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1. Introduction

In this paper we establish new results concerning existence and behavior at infinity of
solutions for the nonlinear quasilinear problem

−Δpu = a(x)f(u) + λb(x)g(u) in R
N,

u > 0 in R
N, u(x) −→ 0, |x| −→ ∞,

(1.1)

where Δpu = div(|∇u|p−2∇u), with 1 < p < N, denotes the p-Laplacian operator; a, b : RN →
[0,∞) and f, g : [0,∞) → [0,∞) are continuous functions not identically zero and λ ≥ 0 is a
real parameter.

A solution of (1.1) is meant as a positive function u ∈ C1(RN) with u(x) → 0 as
|x| → ∞ and

∫
RN

|∇u|p−2∇u∇ϕdx =
∫
RN

(
a(x)f(u) + λb(x)g(u)

)
ϕdx, ∀ϕ ∈ C∞

0

(
R

N
)
. (1.2)
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The class of problems (1.1) appears in many nonlinear phenomena, for instance, in the theory
of quasiregular and quasiconformal mappings [1–3], in the generalized reaction-diffusion
theory [4], in the turbulent flow of a gas in porous medium and in the non-Newtonian
fluid theory [5]. In the non-Newtonian fluid theory, the quantity p is the characteristic of
the medium. If p < 2, the fluids are called pseudoplastics; if p = 2 Newtonian and if p > 2 the
fluids are called dilatants.

It follows by the nonnegativity of functions a, b, f, g of parameter λ and a strong
maximum principle that all non-negative and nontrivial solutions of (1.1) must be strictly
positive (see Serrin and Zou [6]). So, again of [6], it follows that (1.1) admits one solution if
and only if p < N.

The main objective of this paper is to improve the principal result of Yang and Xu [7]
and to complement other works (see, e.g., [8–20] and references therein) for more general
nonlinearities in the terms f and g which include the cases considered by them.

The principal theorem in [7] considered, in problem (1.1), f(u) = um, u > 0, and
g(u) = un, u > 0 with 0 < m < p − 1 < n. Another important fact is that, in our result, we
consider different coefficients, while in [7] problem (1.1)was studied with a(x) = b(x), ∀x ∈
R

N .
In order to establish our results some notations will be introduced. We set

ã(r) := min
|x|=r

a(x), b̃(r) := min
|x|=r

b(x), r ≥ 0,

â(r) := max
|x|=r

a(x), b̂(r) := max
|x|=r

b(x), r ≥ 0.
(1.3)

Additionally, we consider

(H1) (i) lims→ 0(f(s)/sp−1) = ∞,

(ii) lims→ 0(f(s)/sp−1) = 0,

(H2) (i) lims→ 0(g(s)/sp−1) = 0,

(ii) lims→ 0(g(s)/sp−1) = ∞.

Concerning the coefficients a and b,

(H3) (i)
∫∞
1 r

1/(p−1)â1/(p−1)(r)dr,
∫∞
1 r

1/(p−1)b̂1/(p−1)(r)dr < ∞, if 1 < p ≤ 2,

(ii)
∫∞
1 r

((p−2)N+1)/(p−1)â(r)dr,
∫∞
1 r

((p−2)N+1)/(p−1)b̂(r)dr < ∞, if p ≥ 2.

Our results will be established below under the hypothesis N ≥ 3.

Theorem 1.1. Consider (H1)–(H3), then there exists one λ� > 0 such that for each 0 ≤ λ < λ� there
exists at least one u = uλ ∈ C1(RN) solution of problem (1.1). Moreover,

C|x|−(N−p)/(p−1) ≤ u(x), x ∈ R
N, |x| ≥ 1 (1.4)

for some constant C = C(λ) > 0. If additionally

f(t)
tp−1

is nonincreasing and
g(t)
tp−1

is nondecreasing for t > 0, (1.5)
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then there is a positive constant D = D(λ�) such that

u2(x)f
(
u(x)
4

)−1/(p−1)
≤ D

∫∞

|x|

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt, x ∈ R

N. (1.6)

Remark 1.2. If we assume (1.5)with f(t) = tm, t > 0, where 0 ≤ m < p − 1, then (1.6) becomes

0 < u(x) ≤ C

⎛
⎝
∫∞

|x|

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt

⎞
⎠

1/(2−m/(p−1))

, x ∈ R
N. (1.7)

In the sequel, we will establish some results concerning to quasilinear problems which
are relevant in itself and will play a key role in the proof of Theorem 1.1.

