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1. Introduction

In this paper, we are concerned with the following boundary value problem (BVP) for an
nth-order nonlinear system:

y(n) = f
(
t, y, y′, . . . , y(n−1)),

Pi

(
y(a), y′(a), . . . , y(n−1)(a)

)
= 0, i = 1, . . . , n − 1,

Pn

(
y(b), y′(b), . . . , y(n−1)(b)

)
= 0,

(1.1)

where t ∈ I = [a, b], y = (y1, y2, . . . , ym) ∈ R
m, f(t, ξ0, ξ1, . . . , ξn−1) ∈ C(I × R

mn,Rm),
Pi(η0, η1, . . . , ηn−1) ∈ C(Rmn,Rm), Pn(ζ0, ζ1, . . . , ζn−1) ∈ C(Rmn,Rm).

Boundary value problems for ordinary differential equations play a very important
role in both theory and applications. They are used to describe a large number of physical,
biological, and chemical phenomena. There have been many accomplishments on the study
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of the existence of solutions for BVPs of nonlinear differential equations using the theory of
differential inequalities (cf. [1–31]). Although the method has been particularly fruitful for
low-order ordinary differential equations (cf. [3–8, 14, 18, 31, 32]), Kelley [33] and Klaasen
[3] did obtain early applications to higher-order ODEs. For more information, we refer the
readers to [2, 3, 9, 10, 12–16, 19–21, 26, 28, 33–35] and the references therein. For the case
of differential systems, the results are few (cf. [2, 4–6, 8, 11, 29–32]). On the other hand,
there are many papers, see [17, 18, 22, 23, 25, 36–39] and the references therein, concerning
the existence of solutions for BVPs by using other approaches (e.g., the shooting method,
many kinds of fixed-point theorems, many kinds of degree theories, etc.). However, there are
very few results on the study of the existence of solutions for the general nonlinear system
with the general nonlinear boundary conditions. To fill the gap, we will investigate BVP
(1.1).

The aim of this paper is to generalize or complement the existing results. In order
to do so, as a sequel of [28, 29], following the thoughts and methods of Fabry and Habets
[1], the authors considered the nonlinear BVP (1.1) for differential equation and even the
more general BVP (4.1) with the full nonlinear boundary conditions and obtained some
results [40–43]. In this paper we consider the nonlinear BVP (1.1) for differential systems
and even the more general BVP (4.1)with the full nonlinear boundary conditions. To the best
of our knowledge, the general cases of BVP (1.1) and BVP (4.1) have not been studied in the
available reference materials. By appropriate bounding function pair andmodified functions,
using the theory of differential inequalities, we establish some sufficient conditions which
guarantee the existence of at least one solution for these BVPs. We give an example showing
that our results are sharp.

A novel feature of our work is that we present a new definition of bounding function
pair for BVP. It is well known that bounding function pair (i.e., upper-lower solutions in
many references) is very important to study the existence of solutions for BVPs. Because
of the complexity of the vector case (cf. [2, chapters 2 and 7]), how to give an appropriate
definition of bounding function pair for the full nonlinear BVP of differential system is the
difficulty in our work.

The method of this paper, which may be called simultaneous modification, is distinctive.
It is not onlymodifying the nonlinear function in the original equations, but also transforming
the original nonlinear boundary conditions into some new boundary conditions which are
easy to discuss. Thus, we get the new BVP which will be discussed in the first place, then
the judgement of the existence of solutions for the original BVP will be attained naturally.
This technique dealing with the nonlinear problem is simpler and clearer compared with the
method of shooting.

Throughout the paper, the comparison between the two vectors will be viewed as
the same comparisons according to their components, and the operations between the two
vectors will be viewed as the same operations according to their components.

