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1. Introduction

The present paper is an offspring of [1]. We obtain some inequalities for generalized fractional
integral operators on generalized Morrey spaces. We also show the boundedness property of
the generalized fractional integral operators on the predual of the generalizedMorrey spaces.
They generalize what was shown in [1]. We will go through the same argument as [1].

For 0 < α < 1 the classical fractional integral operator Iα and the classical fractional
maximal operator Mα are given by

Iαf(x) :=
∫
Rn

f
(
y
)

∣∣x − y
∣∣n(1−α)dy,

Mαf(x) := sup
x∈Q∈Q

1

|Q|1−α
∫
Q

∣∣f(y)∣∣dy.
(1.1)

In the present paper, we generalize the parameter α. Let ρ : [0,∞) → [0,∞)
be a suitable function. We define the generalized fractional integral operator Tρ and the
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generalized fractional maximal operatorMρ by

Tρf(x) :=
∫
Rn

f
(
y
)ρ(∣∣x − y

∣∣)∣∣x − y
∣∣n dy,

Mρf(x) := sup
x∈Q∈Q

ρ(�(Q))
|Q|

∫
Q

∣∣f(y)∣∣dy.
(1.2)

Here, we use the notation Q to denote the family of all cubes in R
n with sides parallel

to the coordinate axes, �(Q), to denote the sidelength of Q and |Q| to denote the volume of
Q. If ρ(t) ≡ tnα, 0 < α < 1, then we have Tρ = Iα and Mρ = Mα.

A well-known fact in partial differential equations is that Iα is an inverse of (−Δ)nα/2.
The operator (1 − Δ)−1 admits an expression of the form Tρ for some ρ. For more details of
this operator we refer to [2]. As we will see, these operators will fall under the scope of our
main results.

Among other function spaces, it seems that the Morrey spaces reflect the boundedness
properties of the fractional integral operators. To describe the Morrey spaces we recall some
definitions and notation. All cubes are assumed to have their sides parallel to the coordinate
axes. For Q ∈ Qwe use cQ to denote the cube with the same center as Q, but with sidelength
of c�(Q). |E| denotes the Lebesgue measure of E ⊂ R

n.
Let 0 < p < ∞ and φ : [0,∞) → [0,∞) be a suitable function. For a function f locally

in Lp(Rn)we set

∥∥f∥∥p,φ := sup
Q∈Q

φ(�(Q))

(
1
|Q|

∫
Q

∣∣f(x)∣∣pdx
)1/p

. (1.3)

We will call the Morrey space Mp,φ(Rn) = Mp,φ the subset of all functions f locally in Lp(Rn)
for which ‖f‖Mp,φ = ‖f‖p,φ is finite. ApplyingHölder’s inequality to (1.3), we see that ‖f‖p1,φ ≥
‖f‖p2,φ provided that p1 ≥ p2 > 0. This tells us thatMp1,φ ⊂ Mp2,φ when p1 ≥ p2 > 0. We remark
that without the loss of generality we may assume

φ(t) is nondecreasing but φ(t)pt−n is nonincreasing. (1.4)

(See [1].)Hereafter, we always postulate (1.4) on φ.
If φ(t) ≡ tn/p0 , p0 ≥ p, Mp,φ coincides with the usual Morrey space and we write this

for Mp,p0 and the norm for ‖ · ‖Mp,p0 . Then we have the inclusion

Lp0 = Mp0,p0 ⊂ Mp1,p0 ⊂ Mp2,p0 (1.5)

when p0 ≥ p1 ≥ p2 > 0.
In the present paper, we take up some relations between the generalized fractional

integral operator Tρ and the generalized fractional maximal operatorMρ in the framework of
the Morrey spacesMp,φ (Theorem 1.2). In the last section, we prove a dual version of Olsen’s
inequality on predual ofMorrey spaces (Theorem 3.1). As a corollary (Corollary 3.2), we have
the boundedness properties of the operator Tρ on predual of Morrey spaces.
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Let θ : [0,∞) → [0,∞) be a function. By the Dini condition we mean that θ fulfills

∫1

0

θ(s)
s

ds < ∞, (1.6)

while the doubling condition on θ (with a doubling constant C1 > 0) is that θ satisfies

1
C1

≤ θ(s)
θ(t)

≤ C1, if
1
2
≤ s

t
≤ 2. (1.7)

Wenotice that (1.4) is stronger than the doubling condition.More quantitatively, if we assume
(1.4), then φ satisfies the doubling condition with the doubling constant 2n/p. A simple
consequence that can be deduced from the doubling condition of θ is that

log 2
C1

θ(t) ≤
∫ t

t/2

θ(s)
s

ds ≤ log 2 · C1θ(t) ∀t > 0. (1.8)

The key observation made in [1] is that it is frequently convenient to replace θ satisfying (1.6)
and (1.7) by θ̃:

θ̃(t) =
∫ t

0

θ(s)
s

ds. (1.9)

Before we formulate our main results, we recall a typical result obtained in [1].