We begin with the problem of finding classical solutions for the differential inequality

−Δpv ≥ a(x)f(v) + λb(x)g(v) in R
N,

v > 0 in R
N, v(x) −→ 0, |x| −→ ∞.

(1.8)

Our result is.

Theorem 1.3. Consider (H1)–(H3), then there exists one λ� > 0 such that problem (1.8) admits, for
each 0 ≤ λ < λ�, at least one radially symmetric solution v = vλ ∈ C2(RN \{0})∩C1,ν

loc(R
N), for some

ν ∈ (0, 1). Moreover, if in additionally one assumes (1.5), then there is a positive constantD = D(λ�)
such that

v2(x)f
(
v(x)
4

)−1/(p−1)
≤ D

∫∞

|x|

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt, x ∈ R

N. (1.9)

Remark 1.4. Theorems 1.1 and 1.3 are still true with N = 2 if (H3) hypothesis is replaced by

(H3)
′ ∫∞

1 [t
1−N∫ t

0(ã(s) + b̃(s))ds]
1/(p−1)

dt < ∞.

In fact, (H3) implies (H3)′, ifN ≥ 3. (see sketch of the proof in the appendix).

Remark 1.5. In Theorem 1.3, it is not necessary to assume that f and g are continuous up to
0. It is sufficient to know that f, g : (0,∞) → (0,∞) are continuous. This includes terms f, g
singular in 0.

The next result improves one result of Goncalves and Santos [21] because it guarantees
the existence of radially symmetric solutions in C2(B(0, R) \ {0}) ∩ C1(B(0, R)) ∩ C(B(0, R))
for the problem

−Δpu = ρ(x)h(u) in B(0, R),

u > 0 in B(0, R), u(x) = 0, x ∈ ∂B(0, R),
(1.10)
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where ρ : B(0, R) → [0,∞), h : (0,∞) → (0,∞) are continuous and suitable functions and
B(0, R) ⊂ R

N is the ball in R
N centered in the origin with radius R > 0.

Theorem 1.6. Assume ρ(x) = ρ̃(|x|), x ∈ R
N where ρ̃ : [0,∞) → [0,∞), with ρ̃ /= 0, is

continuous. Suppose that h satisfies (H1) and additionally

h(s)
sp−1

, s > 0 is nonincreasing. (1.11)

then (1.10) admits at least one radially symmetric solution u ∈ C2(B(0, R) \ {0}) ∩ C1(B(0, R)) ∩
C(B(0, R)). Besides this, u(x) = ũ(|x|), x ∈ B(0, R), and ũ satisfies

ũ(r) = ũ(0) −
∫ r

0

[
t1−N

∫ t

0
sN−1ρ̃(s)h(ũ(s))ds

]1/(p−1)
dt, r ≥ 0. (1.12)

The proof of principal theorem (Theorem 1.1) relies mainly on the technics of lower
and upper solutions. First, we will prove Theorem 1.3 by defining several auxiliary functions
until we get appropriate conditions to define one positive number λ� and a particular upper
solution of (1.1) for each 0 ≤ λ < λ�.

After this, we will prove Theorem 1.6, motivated by arguments in [21], which will
permit us to get a lower solution for (1.1). Finally, we will obtain a solution of (1.1) applying
the lemma below due to Yin and Yang [22].

Lemma 1.7. Suppose that f(x, r) is defined on R
N+1 and is locally Hölder continuous (with γ ∈

(0, 1)) in x. Assume also that there exist functions w,v ∈ C
1,γ
loc(R

N) such that

−Δpv ≥ f(x, v), x ∈ R
N,

−Δpw ≤ f(x,w), x ∈ R
N,

w(x) ≤ v(x), x ∈ R
N,

(1.13)

and f(x, r) is locally Lipschitz continuous in r on the set

{
(x, r)/x ∈ R

N, w(x) ≤ r ≤ v(x)
}
. (1.14)

Then there exists u ∈ C1(RN) with w(x) ≤ u(x) ≤ v(x), x ∈ R
N satisfying

∫
RN

|∇u|p−2∇u∇ϕdx =
∫
RN

f(x, u)ϕdx, ∀ϕ ∈ C∞
0

(
R

N
)
. (1.15)

In the two next sections we will prove Theorems 1.3 and 1.6.
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2. Proof of Theorem (1.4)

First, inspired by Zhang [20] and Santos [16], we will define functions F : (0,∞) → (0,∞)
and G : (0,∞) × (0,∞) → (0,∞) by

F(s) = sup
t≥s

f(t)
tp−1

, s > 0, G(τ, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
s≤t≤τ

g(t)
tp−1

, s ≤ τ,

g(τ)
τp−1

, s ≥ τ.