The rest of this paper is organized as follows. In Section 2, we first give two basic
definitions, that is, bounding function pair and the Nagumo condition, and then we study
the modified boundary value problem of BVP (1.1), that is, BVP (2.17). Following the
preparative theorem in Section 2, in Section 3, we state and prove the main result, that
is, the sufficient criterion of the existence of solutions for BVP (1.1). In Section 4, a more
general boundary value problem (4.1) is investigated. Moreover in Section 5, an example
is illustrated to show that our results are sharp. Finally, in Section 6, some remarks are
given.
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2. Preparative Theorem

2.1. Basic Concepts

We first define a function

δ(r, x, s) ≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r if x < r,

x if r � x � s,

s if s < x,

(2.1)

where r, x, s ∈ R, r � s. Moreover, if

r =
(
r1, . . . , rm

)
, x =

(
x1, . . . , xm

)
, s =

(
s1, . . . , sm

)
, (2.2)

then, we define

δ
(
r, x, s

) ≡ (
δ
(
r1, x1, s1

)
, . . . , δ

(
rm, xm, sm

))
. (2.3)

Definition 2.1. Assume that α, β ∈ Cn(I,Rm). The pair of vector-valued functions (α(t), β(t))
is called a bounding function pair (or simply, a bounding pair) of BVP(1.1) in case that for
some positive constant N depending on (f, α, β), and for all u ∈ Cn(I,Rm),

(i) α(i)(t) � β(i)(t), t ∈ I, i = 0, 1, . . . , n − 2,

(ii)

α
(n)
j (t) � fj

(
t, u(t), u′(t), . . . , u(n−3)(t), u(n−2)

αj
(t), u(n−1)

αj
(t)

)
,

β
(n)
j (t) � fj

(
t, u(t), u′(t), . . . , u(n−3)(t), u(n−2)

βj
(t), u(n−1)

βj
(t)

)
, j = 1, . . . , m,

(2.4)

where

u(i)(t) = δ
(
α(i)(t), u(i)(t), β(i)(t)

)
, i = 0, 1, . . . , n − 3,

u(k)
αj

(t) =
(
u
(k)
1 (t), . . . , u(k)

j−1(t), α
(k)
j (t), u(k)

j+1(t), . . . , u
(k)
m (t)

)
,

u
(k)
βj

(t) =
(
u
(k)
1 (t), . . . , u(k)

j−1(t), β
(k)
j (t), u(k)

j+1(t), . . . , u
(k)
m (t)

)
, k = n − 2, n − 1,

u
(n−2)
l (t) = δ

(
α
(n−2)
l (t), u(n−2)

l (t), β(n−2)l (t)
)
,

u
(n−1)
l

= δ
( −N,u

(n−1)
l

,N
)
, l = 1, 2, . . . , j − 1, j + 1, . . . , m;

(2.5)
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(iii)

Pi,j

(
u(a), . . . , u(i−2)(a), u(i−1)

αj
(a), u(i)

αj
(a), u(i+1)(a), . . . , u(n−1)(a)

)

� 0 � Pi,j

(
u(a), . . . , u(i−2)(a), u(i−1)

βj
(a), u(i)

βj
(a), u(i+1)(a), . . . , u(n−1)(a)

)
,

Pn,j

(
u(b), . . . , u(n−3)(b), u(n−2)

αj
(b), u(n−1)

αj
(b)

)

� 0 � Pn,j

(
u(b), . . . , u(n−3)(b), u(n−2)

βj
(b), u(n−1)

βj
(b)

)
,

(2.6)

where i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m, and

u(k)
αj

(t) =
(
u
(k)
1 (t), . . . , u(k)

j−1(t), α
(k)
j (t), u(k)

j+1(t), . . . , u
(k)
m (t)

)
,

u
(k)
βj

(t) =
(
u
(k)
1 (t), . . . , u(k)

j−1(t), β
(k)
j (t), u(k)

j+1(t), . . . , u
(k)
m (t)

)
, k = 0, 1, 2, . . . , n − 1,

u(n−2)(t) = δ
(
α(n−2)(t), u(n−2)(t), β(n−2)(t)

)
,

u(n−1)(a) = δ
( −N,u(n−1)(a),N

)
, N = (N, . . . ,N).