Proposition 1.1 (see [1, Theorem 1.3]). Let

1 ≤ p < ∞,

⎧⎨
⎩
p ≤ q if p = 1,

p < q if p > 1,
(1.10)

0 ≤ b ≤ 1 and b < a. Suppose that ρ̃(t)max(ap,bq)t−n is nonincreasing. Then

∥∥g · Tρf
∥∥
p,ρ̃a

≤ C
∥∥g∥∥q,ρ̃b

∥∥∥Mρ̃1−bf
∥∥∥
p,ρ̃a

, (1.11)

where the constant C is independent of f and g.

The aim of the present paper is to generalize the function spaces to which f and g
belong. With theorem 1.2, which we will present just below, we can replace ρ̃a with φ and ρ̃b

with η. We now formulate our main theorems. In the sequel we always assume that ρ satisfies
(1.6) and (1.7), and C is used to denote various positive constants.
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Theorem 1.2. Let

1 ≤ p < ∞,

⎧⎨
⎩
p ≤ q if p = 1,

p < q if p > 1.
(1.12)

Suppose that φ(t) and η(t) are nondecreasing but that φ(t)pt−n and η(t)qt−n are nonincreasing.
Assume also that

∫∞

t

ρ(s)η(s)
sρ̃(s)φ(s)

ds ≤ C
η(t)
φ(t)

∀t > 0, (1.13)

then

∥∥g · Tρf
∥∥
p,φ

≤ C
∥∥g∥∥q,η

∥∥Mρ̃/ηf
∥∥
p,φ

, (1.14)

where the constant C is independent of f and g.

Remark 1.3. Let 0 ≤ b ≤ 1 and b < a. Then φ = ρ̃a and η = ρ̃b satisfy the assumption (1.13).
Indeed,

∫∞

t

ρ(s)ρ̃(s)b

sρ̃(s)ρ̃(s)a
ds =

∫∞

t

ρ̃(s)b−a−1
ρ(s)
s

ds

=
∫∞

t

d

ds

(
1

b − a
ρ̃(s)b−a

)
ds ≤ 1

a − b
ρ̃(t)b−a.

(1.15)

Hence, Theorem 1.2 generalizes Proposition 1.1.

Letting η(t) ≡ 1 and g(x) ≡ 1 in Theorem 1.2, we obtain the result of how Mρ̃ controls
Tρ.

Corollary 1.4. Let 1 ≤ p < ∞. Suppose that

∫∞

t

ρ(s)
sρ̃(s)φ(s)

ds ≤ C

φ(t)
∀t > 0, (1.16)

then

∥∥Tρf∥∥p,φ
≤ C

∥∥Mρ̃f
∥∥
p,φ

. (1.17)

Corollary 1.4 generalizes [3, Theorem 4.2]. Letting η = ρ̃ in Theorem 1.2, we also
obtain the condition on g and ρ under which the mapping

f ∈ Mp,φ �−→ g · Tρf ∈ Mp,φ (1.18)

is bounded.
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Corollary 1.5. Let

1 ≤ p < ∞,

⎧⎨
⎩
p ≤ q if p = 1,

p < q if p > 1.
(1.19)

Suppose that

∫∞

t

ρ(s)
sφ(s)

ds ≤ C
ρ̃(t)
φ(t)

∀t > 0, (1.20)

then

∥∥g · Tρf
∥∥
p,φ

≤ C
∥∥g∥∥q,ρ̃

∥∥Mf
∥∥
p,φ. (1.21)

In particular, if 1 < p < q < ∞, then

∥∥g · Tρf
∥∥
p,φ

≤ C
∥∥g∥∥q,ρ̃

∥∥f∥∥p,φ. (1.22)

Here, M denotes the Hardy-Littlewood maximal operator defined by

Mf(x) := sup
x∈Q∈Q

1
|Q|

∫
Q

∣∣f(y)∣∣dy. (1.23)

We will establish that M is bounded on Mp,φ when p > 1 (Lemma 2.2). Therefore, the
second assertion is immediate from the first one.

Theorem 1.6. Let 1 < p ≤ r < q < ∞. Suppose that φ(t) and η(t) are nondecreasing but that
φ(t)pt−n and η(t)qt−n are nonincreasing. Suppose also that

ρ̃(t)
φ(t)

+
∫∞

t

ρ(s)
sφ(s)

ds ≤ C
η(t)

φ(t)p/r
∀t > 0, (1.24)

then

∥∥g · Tρf
∥∥
r,φp/r ≤ C

∥∥g∥∥q,η

∥∥f∥∥p,φ, (1.25)

where the constant C is independent of f and g.