(2.1)

So, for each λ ≥ 0, let Fλ : (0,∞) × (0,∞) → (0,∞) given by

Fλ(τ, s) = F0(s) + λF(τ, s), (2.2)

where

F0(s) = sp−1F(s), s > 0, F(τ, s) = sp−1G(τ, s), τ, s > 0. (2.3)

It is easy to check that

F0(s) ≥ f(s), s > 0, for each τ > 0, F(τ, s) ≥ g(s), 0 < s ≤ τ (2.4)

and, as a consequence,

Fλ(τ, s) ≥ f(s) + λg(s), 0 < s ≤ τ. (2.5)

Moreover, it is also easy to verify.

Lemma 2.1. Suppose that (H1) and (H2) hold. Then, for each τ > 0,

(i) F(τ, s)/sp−1, s > 0 is non-increasing,

(ii) F0(s)/sp−1, s > 0 is non-increasing,

(iii) lims→ 0(F(τ, s)/sp−1) = sup0<t≤τ(g(t)/t
p−1),

(iv) lims→ 0(F0(s)/sp−1) = ∞,

(v) lims→∞(F(τ, s)/sp−1) = g(τ)/τp−1,

(vi) lims→∞(F0(s)/sp−1) = 0.

By Lemma 2.1(iii), (iv), and (2.2), the function F̃λ : (0,∞) × (0,∞) → (0,∞), given by

F̃λ(τ, s) =
s2∫s

0

(
t/Fλ(τ, t)1/(p−1)

)
dt

, (2.6)

is well defined and continuous. Again, by using Lemma 2.1(i) and (ii),

F̃λ(τ, s) ≥ Fλ(τ, s)1/(p−1), ∀τ, s > 0. (2.7)
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Besides this, F̃λ(τ, ·) ∈ C1(0,∞), for each τ > 0, and using Lemma 2.1, it follows that F̃λ

satisfies, for each λ ≥ 0, the following.

Lemma 2.2. Suppose that (H1) and (H2) hold. Then, for each τ > 0,

(i) F̃λ(τ, s)/s is non-increasing in s > 0,

(ii) lims→ 0(F̃λ(τ, s)/s) = ∞,

(iii) lims→ 0(F̃λ(τ, s)/s) = [λ(g(τ)/τp−1)]1/(p−1), if λ > 0,

(iv) lims→ 0(F̃λ(τ, s)/s) = 0, if λ = 0.

And, in relation to λ, we have the folowing.

Lemma 2.3. Suppose that (H1) and (H2) hold. Then, for each τ, s > 0,

(i) F̃λ1(τ, s) < F̃λ2(τ, s), if λ1 < λ2,

(ii) F̃λ(τ, s)/s → F0(s)/s, as λ → 0.

Finally, we will define, for each λ ≥ 0, Hλ : (0,∞) → (0,∞), by

Hλ(τ) =
1
τ

∫ τ

0

t

F̃λ(τ, t)
dt. (2.8)

So, Hλ is a continuous function and we have (see proof in the appendix).

Lemma 2.4. Suppose that (H1) and (H2) hold. Then,

(i) limτ → 0Hλ(τ) = 0, for any λ ≥ 0,

(ii) limτ →∞Hλ(τ) = ∞, if λ = 0,

(iii) limτ →∞Hλ(τ) = 0, if λ > 0,

(iv) Hλ1(τ, s) > Hλ2(τ, s), if λ1 < λ2,

(v) limλ→ 0Hλ(τ) = H0(τ), for each τ > 0.