(2.7)

Definition 2.2. A continuous function f(t, ξ0, . . . , ξn−1) is said to satisfy the Nagumo condition
with respect to variable ξn−1 on the set

D =
{(

t, ξ0, . . . , ξn−1
) | t ∈ I;

∣∣ξj,k
∣∣ � rj , j = 0, 1, . . . , n − 2,

k = 1, . . . , m, rj is a positive constant; ξn−1 ∈ R
m }

,
(2.8)

in case there exist functions Φi ∈ C([0,+∞), (0,+∞)), i = 1, . . . , m, such that

∣∣fi
(
t, ξ0, . . . , ξn−1

)∣∣ � Φi

(∣∣ξn−1,i
∣∣),

∫+∞ s ds

Φi(s)
= +∞.

(2.9)

2.2. The Modified Problem

Assume that there are two vector-valued functions α(t), β(t) satisfying

α(j)(t) � β(j)(t), j = 0, 1, . . . , n − 2. (2.10)

We define function f(t, y, y′, . . . , y(n−1))which components are

fi

(
t, y, y′, . . . , y(n−1)) ≡ fi

(
t, y, y′, . . . , y(n−1)) + h

(
y
(n−2)
i

)
, (2.11)
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where y(j)(t) = δ(α(j)(t), y(j)(t), β(j)(t)) (j = 0, 1, . . . , n − 2), and y(n−1)(t) = δ(−N,y(n−1)(t),
N), N = (N, . . . ,N). N is a positive constant such that

N > max
t∈I

i=1,...,m

{
2M
b − a

,
∣
∣α(n−1)

i (t)
∣
∣,
∣
∣β(n−1)i (t)

∣
∣
}
, (2.12)

∫N

2M/(b−a)

s ds

Φi(s)
> 2M, (2.13)

in which M > maxt∈I,i=1,...,m{|α(n−2)
i (t)|, |β(n−2)i (t)|}. h(y(n−2)

i ) is continuous, bounded, and

h
(
y
(n−2)
i

)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< 0 if y(n−2)
i < α

(n−2)
i ,

= 0 if α(n−2)
i � y

(n−2)
i � β

(n−2)
i ,

> 0 if y(n−2)
i > β

(n−2)
i .

(2.14)

Such function h(·) is easy to obtain, for example, let

h
(
y
(n−2)
i

) ≡ y
(n−2)
i − y

(n−2)
i

1 + |y(n−2)
i − y

(n−2)
i |

. (2.15)

In addition, we define

Pi

(
y(t), y′(t), . . . , y(n−1)(t)

)

≡ δ
(
α(i−1)(t), y(i−1)(t) − Pi(y(t), y′(t), . . . , y(n−1)(t)), β(i−1)(t)

)
, i = 1, 2, . . . , n − 1,

Pn

(
y(t), y′(t), . . . , y(n−1)(t)

)

≡ δ
(
α(n−2)(t), y(n−2)(t) − Pn(y(t), y′(t), . . . , y(n−1)(t)), β(n−2)(t)

)
.

(2.16)

Then, we consider the following modified problem:

y(n) = f
(
t, y, y′, . . . , y(n−1)),

y(i−1)(a) = Pi

(
y(a), y′(a), . . . , y(n−1)(a)

)
,

y(n−2)(b) = Pn

(
y(b), y′(b), . . . , y(n−1)(b)

)
.

i = 1, . . . , n − 1, (2.17)

2.3. Preparative Theorem

Lemma 2.3. Assume that

(A1) BVP (1.1) has a bounding pair (α(t), β(t)) on the interval I by Definition 2.1;
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(A2) the function f(t, ξ0, . . . , ξn−1) in BVP (1.1) satisfies the Nagumo condition with respect to
ξn−1 by Definition 2.2.

Then, BVP (2.17) has a solution y ∈ Cn(I,Rm) such that

α(i)(t) � y(i)(t) � β(i)(t), i = 0, 1, . . . , n − 2,

∣
∣y(n−1)

j (t)
∣
∣ � N, j = 1, 2, . . . , m, t ∈ I,

(2.18)

whereN is defined in fi.

