∥∥∥
2

L2(R+;H)

(
1−αm2

k,s

)
>0.

(3.16)

Substituting the solution of (3.11)–(3.13) into the last inequality, the result is that
Rs(α; k) is positive for α ∈ [0;m−2

k,s
). From the definition of mk,s, for α ∈ (m−2

k,s
;a−1

s ), there

exists a vector function vα(t) ∈
o

W4
2 (R+;H; {k}) such that

∥∥∥∥∥
(

d

dt
−A

)(
d

dt
+A

)3

vα

∥∥∥∥∥
2

L2(R+;H)

< α

∥∥∥∥A4−s d
svα

dts

∥∥∥∥
2

L2(R+;H)
. (3.17)

From the last inequality in (3.8), it is possible to obtain

∥∥∥∥Fs

(
d

dt
;α;A

)
vα

∥∥∥∥
2

L2(R+;H)
+
(
Rs(α; k)ϕ̃α, ϕ̃α

)
H < 0, (3.18)

where

ϕ̃α = A1/2d
3vα(0)
dt3

. (3.19)

Thus, there exists a vector ϕ̃α ∈ H such that for α ∈ (m−2
k,s
;a−1

s ), (Rs(α; k)ϕ̃α, ϕ̃α)H < 0. Because
Rs(α; k) is a continuous function of the argument α ∈ [0;a−1

s ), then Rs(m−2
k,s
; k) = 0, and this

means that Rs(α; k) = 0 has a root in the interval (0;a−1
s ).
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Inversely, if Rs(α; k) = 0 has a root in the interval (0;a−1
s ), then this means that for any

α ∈ [0;a−1
s ), the number Rs(α; k) cannot be positive. This is why, from Lemma 3.2,mk,s > a1/2

s .
Denoting the root of Rs(α; k) = 0 by μk,s, it can be seen thatm−2

k,s ≤ μk,s, because from the proof
of the lemma, it was obtained that for α ∈ [0;m−2

k,s), Rs(α; k) is positive. Moreover, because
Rs(m−2

k,s; k) = 0, it can be determined thatm−2
k,s = μk,s. The lemma is thereby proved.

By generalizing the last two lemmas, the following theorem can be derived.

Theorem 3.4. The following equality is true:

mk,s =

⎧⎨
⎩
a1/2
s for Rs

(
γ ; k

)
/= 0, γ ∈ (

0;a−1
s

)
,

μ−1/2
k,s

otherwise.
(3.20)

Remark 3.5. In the same way, it is possible to determine the results for boundary-value problems of the
form (1.1), (1.2) for k having any three values from the collection {0; 1; 2; 3}.

By considering concretely the cases s, the following statement results.

Theorem 3.6. mk,1 = 1/
√
3; mk,2 = 1/2

√
3; mk,3 = a1/2

3 .

Proof. Taking into account the abovementioned procedure for finding the numbers mk,s, it
is necessary to solve the systems from the proof of Lemma 2.3 together with the equation
Rs(α; k) = 0.

In the case s = 1, it can be determined that d1,1(α) = 2 ⇒ d2,1(α) = 0 ⇒ d3,1(α) = −1 ⇒
α = 3 ∈ (0;a−1

1 ). This is why mk,1 = 1/
√
3. To find the number mk,2, it is necessary to solve

the system from Lemma 2.3 for s = 2 together with the equation d1,2(α) − 2 = 0. In this case,
d1,2(α) = 2, d2,2(α) = 0, d3,2(α) = ±2, and consequently α = 12 ∈ (0;a−1

2 ) and α = −4/∈ (0;a−1
2 ).

As a result, mk,2 = 1/2
√
3. In the case s = 3, it is found that d1,3(α) = 2. Then, from the

corresponding system, it can be obtained that 2d2,3(α) = α and d4
2,3(α) − 8d2

2,3(α) − 32d2,3(α) −
48 = 0 or (d2,3(α)+2)(d3

2,3(α)−2d2
2,3(α)−4d2,3(α)−24) = 0. It is clear that d2,3(α) = −2 ⇒ d3,3(α) =

0 ⇒ α = −4/∈ (0;a−1
3 ). From the other side, if in the equation d3

2,3(α)−2d2
2,3(α)−4d2,3(α)−24 = 0,

it is assumed that 2d2,3(α) = α, then the result is that α3 − 4α2 − 16α − 192 = 0, which has
only one real root, α = (1/3)( 3

√
−2944 + 2

√
2113423− 3

√
2944 + 2

√
2113423)/∈ (0;a−1

3 ). Therefore,
mk,3 = a1/2

3 , and the theorem is proved.

4. Solvability Conditions for the Boundary-Value Problem (1.1), (1.2)

The results obtained make it possible to determine sufficient coefficient conditions of regular
solvability for the boundary-value problem (1.1), (1.2). In particular, the following main
theorem is true.
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Theorem 4.1. Let the operators AsA
−s, s = 1, 2, 3, be bounded inH so that the inequality

mk,1

∥∥∥A1A
−1
∥∥∥
H→H

+mk,2

∥∥∥A2A
−2
∥∥∥
H→H

+mk,3

∥∥∥A3A
−3
∥∥∥
H→H

< 1 (4.1)

is satisfied, where the numbers mk,s, s = 1, 2, 3, are as defined in Theorem 3.6. Then the boundary-
value problem (1.1), (1.2) is regularly solvable.