By Lemma 2.4(ii), there exists a τ∞ > 0 such thatH0(τ∞) > α + 1, where by either (H3)
or (H3)′, we have

0 < α :=
∫∞

0

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt < ∞. (2.9)

So, by Lemma 2.4(v), there exists a λ� > 0 such that Hλ�(τ∞) > α. That is,

1
τ∞

∫ τ∞

0

t

F̃λ�(τ∞, t)
dt > α. (2.10)

Let P : (0,∞) × [0, τ∞] → R
N by

P(t, s) = ω̃(t) − 1
τ∞

∫s

0

ς

F̃λ�(τ∞, ς)
dς, (2.11)
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where ω̃ : (0,∞) → (0,∞), ω̃ ∈ C2((0,∞)) ∩ C1([0,∞)) is given by ω(x) = ω̃(|x|), x ∈ R
N

where ω ∈ C2(RN \ {0}) ∩ C1(RN) is the unique positive and radially symmetric solution of
problem

−Δpω = ã(|x|) + b̃(|x|) in R
N,

ω > 0 in R
N, ω(x) −→ 0, |x| −→ ∞.

(2.12)

More specifically, by DiBenedetto [23], ω ∈ C2(RN \ {0}) ∩ C1,ν
loc(R

N), for some ν ∈ (0, 1). In
fact, ω̃ satisfies

ω̃(r) = α −
∫ r

0

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt, r ≥ 0. (2.13)

So, by (2.10), (2.11), and (2.13), we have for each t > 0,

P(t, 0) = ω̃(t) > 0, P(t, τ∞) < α − 1
τ∞

∫ τ∞

0

t

F̃λ�(τ∞, t)
dt < 0. (2.14)

Hence, after some pattern calculations, we show that there is a ϑ ∈ C2((0,∞)) ∩ C1([0,∞))
such that ϑ(r) ≤ τ∞, r ≥ 0 and

ω̃(r) =
1
τ∞

∫ϑ(r)

0

t

F̃λ�(τ∞, t)
dt, r ≥ 0. (2.15)

As consequences of (2.9), (2.13) and (2.15), we have ϑ(r) → 0, r → ∞ and

(
rN−1∣∣ω̃′(r)

∣∣p−1ω̃′(r)
)′

=
1

τ
p−1
∞

(
ϑ(r)

F̃λ�(τ∞, ϑ(r))

)p−1(
rN−1∣∣ϑ′(r)

∣∣p−1ϑ′(r)
)′

+
p − 1

τ
p−1
∞

(
ϑ(r)

F̃λ�(τ∞, ϑ(r))

)p−2
d

ds

(
s

F̃λ�(τ∞, s)

)
rN−1∣∣ϑ′(r)

∣∣p
(2.16)

and hence, by Lemma 2.2 (i), (2.7) and ϑ(r) ≤ τ∞, r ≥ 0, we obtain

−
(
rN−1∣∣ϑ′(r)

∣∣p−1ϑ′(r)
)′ ≥

(
τ∞
ϑ(r)

)p−1
F̃λ�(τ∞, ϑ(r))

p−1
[
−
(
rN−1∣∣ω̃′(r)

∣∣p−1ω̃′(r)
)′]

= rN−1Fλ�(τ∞, ϑ(r))
(
ã(r) + b̃(r)

)
,

(2.17)
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that is, by using (2.2), we have

−
(
rN−1∣∣ϑ′(r)

∣∣p−1ϑ′(r)
)′ ≥ rN−1ã(r)F0(ϑ(r)) + λ�rN−1b̃(r)F(τ∞, ϑ(r)), r ≥ 0. (2.18)

In particular, making v(x) = ϑ(|x|), x ∈ R
N , we get from (2.15), Lemma 2.2(i) and ω ∈

C2(RN \{0})∩C1,ν
loc(R

N) that v ∈ C2(RN \{0})∩C1,ν
loc(R

N) and satisfies (1.8), for each 0 ≤ λ ≤ λ�.
That is, v is an upper solution to (1.1).

To prove (1.9), first we observe, using Lemma 2.2(i) and (2.15), that

ω̃(r) ≥ 1
τ∞

∫ϑ(r)/2

0

t

Fλ�(τ∞, t)
1/(p−1)dt ≥

1
τ∞

∫ϑ(r)/2

ϑ(r)/4

t

Fλ�(τ∞, t)
1/(p−1)dt

≥ 1
τ∞

[
1

F(ϑ(r)/4) + λ�G(τ∞, ϑ(r)/4)

]1/(p−1)
(ϑ(r)/4), r ≥ 0.