The following three propositions will lead to the proof of Lemma 2.3.

Proposition 2.4. The modified BVP (2.17) has a solution y(t) ∈ Cn(I,Rm).

Proof. Noticing that the functions f and Pi (i = 1, 2, . . . , n) are bounded, this proposition
immediately follows from the Schauder fixed-point theorem. The details here are omitted.

Proposition 2.5. Every solution y(t) of the modified BVP (2.17) satisfies

α(i)(t) � y(i)(t) � β(i)(t), t ∈ I, i = 0, 1, . . . , n − 2. (2.19)

Proof. First, we show that

α(n−2)(t) � y(n−2)(t) � β(n−2)(t), t ∈ I. (2.20)

If α(n−2)(t) � y(n−2)(t) is not true, then there exist some i and ξ ∈ [a, b] such that

max
t∈I

(
α
(n−2)
i (t) − y

(n−2)
i (t)

)
= α

(n−2)
i (ξ) − y

(n−2)
i (ξ) > 0. (2.21)

Then, ξ /=a, b by the boundary conditions of BVP (2.17). Thus,

α
(n−1)
i (ξ) − y

(n−1)
i (ξ) = 0, (2.22)

α
(n)
i (ξ) − y

(n)
i (ξ) � 0. (2.23)

However, on the other hand, from the definition of α(t) and that y(t) is a solution of (2.17),
we have

α
(n)
i (ξ) − y

(n)
i (ξ) � fi

(
ξ, y(ξ), . . . , y(n−3)(ξ), y(n−2)

αi
(ξ), y(n−1)

αi
(ξ)

)

− fi
(
ξ, y(ξ), . . . , y(n−3)(ξ), y(n−2)(ξ), y(n−1)(ξ)) − h(y(n−2)

i (ξ)
)

= −h(y(n−2)
i (ξ)

)
> 0.

(2.24)
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This contradicts (2.23). Hence,

α(n−2)(t) � y(n−2)(t), t ∈ I. (2.25)

A similar proof shows that

y(n−2)(t) � β(n−2)(t), t ∈ I. (2.26)

Summing up, (2.20) is true. From (2.20), the function y(n−3)(t) − α(n−3)(t) is increasing in I.
Noticing

α(n−3)(a) � y(n−3)(a), (2.27)

we know that α(n−3)(t) � y(n−3)(t). A similar proof shows y(n−3)(t) � β(n−3)(t). Using the same
argument, it follows that α(i)(t) � y(i)(t) � β(i)(t), i = n − 4, n − 5, . . . , 2, 1. Thus, the proof of
Proposition 2.5 is completed.

Proposition 2.6. Every solution y(t) of the modified BVP (2.17) satisfies

∣∣y(n−1)
j (t)

∣∣ � N, t ∈ I, j = 1, 2, . . . , m. (2.28)

Proof. Suppose that there exist some j and τ ∈ [a, b] such that

∣∣y(n−1)
j (τ)

∣∣ > N. (2.29)

Without loss of generality, we assume that y(n−1)
j (τ) > N. There exists ξ ∈ (a, b) such that

y
(n−1)
j (ξ) =

y
(n−2)
j (b) − y

(n−2)
j (a)

b − a
� 2M

b − a
< N. (2.30)

Hence, there exists some subinterval [c, d] (or [d, c]) ⊂ [a, b] such that

y
(n−1)
j (c) =

2M
b − a

, y
(n−1)
j (d) = N,

2M
b − a

� y
(n−1)
j (t) � N, ∀t ∈ [c, d] (or [d, c]).

(2.31)
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From condition (A2),

∣
∣
∣
∣

∫d

c

y
(n−1)
j (s)y(n)

j (s)

Φj(|y(n−1)
j (s)|)

ds

∣
∣
∣
∣ �

∣
∣
∣
∣

∫d

c

y
(n−1)
j (s)ds

∣
∣
∣
∣

=
∣
∣y(n−2)

j (d) − y
(n−2)
j (c)

∣
∣

� 2M.