Theorem 1.6 extends [4, Theorem 2], [1, Theorem 1.1], and [5, Theorem 1]. As the
special case η(t) ≡ 1 and g(x) ≡ 1 in Theorem 1.6 shows, this theorem covers [1, Remark 2.8].

Corollary 1.7 (see [1, Remark 2.8], see also [6–8]). Let 1 < p ≤ r < ∞. Suppose that

ρ̃(t)
φ(t)

+
∫∞

t

ρ(s)
sφ(s)

ds ≤ C

φ(t)p/r
∀t > 0, (1.26)
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then

∥∥Tρf∥∥r,φp/r ≤ C
∥∥f∥∥p,φ. (1.27)

Nakai generalized Corollary 1.7 to the Orlicz-Morrey spaces ([9, Theorem 2.2] and [10,
Theorem 7.1]).

We dare restate Theorem 1.6 in the special case when Tρ is the fractional integral
operator Iα. The result holds by letting ρ(t) ≡ tnα, φ(t) ≡ tn/p0 , and η(t) ≡ tn/q0 .

Proposition 1.8 (see [1, Proposition 1.7]). Let 0 < α < 1, 1 < p ≤ p0 < ∞, 1 < q ≤ q0 < ∞, and
1 < r ≤ r0 < ∞. Suppose that q > r, 1/p0 > α, 1/q0 ≤ α, 1/r0 = 1/q0 + 1/p0 − α, and r/r0 = p/p0
then

∥∥g · Iαf
∥∥
Mr,r0 ≤ C

∥∥g∥∥Mq,q0

∥∥f∥∥Mp,p0 , (1.28)

where the constant C is independent of f and g.

Proposition 1.8 extends [4, Theorem 2] (see [1, Remark 1.9]).

Remark 1.9. The special case q0 = ∞ and g(x) ≡ 1 in Proposition 1.8 corresponds to the
classical theorem due to Adams (see [11]).

The fractional integral operator Iα, 0 < α < 1, is bounded fromMp,p0 toMr,r0 if and only
if the parameters 1 < p ≤ p0 < ∞ and 1 < r ≤ r0 < ∞ satisfy 1/r0 = 1/p0 − α and r/r0 = p/p0.

Using naively the Adams theorem and Hölder’s inequality, one can prove a minor
part of q in Proposition 1.8. That is, the proof of Proposition 1.8 is fundamental provided
(p/p0)q0 ≤ q ≤ q0. Indeed, by virtue of the Adams theorem we have, for any cube Q ∈ Q,

|Q|1/s0
(

1
|Q|

∫
Q

∣∣Iαf(x)∣∣sdx
)1/s

≤ C
∥∥f∥∥Mp,p0 ,

1
s
=

p0
p

1
s0
,

1
s0

=
1
p0

− α. (1.29)

The condition r/r0 = p/p0, 1/r0 = 1/q0 + 1/p0 − α reads

1
r
=

p0
p

(
1
q0

+
1
p0

− α

)
=

p0
p

1
q0

+
1
s
. (1.30)

These yield

|Q|1/q0+1/s0
(

1
|Q|

∫
Q

∣∣g(x)Iαf(x)∣∣rdx
)1/r

≤ C
∥∥g∥∥Mq,q0

∥∥f∥∥Mp,p0
(1.31)

if r/r0 = p/p0 = q/q0. In view of inclusion (1.5), the same can be said when (p/p0)q0 ≤ q ≤ q0.
Also observe that 1/r0 = 1/q0 + 1/p0 − α > 1/q0. Hence we have q0 > r0. Thus, since the
condition q > r, Proposition 1.8 is significant only when (p/p0)r0 < q < (p/p0)q0. The case
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p/p0 = r/r0 = 1 (the case of the Lebesgue spaces) corresponds (so-called) to the Fefferan-
Phong inequality (see [12]). An inequality of the form

∫
Rn

|u(x)|2v(x)dx ≤ Cv

∫
Rn

|∇u(x)|2dx, 0 ≤ u ∈ C∞
0 (Rn), v ≥ 0 (1.32)

is called the trace inequality and is useful in the analysis of the Schrödinger operators. For
example, Kerman and Sawyer utilized an inequality of type (1.32) to obtain an eigenvalue
estimates of the operators (see [13]). By letting α = 1/n, we obtain a sharp estimate on the
constant Cv in (1.32).