(2.19)

So, by definition of F, G(τ∞, ·) and hypothesis (1.5), we have

F

(
ϑ(r)
4

)
+ λ�G

(
τ∞,

ϑ(r)
4

)
=

f(ϑ(r)/4)

(ϑ(r)/4)p−1
+ λ�

g(τ∞)

τ
p−1
∞

, r ≥ 0. (2.20)

Thus,

(ϑ(r)/4)2(p−1)

f(ϑ(r)/4)
≤ τ

p−1
∞

[
1 + λ�

g(τ∞)

τ
p−1
∞

(ϑ(r)/4)(p−1)

f(ϑ(r)/4)

]
ω̃(r)p−1, r ≥ 0. (2.21)

Recalling that ϑ(r) ≤ τ∞, r ≥ 0 and using (1.5) again, we obtain

ϑ(r)2
[
f

(
ϑ(r)
4

)]−1/(p−1)
≤ 16τ∞

[
1 + λ�

g(τ∞)

τ
p−1
∞

(τ∞/4)
(p−1)

f(τ∞/4)

]1/(p−1)
ω̃(r), r ≥ 0. (2.22)

Thus by (2.9), (2.13), and v(x) = ϑ(r), r = |x|, for all x ∈ R
N , there is one positive constant

D = D(λ�) such that (1.9) holds. This ends the proof of Theorem 1.3.

3. Proof of Theorem (1.5)

To prove Theorem (1.5), we will first show the existence of a solution, say uk ∈ C2(B(0, R) \
{0}) ∩ C1(B(0, R)) ∩ C(B(0, R)), for each k = 1, 2, . . . , for the auxiliary problem

−Δpu = ρ(x)hk(u) in B(0, R),

u > 0 in B(0, R), u(x) = 0, x ∈ ∂B(0, R),
(3.1)

where hk(s) = h(s + 1/k), s ≥ 0. In next, to get a solution for problem (1.10), we will use a
limit process in k.
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For this purpose, we observe that

(i) lim infs→ 0hk(s) = h(1/k) > 0,

(ii) lims→∞(hk(s)/sp−1) = lims→∞(h(s + 1/k)/(s + 1/k)p−1)(1 + 1/ks)p−1 = 0, by (H1)
and by (1.11), it follows that

(iii) hk(s)/sp−1 = (h(s+1/k)/(s+1/k)p−1)(1+1/ks)p−1, s > 0 is non-increasing, for each
k + 1, 2, . . . .

By items (i)–(iii) above, ρ and hk fulfill the assumptions of Theorem 1.3 in [21]. Thus (3.1)
admits one solution uk ∈ C2(B(0, R) \ {0}) ∩ C1(B(0, R)) ∩ C(B(0, R)), for each k = 1, 2, . . . .
Moreover, uk(x) = ũk(|x|), x ∈ R

N with ũk ∈ C2((0, R)) ∩ C1([0, R)) ∩ C([0, R]) satisfying

ũk(r) = ũk(0) −
∫ r

0

[
t1−N

∫ t

0
sN−1ρ̃(s)h(ũk(s) + 1/k)ds

]1/(p−1)
dt, 0 ≤ r ≤ R. (3.2)

Adapting the arguments of the proof of Theorem 1.3 in [21], we show

cϕ1(r) ≤ ũk+1(r) +
1

k + 1
≤ ũk(r) +

1
k
, 0 ≤ r ≤ R, (3.3)

where ϕ1 ∈ C2(B(0, R)) is the positive first eigenfunction of problem

−
(
rN−1∣∣ϕ′∣∣p−2ϕ′

)′
= λrN−1ρ̃(r)

∣∣ϕ∣∣p−2ϕ in B(0, R),

ϕ = 0 on ∂B(0, R),
(3.4)

and c > 0, independent of k, is chosen (using (H1)) such that

h
(
c‖ϕ1‖∞

)
(
c‖ϕ1‖∞

)p−1 > λ1, (3.5)

with λ1 > 0 denoting the first eigenvalue of problem (3.4) associated to the ϕ1.
Hence, by (3.3),

ũk(r) −→ ũ(r) with cϕ1(r) ≤ ũ(r) ≤ |ũ1|∞ + 1, 0 ≤ r ≤ R. (3.6)

Using (H1), (3.3), the above convergence and Lebesgue’s theorem, we have, making k → ∞
in (3.2), that

ũ(r) = ũ(0) −
∫ r

0

[
t1−N

∫ t

0
sN−1ρ̃(s)h(ũ(s))ds

]1/(p−1)
dt, 0 ≤ r ≤ R. (3.7)

So, making u(x) = ũ(|x|), x ∈ R
N , after some calculations, we obtain that u ∈ C2(B(0, R) \

{0}) ∩ C1(B(0, R)) ∩ C(B(0, R)). This completes the proof of Theorem 1.6.
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4. Proof of Main Result: Theorem 1.1

To complete the proof of Theorem 1.1, we will first obtain a classical and positive lower
solution for problem (1.1), say w, such that w ≤ v, where v is given by Theorem 1.3. After
this, the existence of a solution for the problem (1.1)will be obtained applying Lemma 1.7.