(2.32)

On the other hand, from (2.13)we know that

∣
∣
∣
∣

∫d

c

y
(n−1)
j (s)y(n)

j (s)

Φj(|y(n−1)
j (s)|)

ds

∣
∣
∣
∣ =

∣
∣
∣
∣

∫N

2M/(b−a)

r dr

Φj(r)

∣
∣
∣
∣

=
∫N

2M/(b−a)

r dr

Φj(r)

> 2M.

(2.33)

This inequality contradicts the above one and Proposition 2.6 holds.

The proof of Lemma 2.3 is now a simple consequence of Propositions 2.4, 2.5, and 2.6.

3. Main Theorem

Now, the main result of this paper is given in the following theorem.

Theorem 3.1. Let conditions (A1) and (A2) in Lemma 2.3 hold and assume that

(A3) the functions Pi,j(η0, . . . , ηn−1) (i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m) are decreasing in ηi,
while Pn,j(η0, . . . , ηn−1) (j = 1, 2, . . . , m) are increasing in ηn−1.

Then, BVP (1.1) has a solution y ∈ Cn(I,Rm) such that

α(i)(t) � y(i)(t) � β(i)(t), i = 0, 1, . . . , n − 2,

∣∣y(n−1)
j (t)

∣∣ � N, j = 1, 2, . . . , m, t ∈ I,
(3.1)

whereN is defined in fi.

Proof. From Lemma 2.3 and the definition of f , the solution y(t) of the modified BVP (2.17)
satisfies (1.1). Obviously, if it is proved that y(t) satisfies the boundary conditions of (1.1)
under condition (A3), we may conclude that y(t) is just the solution of BVP (1.1).

First, we prove that

Pi

(
y(a), . . . , y(n−1)(a)

)
= 0, i = 1, 2, . . . , n − 1. (3.2)
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Case 1. Suppose that

α(i−1)(a) � y(i−1)(a) − Pi

(
y(a), . . . , y(n−1)(a)

)
� β(i−1)(a). (3.3)

Then

y(i−1)(a) = Pi

(
y(a), . . . , y(n−1)(a)

)

= y(i−1)(a) − Pi

(
y(a), . . . , y(n−1)(a)

)
.

(3.4)

Thus,

Pi(y(a), . . . , y(n−1)(a)) = 0. (3.5)

Case 2. Suppose that there exist some i ∈ {1, 2, . . . , n − 1} and some j ∈ {1, 2, . . . , m} such that

α
(i−1)
j (a) > y

(i−1)
j (a) − Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
. (3.6)

Then,

y
(i−1)
j (a) = Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
= α

(i−1)
j (a). (3.7)

Hence,

Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
> 0. (3.8)

From Proposition 2.5,

y(k)(a) = δ
(
α(k)(a), y(k)(a), β(k)(a)

)
= y(k)(a), k = 0, 1, . . . , n − 2. (3.9)

From Proposition 2.6,

y(n−1)(a) = δ
( −N,y(n−1)(a),N

)
= y(n−1)(a). (3.10)

When i = 1, 2, . . . , n − 2, Proposition 2.5 implies

y(i)
αj
(a) � y(i)(a), j = 1, 2, . . . , m. (3.11)

When i = n − 1, formula (3.7) implies

y
(n−2)
j (a) = α

(n−2)
j (a), j = 1, 2, . . . , m. (3.12)
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Recalling that y(n−2)
j (t) � α

(n−2)
j (t), t ∈ [a, b], we get y(n−1)

j (a) � α
(n−1)
j (a). Thus,

y(n−1)
αj

(a) � y(n−1)(a), j = 1, 2, . . . , m. (3.13)

It follows from formulas (3.7)–(3.13) and condition (A3) that, for i = 1, 2, . . . , n − 1,

Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)

αj
(a), y(i)

αj
(a), y(i+1)(a), . . . , y(n−1)(a)

)

= Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)(a), y(i)

αj
(a), y(i+1)(a), . . . , y(n−1)(a)

)

� Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)(a), y(i)(a), y(i+1)(a), . . . , y(n−1)(a)

)
> 0.