In [14], we characterized the range of Iα, which motivates us to consider
Proposition 1.8.

Proposition 1.10 (see [14]). Let 1 < p ≤ p0 < ∞, 1 < s ≤ s0 < ∞, and 0 < α < 1. Assume that

p

p0
=

s

s0
,

1
s0

=
1
p0

− α. (1.33)

(1) Iα : Mp,p0 → Ms,s0 is continuous but not surjective.

(2) Let ϕ ∈ S be an auxiliary function chosen so that ϕ(x) = 1, 2 ≤ |x| ≤ 4 and that ϕ(x) = 0,
|x| ≤ 1, |x| ≥ 8. Then the norm equivalence

∥∥f∥∥Mp,p0 


∥∥∥∥∥∥∥

⎛
⎝ ∞∑

j=−∞
22j(n−α)

∣∣∣Fϕ(2j ·) ∗ Iαf
∣∣∣2
⎞
⎠

1/2
∥∥∥∥∥∥∥
Mp,p0

(1.34)

holds for f ∈ Mp,p0 , where F denotes the Fourier transform.

In view of this propositionMs,s0 is not a good space to describe the boundedness of Iα,
although we have (1.29). As we have seen by using Hölder’s inequality in Remark 1.9, if we
use the space Ms,s0 , then we will obtain a result weaker than Proposition 1.8.

Finally it would be interesting to compare Theorem 1.2 with the following
Theorem 1.11.

Theorem 1.11. Let 0 < p < ∞. Suppose that ρ, η, and φ are nondecreasing and that η(t)pt−n and
φ(t)pt−n are nonincreasing. Then

∥∥g ·Mρf
∥∥
p,φ

≤ C
∥∥g∥∥p,η

∥∥Mρ/ηf
∥∥
p,φ

, (1.35)

where the constant C is independent of f and g.

Theorem 1.11 generalizes [1, Theorem 1.7] and the proof remains unchanged except
some minor modifications caused by our generalization of the function spaces to which f
and g belong. So, we omit the proof in the present paper.
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2. Proof of Theorems

For any 1 < p < ∞ we will write p′ for the conjugate number defined by 1/p + 1/p′ = 1.
Hereafter, for the sake of simplicity, for any Q ∈ Q and 0 < p < ∞we will write

mQ

(
f
)
:=

1
|Q|

∫
Q

f(x)dx, m
(p)
Q

(
f
)
:= mQ

(∣∣f∣∣p)1/p. (2.1)

2.1. Proof of Theorem 1.2

First, we will prove Theorem 1.2. Except for some sufficient modifications, the proof of the
theorem follows the argument in [15]. We denote by D the family of all dyadic cubes in R

n.
We assume that f and g are nonnegative, which may be done without any loss of generality
thanks to the positivity of the integral kernel. We will denote by B(x, r) the ball centered at
x and of radius r. We begin by discretizing the operator Tρf following the idea of Pérez (see
[16]):

Tρf(x) =
∑
ν∈Z

∫
2ν−1<|x−y|≤2ν

f
(
y
)ρ(∣∣x − y

∣∣)∣∣x − y
∣∣n dy

≤ C
∑
ν∈Z

ρ(2ν)
2nν

∫
B(x,2ν)

f
(
y
)
dy

≤ C
∑
ν∈Z

∑
Q∈D:Q�x,�(Q)=2ν

ρ(�(Q))
|Q|

∫
3Q
f
(
y
)
dy

= C
∑
Q∈D

ρ(�(Q))
|Q|

∫
3Q
f
(
y
)
dy · χQ(x)

= C
∑
Q∈D

ρ(�(Q))m3Q
(
f
) · χQ(x),

(2.2)

where we have used the doubling condition of ρ for the first inequality. To prove Theorem 1.2,
thanks to the doubling condition of φ, which holds by use of the facts that φ(t) is
nondecreasing and that φ(t)pt−n is nonincreasing, it suffices to show

(∫
Q0

(
g(x)Tρf(x)

)p
dx

)1/p

≤ C
∥∥g∥∥q,η

∥∥Mρ̃/ηf
∥∥
p,φ

|Q0|1/pφ(�(Q0))
−1, (2.3)

for all dyadic cubes Q0. Hereafter, we let

D1(Q0) := {Q ∈ D : Q ⊂ Q0},
D2(Q0) := {Q ∈ D : Q � Q0}.

(2.4)



Boundary Value Problems 9

Let us define for i = 1, 2

Fi(x) :=
∑

Q∈Di(Q0)

ρ(�(Q))m3Q
(
f
)
χQ(x) (2.5)

and we will estimate

(∫
Q0

(
g(x)Fi(x)

)p
dx

)1/p

. (2.6)

The case i = 1 and p = 1 We need the following crucial lemma, the proof of which is
straightforward and is omitted (see [15, 16]).