To get a lower solution for (1.1), we will proceed with a limit process in un, where un

is a classical solution of problem (1.10) (given by Theorem 1.6) with ρ̃ = ã, h is a suitable
function and R = n for n ≥ n0 and n0 is such that ã /= 0 in [0, n0).

Let

f∞(s) = sp−1f̃∞(s), s > 0, where f̃∞(s) = inf
0<t≤s

f(t)
tp−1

, s > 0. (4.1)

Thus, it is easy to check the following lemma.

Lemma 4.1. Suppose that (H1) and (H2) hold. Then,

(i) 0 < f∞(s) ≤ f(s) ≤ F0(s) + λ�F(τ∞, s), s > 0,

(ii) f∞(s)/sp−1, s > 0 is non-increasing,

(iii) lims→ 0(f∞(s)/sp−1) = ∞ and lims→∞(f∞(s)/sp−1) = 0.

Hence, Lemma 4.1 shows that f∞ fulfills all assumptions of Theorem 1.6. Thus, for
each n ∈ N such that n ≥ n0 there exists one �n ∈ C2(B(0, n) \ {0}) ∩ C1(B(0, n)) ∩ C(B(0, n))
with�n(x) = �̃n(|x|), x ∈ B(0, n) and �̃n satisfying

−
(
rN−1|�̃ ′

n|p−2�̃ ′
n

)′
= rN−1ã(r)f∞(�̃n(r)) in 0 < r < n,

�̃n > 0 in [0, n), �̃n(n) = 0,
(4.2)

equivalently,

�̃n(r) = �̃n(0) −
∫ r

0

[
t1−N

∫ t

0
sN−1ã(s)f∞(�̃n(s))ds

]1/(p−1)
dt, 0 ≤ r ≤ n. (4.3)

Consider �̃n extended on [n,∞) by 0. We claim that

0 ≤ · · · ≤ �̃n ≤ �̃n+1 ≤ · · · ≤ ϑ. (4.4)

Indeed, first we observe that f∞ satisfies Lemma 4.1(ii). So, with similar arguments to those
of [21], we show �̃n ≤ �̃n+1, n ≥ n0.

To prove �̃n ≤ ϑ, first we will prove that �̃n(0) ≤ ϑ(0), for all n ∈ N. In fact, if �̃n(0) >
ϑ(0) for some n, then there is one Tn > 0 such that

ϑ(r) < �̃n(r), r ∈ [0, Tn), ϑ(Tn) = �̃n(Tn) > 0, (4.5)

because �̃n(n) = 0 and ϑ > 0 with ϑ(r) → 0 as r → ∞.
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So, using Lemma A.1 (see the appendix) with h(r, s) = ã(r)f∞(s), r ∈ [0, Tn), and
s > 0, we obtain

H�̃n,ϑ(r) ≤
∫ r

0
tN−1ã(t)

[
F0(ϑ(t)) + λ�F(τ∞, ϑ(t))

ϑp−1 − f∞(�̃n(t))

�̃
p−1
n

](
ϑp − �̃

p
n

)
dr (4.6)

and from Lemma 4.1(i),

H�̃n,ϑ(r) ≤
∫ r

0
tN−1ã(t)

[
f∞(ϑ(t))
ϑp−1 − f∞(�̃n(t))

�̃
p−1
n

](
ϑp − �̃

p
n

)
dr ≤ 0, r ∈ [0, Tn). (4.7)

As a consequence of the contradiction hypothesis and the definition ofH�̃n,ϑ, we get

|�̃ ′
n(r)|p−2�̃ ′

n(r)

�̃
p−1
n (r)

− |ϑ′(r)|p−2ϑ′(r)
ϑp−1(r)

≥ 0, r ∈ [0, Tn). (4.8)