(3.14)

It is easy to see that the last inequality contradicts (iii) of Definition 2.1. Therefore, Case 2 is
not true.

Case 3. Suppose that there exist some i ∈ {1, 2, . . . , n − 1} and some j ∈ {1, 2, . . . , m} such that

y
(i−1)
j (a) − Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
> β

(i−1)
j (a). (3.15)

Then,

y
(i−1)
j (a) = Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
= β

(i−1)
j (a). (3.16)

Hence,

Pi,j

(
y(a), y′(a), . . . , y(n−1)(a)

)
< 0. (3.17)

Similar to the argument of Case 2, we have

Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)

βj
(a), y(i)

βj
(a), y(i+1)(a), . . . , y(n−1)(a)

)

= Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)(a), y(i)

βj
(a), y(i+1)(a), . . . , y(n−1)(a)

)

� Pi,j

(
y(a), . . . , y(i−2)(a), y(i−1)(a), y(i)(a), y(i+1)(a), . . . , y(n−1)(a)

)
< 0.

(3.18)

Obviously, the last inequality contradicts (iii) of Definition 2.1. Therefore, this case cannot
hold. Summing up, (3.2) holds.

A similar proof shows that

Pn(y(b), y′(b), . . . , y(n−1)(b)) = 0. (3.19)

Consequently, the proof is completed.
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Remark 3.2. From (iii) of Definition 2.1 and (A3) of Theorem 3.1, it is easy to see that the
functions Pi,j(η0, . . . , ηn−1) (i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m) should be increasing in ηi−1.

4. A Generalized Problem

Now, we consider the following boundary value problem with more generalized boundary
conditions:

y(n) = f
(
t, y, . . . , y(n−1)),

Pi

(
y(a), . . . , y(n−1)(a), y(b), . . . , y(n−1)(b)

)
= 0,

(4.1)

where t ∈ I, i = 1, 2, . . . , n, y ∈ R
m, f and Pi are continuous m-dimensional vector-valued

functions.
Similar to Definition 2.1, we give the following.

Definition 4.1. Assume α, β ∈ Cn(I,Rm), The pair of vector-valued functions (α(t), β(t)) is
called a bounding function pair of BVP (4.1) in case that

(i) same as (i) of Definition 2.1;

(ii) same as (ii) of Definition 2.1;

(iii)′

Pi,j

(
u(a), . . . , u(i−1)

αj
(a), u(i)

αj
(a), . . . , u(n−1)(a), u(b), . . . , u(n−1)(b)

)

� 0 � Pi,j

(
u(a), . . . , u(i−1)

βj
(a), u(i)

βj
(a), . . . , u(n−1)(a), u(b), . . . , u(n−1)(b)

)
,

Pn,j

(
u(a), . . . , u(n−1)(a), u(b), . . . , u(n−3)(b), u(n−2)

αj
(b), u(n−1)

αj
(b)

)

� 0 � Pn,j

(
u(a), . . . , u(n−1)(a), u(b), . . . , u(n−3)(b), u(n−2)

βj
(b), u(n−1)

βj
(b)

)
,

(4.2)

where i = 1, 2, . . . , n − 1; j = 1, 2, . . . , m.

For BVP (4.1), we have the following existence theorem.

Theorem 4.2. Assume that

(A1)′ BVP (4.1) has a bounding function pair (α(t), β(t)) in the interval I by Definition 4.1;

(A2)′ the function f(t, ξ0, . . . , ξn−1) in BVP (4.1) satisfies the Nagumo condition with respect to
ξn−1 by Definition 2.2;

(A3)′ the functions Pi,j(η0, . . . , ηn−1, ζ0, . . . , ζn−1) (i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m) are
decreasing in ηi, while Pn,j(η0, . . . , ηn−1, ζ0, . . . , ζn−1) (j = 1, 2, . . . , m) are increasing in
ηn−1.
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Then, BVP (4.1) has a solution y ∈ Cn(I,Rm) such that

α(i)(t) � y(i)(t) � β(i)(t), i = 0, 1, . . . , n − 2,

∣
∣y(n−1)

j (t)
∣
∣ � N, j = 1, 2, . . . , m, t ∈ I,

(4.3)

whereN is defined in fi.