Lemma 2.1. For a nonnegative function h in L∞(Q0) one lets γ0 := mQ0(h) and c := 2n+1. For
k = 1, 2, . . . let

Dk :=
⋃

Q∈D1(Q0):mQ(h)>γ0ck
Q. (2.7)

Considering the maximal cubes with respect to inclusion, one can write

Dk =
⋃
j

Qk,j , (2.8)

where the cubes {Qk,j} ⊂ D1(Q0) are nonoverlapping. By virtue of the maximality ofQk,j one has that

γ0c
k < mQk,j (h) ≤ 2nγ0ck. (2.9)

Let

E0 := Q0 \D1, Ek,j := Qk,j \Dk+1. (2.10)

Then {E0} ∪ {Ek,j} is a disjoint family of sets which decomposes Q0 and satisfies

|Q0| ≤ 2|E0|,
∣∣Qk,j

∣∣ ≤ 2
∣∣Ek,j

∣∣. (2.11)

Also, one sets

D0 :=
{
Q ∈ D1(Q0) : mQ(h) ≤ γ0c

}
,

Dk,j :=
{
Q ∈ D1(Q0) : Q ⊂ Qk,j , γ0c

k < mQ(h) ≤ γ0c
k+1

}
.

(2.12)

Then

D1(Q0) := D0 ∪
⋃
k,j

Dk,j . (2.13)
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With Lemma 2.1 in mind, let us return to the proof of Theorem 1.2. We need only to
verify that

∫
Q0

g(x)F1(x)dx ≤ C
∥∥g∥∥q,η

∫
Q0

Mρ̃/ηf(x)dx. (2.14)

Inserting the definition of F1, we have

∫
Q0

g(x)F1(x)dx =
∑

Q∈D1(Q0)

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)dx. (2.15)

Letting h = g, we will apply Lemma 2.1 to estimate this quantity. Retaining the same
notation as Lemma 2.1 and noticing (2.13), we have

∫
Q0

g(x)F1(x)dx =
∑
Q∈D0

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)dx +
∑
k,j

∑
Q∈Dk,j

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)dx.

(2.16)

We first evaluate

∑
Q∈Dk,j

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)dx. (2.17)

It follows from the definition of Dk,j that (2.17) is bounded by

Cγ0c
k+1

∑
Q∈Dk,j

ρ(�(Q))
∫
3Q
f
(
y
)
dy. (2.18)

By virtue of the support condition and (1.8) we have

∑
Q∈Dk,j

ρ(�(Q))
∫
3Q
f
(
y
)
dy =

log2�(Qk,j )∑
ν=−∞

ρ(2ν)

⎛
⎝ ∑

Q∈Dk,j :�(Q)=2ν

∫
3Q
f
(
y
)
dy

⎞
⎠

≤ C

∫
3Qk,j

f
(
y
)
dy

⎛
⎝log2�(Qk,j )∑

ν=−∞
ρ(2ν)

⎞
⎠

≤ C

∫
3Qk,j

f
(
y
)
dy

(∫�(Qk,j )

0

ρ(s)
s

ds

)

= Cρ̃
(
�
(
Qk,j

))∫
3Qk,j

f
(
y
)
dy.

(2.19)
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If we invoke relations |Qk,j | ≤ 2|Ek,j | and γ0c
k < mQk,j (g), then (2.17) is bounded by

Cρ̃
(
�
(
Qk,j

))
m3Qk,j

(
f
)
mQk,j

(
g
)∣∣Ek,j

∣∣. (2.20)

Now that we have from the definition of the Morrey norm

mQk,j

(
g
) ≤ m

(q)
Qk,j

(
g
) ≤ ∥∥g∥∥q,ηη

(
�
(
Qk,j

))−1
, (2.21)

we conclude that

(2.17) ≤ C
∥∥g∥∥q,η

ρ̃
(
�
(
Qk,j

))
η
(
�
(
Qk,j

))m3Qk,j

(
f
)∣∣Ek,j

∣∣ ≤ C
∥∥g∥∥q,η

∫
Ek,j

Mρ̃/ηf(x)dx. (2.22)

Here, we have used the fact that ρ̃ is nondecreasing, that η satisfies the doubling
condition and that

ρ̃
(
�
(
3Qk,j

))
η
(
�
(
3Qk,j

))m3Qk,j

(
f
) ≤ inf

y∈Qk,j

Mρ̃/ηf
(
y
)
. (2.23)

Similarly, we have

∑
Q∈D0

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)dx ≤ C
∥∥g∥∥q,η

∫
E0

Mρ̃/ηf(x)dx. (2.24)