Recalling that �̃ ′(r), ϑ′(r) ≤ 0, r ∈ [0, Tn), it follows that

�̃n

ϑ
, is non-decreasing in [0, Tn]. (4.9)

So,

1 <
�̃n(0)
ϑ(0)

≤ �̃n(Tn)
ϑ(Tn)

= 1. (4.10)

However, this is impossible. To end the proof of claim (4.4), we will suppose that there exist
an n and r0 > 0 such that �̃n(r0) > ϑ(r0). Hence, there are Sn, Tn with 0 < Sn < r0 < Tn such
that �̃n(Sn) = ϑ(Sn), �̃n(Tn) = ϑ(Tn) and �̃n(r) > ϑ(r) for all r ∈ (Sn, Tn).

Following the same above arguments, we obtain

1 =
�̃n(Sn)
ϑ(Tn)

<
�̃n(r0)
ϑ(r0)

<
�̃n(Tn)
ϑ(Tn)

= 1. (4.11)

This is impossible again. Thus, we completed the proof of claim (4.4). Setting

lim
n→∞

�̃n(r) = ŵ(r), r ≥ 0, (4.12)

it follows by claim (4.4) that

0 < ŵ(r) ≤ ϑ(r), r ≥ 0. (4.13)
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Moreover, making n → ∞ in (4.3), we use Lebesgue’s theorem that

ŵ(r) = ŵ(0) −
∫ r

0

[
t1−N

∫ t

0
sN−1ã(s)f∞(ŵ(s))ds

]1/(p−1)
dt, r ≥ 0. (4.14)

Hence, after some calculations, we obtain ŵ ∈ C2((0,∞)) ∩ C1([0,∞)) and setting w(x) =
ŵ(|x|), x ∈ R

N it follows, by DiBenedetto [23], that w ∈ C2(RN \ {0}) ∩ C
1,μ
loc(R

N) for some
μ ∈ (0, 1). Recalling that v(x) = ϑ(|x|), x ∈ R

N and using Lemma 4.1(i), it follows that w is a
lower solution of (1.1)with

0 < w(x) ≤ v(x), ∀x ∈ R
N. (4.15)

So, by Lemma 1.7, we conclude that problem (1.1) admits a solution. Besides this, the
inequality (1.4) is a consequence of a result in [6]. This completes the proof of Theorem 1.1.

Appendix

Proof of Lemma 2.4. The proof of item (iv) is an immediate consequence of Lemma 2.3(i). The
item (v) follows by Lemma 2.3(i) and (ii) using Lebesgue’s Theorem.

Proof of (i) and (iii). By Lemma 2.2(i),

0 ≤ Hλ(τ) ≤ τ

F̃λ(τ, τ)
=

1
τ

∫ τ

0

t

Fλ(τ, t)1/(p−1)
, τ > 0. (A.1)

So, using (2.2), (2.5), and Lemma 2.1(i) and (ii), we get

0 ≤ Hλ(τ) ≤
[

τp−1

F0(τ) + λF(τ, τ)

]1/(p−1)
, τ > 0. (A.2)

Since, by Lemma 2.1(iv),

lim
τ → 0

F0(τ) + λF(τ, τ)
τp−1

= ∞, λ ≥ 0, (A.3)

then the claim (i) of Lemma 2.4 follows from (A.2).
On the other hand, for all λ > 0, it follows from Lemma 2.1(vi) that

lim
τ →∞

F0(τ) + λF(τ, τ)
τp−1

= λ lim
τ →∞

F(τ, τ)
τp−1

= λ lim
τ →∞

G(τ, τ) = λ lim
τ →∞

g(τ)
τp−1

= ∞, (A.4)

where the last equality is obtained by using (H2)-(ii). Hence, using (A.2), the proof of
Lemma 2.4(iii) is concluded.
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Proof of (ii). In this case (λ = 0),

F̃0(τ, s) =
s2∫s

0

(
t/F0(t)1/(p−1)

)
dt

:= F̃0(s), s > 0. (A.5)

That is, F̃0(τ, s) does not depend on τ . So, by L’Hopital and Lemma 2.2(iv),

lim
τ →∞

Hλ(τ) = lim
τ →∞

τ

F̃0(τ)
= ∞. (A.6)

This ends the proof of Lemma 2.4.