Proof. Consider the modified problem

y(n) = f
(
t, y, . . . , y(n−1)),

y(i−1)(a) = Pi(a), i = 1, 2, . . . , n − 1,

y(n−2)(b) = Pn(b).

(4.4)

The modified function f(t, y, . . . , y(n−1)) is defined as BVP (2.17), and

Pi(t) ≡ Pi

(
y(t), . . . , y(n−1)(t), y(b + a − t), . . . , y(n−1)(b + a − t)

)

≡ δ
(
α(i−1)(t), y(i−1)(t) − Pi(y(t), . . . , y(n−1)(t), y(b + a − t), . . . ,

y(n−1)(b + a − t)), β(i−1)(t)
)
,

(4.5)

where i = 1, 2, . . . , n − 1,

Pn(t) ≡ Pn

(
y(b + a − t), . . . , y(n−1)(b + a − t), y(t), . . . , y(n−1)(t)

)

≡ δ
(
α(n−2)(t), y(n−2)(t) − Pn(y(b + a − t), . . . , y(n−1)(b + a − t), y(t), . . . ,

y(n−1)(t)), β(n−2)(t)
)
.

(4.6)

Using the same argument as the proof of Lemma 2.3, it follows from conditions (A1)′ and
(A2)′ that BVP (4.4) has a solution y(t) satisfying the two inequalities in the conclusions
of Lemma 2.3. Furthermore, in an analogous way to the proof of Theorem 3.1, it follows
that the solution y(t) of BVP(4.4) is just a solution of BVP (4.1). Consequently, the proof
of Theorem 4.2 is completed. The details of the proof will be omitted.

Remark 4.3. From (iii)′ of Definition 4.1 and (A3)′ of Theorem 4.2, it is easy to see that the
functions Pi,j(η0, . . . , ηn−1, ζ0, . . . , ζn−1) (i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m) should be increasing
in ηi−1.
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5. An Example

In this section, we present an example by making use of Theorems 3.1 and 4.2. With the
example, we try to illustrate the applicability of our results and techniques and show that a
bounding pair according to Definitions 2.1 or 4.1 can exist naturally.

Example 5.1. Consider the following 4th-order nonlinear system:

y
(4)
1 =

1
27

y3
1 +

1
2
(
y′
2
)2 +

(
y′′
1

3

)3

+
(
y′
1

)2 sin
(
y′′′
2
)2 + sin t + 4,

y
(4)
2 = y2

2 +
1
2
(
y′
1

)2 +
(
y′′
2

5

)3

+
1

144
(
y′′′
2
)2 sin (y′′′

1

)2 + t2,

(5.1)

together with the following boundary conditions:

P1 :

⎧
⎪⎪⎨

⎪⎪⎩

y1(0) − e(y
′
1(0))

3
= 2.6,

y2(0) +
k

36
(
y′
2(1)

)2 = 3.5,

P2 :

⎧
⎪⎪⎨

⎪⎪⎩

2y′
1(0) − 3

(
y′′
1(0)

)5 = 0,

y1(0) +
1

y′
2(0) − 1

+ k
(
y′′
1(1)

)2 = 1.6,

P3 :

⎧
⎪⎨

⎪⎩

y′′
1(0) + y′

2(0) = 0,

k(y2(1)
)2 − 2

(
y′′
2(0)

)4 + ky′′
2(1) = −3,

P4 :

⎧
⎪⎪⎨

⎪⎪⎩

y′′
1(1) = 0,

ky1(0) + y′
2(1) + 6y′′

2(1) +
1

123
(
y′′′
2 (1)

)3 = −2,

(5.2)

where t ∈ [0, 1], and k is a constant.