Summing up all factors, we obtain (2.14), by noticing that {E0} ∪ {Ek,j} is a disjoint
family of sets which decomposes Q0.
The case i = 1 and p > 1 In this case we establish

(∫
Q0

(
g(x)F1(x)

)p
dx

)1/p

≤ C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)pdx

)1/p

, (2.25)

by the duality argument. Take a nonnegative function w ∈ Lp′(Q0), 1/p + 1/p′ = 1, satisfying
that ‖w‖Lp′ (Q0) = 1 and that

(∫
Q0

(
g(x)F1(x)

)p
dx

)1/p

=
∫
Q0

g(x)F1(x)w(x)dx. (2.26)



12 Boundary Value Problems

Letting h = gw, we will apply Lemma 2.1 to estimation of this quantity. First, we will insert
the definition of F1,

∫
Q0

g(x)F1(x)w(x)dx =
∑

Q∈D1(Q0)

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)w(x)dx

=
∑
Q∈D0

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)w(x)dx

+
∑

Q∈Dj,k

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)w(x)dx.

(2.27)

First, we evaluate

∑
Q∈Dk,j

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)w(x)dx. (2.28)

Going through the same argument as the above, we see that (2.28) is bounded by

Cρ̃
(
�
(
Qk,j

))
m3Qk,j

(
f
)
mQk,j

(
gw

)∣∣Ek,j

∣∣. (2.29)

Using Hölder’s inequality, we have

mQk,j

(
gw

) ≤ m
(q)
Qk,j

(
g
)
m

(q′)
Qk,j

(w) ≤ ∥∥g∥∥q,ηη
(
�
(
Qk,j

))−1
m

(q′)
Qk,j

(w). (2.30)

These yield

(2.29) ≤ C
∥∥g∥∥q,η

ρ̃
(
�
(
Qk,j

))
η
(
�
(
Qk,j

))m3Qk,j

(
f
)
m

(q′)
Qk,j

(w)
∣∣Ek,j

∣∣

≤ C
∥∥g∥∥q,η

∫
Ek,j

Mρ̃/ηf(x)Mwq′(x)1/q
′
dx.

(2.31)

Similarly, we have

∑
Q∈D0

ρ(�(Q))m3Q
(
f
)∫

Q

g(x)w(x)dx ≤ C
∥∥g∥∥q,η

∫
E0

Mρ̃/ηf(x)Mwq′(x)1/q
′
dx. (2.32)

Summing up all factors we obtain

(2.28) ≤ C
∥∥g∥∥q,η

∫
Q0

Mρ̃/ηf(x)Mwq′(x)1/q
′
dx. (2.33)
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Another application of Hölder’s inequality gives us that

(2.28) ≤ C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)pdx

)1/p(∫
Q0

Mwq′(x)p
′/q′dx

)1/p′

. (2.34)

Now that p′ > q′, the maximal operator M is Lp′/q′-bounded. As a result we have

(2.28) ≤ C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)pdx

)1/p(∫
Q0

w(x)p
′
dx

)1/p′

= C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)pdx

)1/p

.

(2.35)

This is our desired inequality.
The case i = 2 and p ≥ 1 By a property of the dyadic cubes, for all x ∈ Q0 we have

F2(x) =
∑

Q∈D2(Q0)

ρ(�(Q))m3Q
(
f
)

=
∑

Q∈D2(Q0)

ρ(�(Q))
η(�(Q))
ρ̃(�(Q))

· ρ̃(�(Q))
η(�(Q))

m3Q
(
f
)

≤ C
∑

Q∈D2(Q0)

ρ(�(Q))
η(�(Q))
ρ̃(�(Q))

mQ

(
Mρ̃/ηf

)
.

(2.36)

As a consequence we obtain

mQ

(
Mρ̃/ηf

) ≤ m
(p)
Q

(
Mρ̃/ηf

) ≤ ∥∥Mρ̃/ηf
∥∥
p,φ

φ(�(Q))−1. (2.37)

In view of the definition of D2, for each ν ∈ Z with ν ≥ 1 + log2�(Q0) there exists a unique
cube in D2 whose length is 2ν. Hence, inserting these estimates, we obtain

F2(x) ≤ C
∥∥Mρ̃/ηf

∥∥
p,φ

∑
Q∈D2(Q0)

ρ(�(Q))η(�(Q))
ρ̃(�(Q))φ(�(Q))

= C
∥∥Mρ̃/ηf

∥∥
p,φ

∞∑
ν=1+log2�(Q0)

ρ(2ν)η(2ν)
ρ̃(2ν)φ(2ν)

≤ C
∥∥Mρ̃/ηf

∥∥
p,φ

∫∞

�(Q0)

ρ(s)η(s)
sρ̃(s)φ(s)

ds.