The next lemma, proved in [21], was used in the proofs of Theorems 1.1 and 1.6. To
enunciate it, wewill consider u, v ∈ C2((0, T))∩C1([0, T))∩C([0, T]), for some T > 0, satisfying

−
(
rN−1∣∣ψ ′∣∣p−2ψ ′

)′
= rN−1h

(
r, ψ(r)

)
in (0, T),

ψ > [0, T], ψ ′(0) = 0,
(A.7)

and we define the continuous function Hu,v : [0, T) → R by

Hu,v(r) := rN−1
[
|u′(r)|p−2u′(r)

up−1(r)
− |v′(r)|p−2v′(r)

vp−1(r)

]
(vp(r) − up(r)), r ∈ [0, T). (A.8)

So, we have Hu,v(0) = 0 and

Lemma A.1. If 0 ≤ s ≤ r < T , then

Hu,v(r) −Hu,v(s) ≤
∫ r

s

⎡
⎢⎣
(
rN−1|u′|p−2u′

)′
up−1 −

(
rN−1|v′|p−2v′

)′
vp−1

⎤
⎥⎦(vp − up)dr. (A.9)

Finally, we will sketch the proof of claim (H3), implies (H3)′, ifN ≥ 3.
Below, C1, C2, . . . will denote several positive constants and I, the function

I(r) =
∫ r

0

[
t1−N

∫ t

0
(ã(s) + b̃(s))ds

]1/(p−1)
dt, r ≥ 0. (A.10)

If 1 < p ≤ 2, by estimating the integral in (A.10), we obtain

I(r) ≤ C1 + C2

∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1ã(s)ds

]1/(p−1)
dt +

∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1b̃(s)ds

]1/(p−1)
dt.

(A.11)
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Using the assumption N ≥ 3 in the computation of the first integral above and Jensen’s
inequality to estimate the last one, we have

∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1ã(s)ds

]1/(p−1)
dt ≤ C3 + C4

∫ r

1
t(3−N−p)/(p−1)

[∫ t

1
s(N−1)/(p−1)ã(s)1/(p−1)ds

]
dt.

(A.12)

Computing the above integral, we obtain

∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1ã(s)ds

]1/(p−1)
dt ≤ C3 + C5

∫ r

1
t1/(p−1)ã(t)1/(p−1) dt. (A.13)

Similar calculations show that

∫ r

1
t(1−N)/(p−1)

[∫ t

0
sN−1b̃(s)ds

]1/(p−1)
dt ≤ C6 + C7

∫ r

1
t1/(p−1)b̃(t)1/(p−1)dt. (A.14)

So, by (H3),

0 < α = lim
r→∞

I(r) ≤ C8 + C5

∫∞

1
t1/(p−1)ã(t)1/(p−1)dt + C7

∫∞

1
t1/(p−1)b̃(t)1/(p−1)dt < ∞. (A.15)

On the other hand, if p ≥ 2, set

H(r) :=
∫ r

0
sN−1

(
ã(s) + b̃(s)

)
ds, r ≥ 0, (A.16)

and note that either H(r) ≤ 1 for all r ≥ 0 or H(r0) = 1 for some r0 > 0. In the first case,
H(r)1/(p−1) ≤ 1, for all r ≥ r0. Hence

I(r) =
∫ r

0
t(1−N)/(p−1)H(t)1/(p−1)dt ≤ C8 +

∫ r

1
t(1−N)/(p−1)dt, ∀r ≥ 0. (A.17)

So I(r) has a finite limit as r → ∞, because p < N. In the second case, H(r)1/(p−1) ≤ H(r) for
r ≥ r0 and hence,

I(r) ≤ C9 +
∫ r

1

[
t(1−N)/(p−1)

∫ t

0
sN−1

(
ã(s) + b̃(s)

)
ds

]
dt, r ≥ 0. (A.18)
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Integrating by parts and estimating using p < N, we obtain

I(r) ≤ C9 + C10

∫ r

1
t(1−N)/(p−1)dt

+
p − 1
N − p

[∫ r

1
t((p−2)N+1)/(p−1)

(
ã(t) + b̃(t)

)
dt − r(p−N)/(p−1)

∫ r

0
tN−1

(
ã(t) + b̃(t)

)
dt

]

≤ C11 + C12

∫ r

1
t((p−2)N+1)/(p−1)ã(t)dt +

∫ r

1
t((p−2)N+1)/(p−1)b̃(t)dt, r ≥ 0.

(A.19)

Again by (H3), we obtain that α = limr→∞I(r) is a finite number. This shows the claim.
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