Let

α(t) =
(

t4 − 2t3 + 2.6
t4 − 2t3 − t2 + 3

)
, β(t) =

(
2.6
4

)
, t ∈ [0, 1]. (5.3)

Then, for the case of k = 0 and the case of k = 1, by direct calculation, it is easy to check that
(α(t), β(t)) is a bounding pair of BVP (5.1) and all assumptions of Theorems 3.1 and 4.2 are
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fulfilled, respectively. Hence, for any of the two cases, BVP (5.1) has at least one solution y(t)
satisfying

(
t4 − 2t3 + 2.6

t4 − 2t3 − t2 + 3

)
� y(t) �

(
2.6
4

)
,

(
4t3 − 6t2

4t3 − 6t2 − 2t

)
� y′(t) �

(
0
0

)
,

(
12t2 − 12t

12t2 − 12t − t

)
� y′′(t) �

(
0
0

)
,

(5.4)

for each t ∈ [0, 1].

6. Remarks

(1) If the directions of the signs of inequalities in condition (iii) of Definition 2.1 are all
changed to the opposite, and conditions (i), (ii) of Definition 2.1 hold, then we denote the
revised definition by Definition 2.1. We obtain the following theorem similar to Theorem 3.1.

Theorem 6.1. Assume that

(A1)′′ BVP (1.1) has a bounding function pair (α(t), β(t)) by Definition 6.1;

(A2) same as (A2) of Theorem 3.1;

(A3)′′ the monotony of Pi,j is opposite to that of (A3) .

Then, the conclusion of Theorem 3.1 still holds.

In fact, if we replace Pi (i = 1, 2, . . . , n) by −Pi in Theorem 3.1, then, it follows from
Theorem 3.1 that Theorem 6.1 is true. We may make the analogous argument for BVP (4.1).

(2) The essentiality of the modified function is to modify a general nonlinear
continuous function to a continuous bounded function. It was appearing in different forms
in references. In this paper, we give out one concise form.

(3) The definitions of scalar bounding functions are a good many. In this paper, the
definitions in vector cases given are new and can be regarded as a kind of improvement and
generalization. Of course, the conditions of the definitions may be changed by the actual
need. For example, we take Definition 2.1 to discuss the following.

If u(n−1)
αi

(t), u(n−1)
βi

(t) in fi of condition (ii) are changed to u(n−1)(t), respectively, we still
may assure that those results hold.

If both u(n−2)
αi

and u
(n−2)
βi

(t) in fi of condition (ii) are modified to u(n−2)(t), we may
simplify the depiction and the proof. But, the modified condition becomes stronger.

It should be pointed out that condition (ii) may be weakened as

α
(n)
i (t) � fi

(
t, α(t), α′(t), . . . , α(n−2)(t), u(n−1)(t)

)
,

β
(n)
i (t) � fi

(
t, β(t), β′(t), . . . , β(n−2)(t), u(n−1)(t)

)
.

(∗)
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However, when proving Proposition 2.5, we should add one condition “fi are all decreasing
in ξ0, ξ1, . . . , ξn−2”. Thus, (∗) implies condition (ii) of Definition 2.1. Consequently, condition
(ii) about α, β seems weaker, but in fact, the whole requirement becomes stronger in some
sense.

We also may discuss condition (iii) of Definition 2.1 in a similar way.
(4) The Nagumo condition in this paper ensures that the integral inequality (2.13)

is true and essentially ensures that the derivative functions of solutions of the considered
problems are bounded. Indeed, in some references, the integral equality

∫+∞ s ds

Φi(s)
= +∞, (6.1)

is straightly substituted by inequality (2.13). Moreover, we exhibit some new forms of the
integral inequality (see [29]).

(5) From Theorems 3.1, 4.2, and the above remarks, we include or improve the results
in [1–43], since our system and boundary conditions are fully nonlinear. Obviously, the
results in all the references are not available to our example.

(6) Last but not least, it should be pointed out that although this paper presents the
existence and location criteria of solutions for BVPs, the premise is that the bounding function
pair is assumed to be existing. It is well known how to get a precise bounding function pair
for a given BVP is a very difficult job in the theory of upper-lower solutions and remains
unsolved.
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