(2.38)
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Here, in the last inequality we have used the doubling condition (1.8) and the facts that ρ̃, φ,
and η are nondecreasing and that ρ̃ and φ satisfy the doubling condition. Thus, we obtain

F2(x) ≤ C
∥∥Mρ̃/ηf

∥∥
p,φ

η(�(Q0))
φ(�(Q0))

(2.39)

for all x ∈ Q0. Inserting this pointwise estimate, we obtain

(∫
Q0

(
g(x)F2(x)

)p
dx

)1/p

≤ Cm
(p)
Q0

(
g
)∥∥Mρ̃/ηf

∥∥
p,φ

η(�(Q0))φ(�(Q0))
−1|Q0|1/p

≤ C
∥∥g∥∥q,η

∥∥Mρ̃/ηf
∥∥
p,φ

φ(�(Q0))
−1|Q0|1/p.

(2.40)

This is our desired inequality.

2.2. Proof of Theorem 1.6

We need some lemmas.

Lemma 2.2 (see [1, Lemma 2.2]). Let p > 1. Suppose that φ satisfies (1.4), then

∥∥Mf
∥∥
p,φ ≤ C

∥∥f∥∥p,φ. (2.41)

Lemma 2.3. Let 1 < p ≤ r < ∞. Suppose that φ satisfies (1.4), then

∥∥∥Mφ1−p/r f
∥∥∥
r,φp/r

≤ C
∥∥f∥∥p,φ. (2.42)

Proof. Let x ∈ R
n be a fixed point. For every cube Q � x we see that

φ(�(Q))1−p/rmQ

(∣∣f∣∣) ≤ min
(
φ(�(Q))1−p/rMf(x), φ(�(Q))−p/r

∥∥f∥∥p,φ

)

≤ sup
t≥0

min
(
t1−p/rMf(x), t−p/r

∥∥f∥∥p,φ

)

=
∥∥f∥∥1−p/r

p,φ
Mf(x)p/r .

(2.43)

This implies

Mφ1−p/r f(x)r ≤ ∥∥f∥∥r−p
p,φ

Mf(x)p. (2.44)
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It follows from Lemma 2.2 that for every cube Q0

m
(r)
Q0

(
Mφ1−p/r f

)
≤ ∥∥f∥∥1−p/r

p,φ
m

(p)
Q0

(
Mf

)p/r ≤ C
∥∥f∥∥p,φφ(�(Q0))

−p/r . (2.45)

The desired inequality then follows.

Proof of Theorem 1.6. We use definition (2.5) again and will estimate

(∫
Q0

(
g(x)Fi(x)

)r
dx

)1/r

(2.46)

for i = 1, 2.
The case i = 1 In the course of the proof of Theorem 1.2, we have established (2.25)

(∫
Q0

(
g(x)F1(x)

)p
dx

)1/p

≤ C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)pdx

)1/p

. (2.47)

We will use it with p = r

(∫
Q0

(
g(x)F1(x)

)r
dx

)1/r

≤ C
∥∥g∥∥q,η

(∫
Q0

Mρ̃/ηf(x)rdx

)1/r

. (2.48)

The case i = 2 It follows that

ρ(�(Q))m3Q
(
f
) ≤ C

∥∥f∥∥p,φ

ρ(�(Q))
φ(�(Q))

(2.49)

from the Hölder inequality and the definition of the norm ‖f‖p,φ. As a consequence we have

F2(x) ≤ C
∥∥f∥∥p,φ

∑
Q∈D2(Q0)

ρ(�(Q))
φ(�(Q))

≤ C
∥∥f∥∥p,φ

∞∑
ν=1+log2�(Q0)

ρ(2ν)
φ(2ν)

≤ C
∥∥f∥∥p,φ

∫∞

�(Q0)

ρ(s)
sφ(s)

ds ≤ C
∥∥f∥∥p,φ

η(t)

φ(t)p/r
.

(2.50)

Here, we have used the doubling condition (1.8) and the fact that φ is nondecreasing in the
third inequality. Hence it follows that

(∫
Q0

(
g(x)F2(x)

)r
dx

)1/r

≤ Cm
(r)
Q0

(
g
)∥∥f∥∥p,φ

η(�(Q0))

φ(�(Q0))
p/r

|Q0|1/r

≤ C
∥∥g∥∥q,η

∥∥f∥∥p,φφ(�(Q0))
−p/r |Q0|1/r .