Proof. The boundary-value problem (1.1), (1.2) can be presented in the form of the operator

equation Q
(k)
0 u(t) + Q

(k)
1 u(t) = f(t), where f(t) ∈ L2(R+;H), u(t) ∈

o

W4
2 (R+;H; {k}). From

Theorem 2.1, it follows that the operator Q
(k)
0 has a bounded inverse operator Q

(k)−1

0 which

acts from the space L2(R+;H) into the space
o

W4
2 (R+;H; {k}). Then, after substitution of

u(t) = Q
(k)−1

0 v(t), where v(t) ∈ L2(R+;H), the equation (E + Q
(k)
1 Q

(k)−1

0 )v(t) = f(t) results.
Now it must be shown that whenever the conditions of the theorem are met, the norm of the
operator Q(k)

1 Q
(k)−1

0 is less than one. Assuming Theorem 3.6, the following can be obtained:

∥∥∥Q(k)
1 Q

(k)−1

0 v
∥∥∥
L2(R+;H)

=
∥∥∥Q(k )

1 u
∥∥∥
L2(R+;H)

≤
∥∥∥∥∥A1

d3u

dt3

∥∥∥∥∥
L2(R+;H)

+

∥∥∥∥∥A2
d2u

dt2

∥∥∥∥∥
L2(R+;H)

+
∥∥∥∥A3

du

dt

∥∥∥∥
L2(R+;H)

≤
∥∥∥A1A

−1
∥∥∥
H→H

∥∥∥∥∥A
d3u

dt3

∥∥∥∥∥
L2(R+;H)

+
∥∥∥A2A

−2
∥∥∥
H→H

∥∥∥∥∥A2d
2u

dt2

∥∥∥∥∥
L2(R+;H)

+
∥∥∥A3A

−3
∥∥∥
H→H

∥∥∥∥A3du

dt

∥∥∥∥
L2(R+;H)

≤
(
mk,1

∥∥∥A1A
−1
∥∥∥
H→H

+mk,2

∥∥∥A2A
−2
∥∥∥
H→H

+mk,3

∥∥∥A3A
−3
∥∥∥
H→H

)∥∥∥Q(k)
0 u

∥∥∥
L2(R+;H)

=
(
mk,1

∥∥∥A1A
−1
∥∥∥
H→H

+mk,2

∥∥∥A2A
−2
∥∥∥
H→H

+mk,3

∥∥∥A3A
−3
∥∥∥
H→H

)
‖υ‖L2(R+;H).

(4.2)

As a result:

∥∥∥Q(k)
1 Q

(k)−1

0

∥∥∥
L2(R+;H)→L2(R+;H)

≤ mk,1

∥∥∥A1A
−1
∥∥∥
H→H

+mk,2

∥∥∥A2A
−2
∥∥∥
H→H

+mk,3

∥∥∥A3A
−3
∥∥∥
H→H

< 1.
(4.3)

Then, in this case, the operator E +Q
(k)
1 Q

(k)−1

0 has an inverse in the space L2(R+;H), and it is
possible to determine u(t) from the following formula:

u(t) = Q
(k)−1

0

(
E +Q

(k)
1 Q

(k)−1

0

)−1
f(t). (4.4)
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Moreover,

‖u‖W4
2 (R+;H) ≤

∥∥∥Q(k)−1

0

∥∥∥
L2(R+;H)→W4

2 (R+;H)

∥∥∥∥
(
E +Q

(k)
1 Q

(k)−1

0

)−1∥∥∥∥
L2(R+;H)→L2(R+;H)

∥∥f∥∥L2(R+;H)

≤ const
∥∥f∥∥L2(R+;H).

(4.5)

Thus, the theorem is proved.

Remark 4.2. The conditions of regular solvability obtained here for the boundary-value
problem (1.1), (1.2) are not improvable in terms of the operator coefficients of (1.1).

Following is an example in which the conditions of Theorem 4.1 are verified. Consider
the following problem on the semi-axis R+ × [0;π]:

(
∂

∂t
+

∂2

∂x2

)(
∂

∂t
− ∂2

∂x2

)3

u(t, x) + p1(x)
∂5u(t, x)
∂x2∂t3

+ p2(x)
∂6u(t, x)
∂x4∂t2

+ p3(x)
∂7u(t, x)
∂x6∂t

= f(t, x)

∂ku(0, x)
∂tk

= 0, k = 0, 1, 2,
∂2iu(t, 0)

∂x2i
=

∂2iu(t, π)
∂x2i

= 0, i = 0, 1, 2, 3,
a

b
(4.6)

where ps(x), s = 1, 2, 3, are bounded on segment [0;π] functions, f(t, x) ∈ L2(R+;L2[0;π]),
which is a partial case of problem (1.1), (1.2). On the condition that

mk,1 sup
0≤x≤π

∣∣p1(x)∣∣ +mk,2 sup
0≤x≤π

∣∣p2(x)∣∣ +mk,3 sup
0≤x≤π

∣∣p3(x)∣∣ < 1, (4.7)

the given problem has a unique solution in the space W4,8
t,x,2(R+;L2[0;π]).
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