(2.51)
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Combining (2.48) and (2.51), we obtain

∥∥g · Tρf
∥∥
r,φp/r ≤ C

∥∥g∥∥q,η

(∥∥Mρ̃/ηf
∥∥
r,φp/r +

∥∥f∥∥p,φ

)
. (2.52)

We note that the assumption (1.24) implies ρ̃(t)/η(t) ≤ Cφ(t)1−p/r . Hence we arrive at the
desired inequality by using Lemma 2.3.

3. A Dual Version of Olsen’s Inequality

In this section, as an application of Theorem 1.6, we consider a dual version of Olsen’s
inequality on predual of Morrey spaces (Theorem 3.1). As a corollary (Corollary 3.2), we
have the boundedness properties of the operator Tρ on predual of Morrey spaces. We will
define the block spaces following [17].

Let 1 < p < ∞ and 1/p + 1/p′ = 1. Suppose that φ satisfies (1.4). We say that a function
b on R

n is a (p′, φ)-block provided that b is supported on a cube Q ⊂ R
n and satisfies

m
(p′)
Q (b) ≤ φ(�(Q))

|Q| . (3.1)

The space Bp′,φ(Rn) = Bp′,φ is defined by the set of all functions f locally in Lp′(Rn) with the
norm

∥∥f∥∥Bp′,φ := inf

{
‖{λk}‖l1 : f =

∑
k

λkbk

}
< ∞, (3.2)

where each bk is a (p′, φ)-block and ‖{λk}‖l1 =
∑

k |λk| < ∞, and the infimum is taken over
all possible decompositions of f . If φ(t) ≡ tn/p0 , p0 ≥ p, Bp′,φ is the usual block spaces, which
we write for Bp′,p′0 and the norm for ‖ · ‖Bp′ ,p′0 , because the right-hand side of (3.1) is equal to
|Q|1/p0−1 = |Q|−1/p′0 . It is easy to prove

Lp′0 = Bp′0,p
′
0 ⊃ Bp′1,p

′
0 ⊃ Bp′2,p

′
0 (3.3)

when 1 < p′0 ≤ p′1 ≤ p′2 < ∞. In [17, Theorem 1] and [18, Proposition 5], it was established that
the predual space ofMp,φ is Bp′,φ. More precisely, if g ∈ Mp,φ, then f ∈ Bp′,φ �→ ∫

Rnf(x)g(x)dx
is an element of (Bp′,φ)∗. Conversely, any continuous linear functional in Bp′,φ can be realized
with some g ∈ Mp,φ.

Theorem 3.1. Let 1 < p ≤ r < q < ∞. Suppose that φ(t) and η(t) are nondecreasing but that
φ(t)pt−n and η(t)qt−n are nonincreasing. Suppose also that

ρ̃(t)
φ(t)

+
∫∞

t

ρ(s)
sφ(s)

ds ≤ C
η(t)

φ(t)p/r
∀t > 0, (3.4)
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then

∥∥Tρ(gf)∥∥Bp′ ,φ ≤ C
∥∥g∥∥Mq,η

∥∥f∥∥Br′ ,φp/r , (3.5)

if g is a continuous function.

Theorem 3.1 generalizes [1, Theorem 3.1], and its proof is similar to that theorem,
hence omitted. As a special case when g(x) ≡ 1 and η(t) ≡ 1, we obtain the following.

Corollary 3.2. Let 1 < p < ∞. Suppose that φ is nondecreasing but that φ(t)pt−n is nonincreasing.
Suppose also that

ρ̃(t)
φ(t)

+
∫∞

t

ρ(s)
sφ(s)

ds ≤ C

φ(t)p/r
∀t > 0, (3.6)

then

∥∥Tρf∥∥Bp′ ,φ ≤ C
∥∥f∥∥Br′ ,φp/r . (3.7)

We dare restate Corollary 3.2 in terms of the fractional integral operator Iα. The results
hold by letting ρ(t) ≡ tnα, φ(t) ≡ tn/p0 , η(t) ≡ 1, and g(x) ≡ 1.

Proposition 3.3 (see [1, Proposition 3.8]). Let 0 < α < 1, 1 < p ≤ p0 < ∞, and 1 < r ≤ r0 < ∞.
Suppose that 1/p0 > α, 1/r0 = 1/p0 − α, and r/r0 = p/p0, then

∥∥Iαf∥∥Bp′ ,p′0 ≤ C
∥∥f∥∥Br′ ,r′0 . (3.8)

Remark 3.4 (see [1, Remark 3.9]). In Proposition 3.3, if r/r0 = p/p0 is replaced by 1/r = 1/p−
α, then, using the Hardy-Littlewood-Sobolev inequality locally and taking care of the larger
scales by the same manner as the proof of Theorem 3.1, one has a naive bound for Iα.
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