Research Article

Infinitely Many Solutions of Strongly Indefinite Semilinear Elliptic Systems

Kuan-Ju Chen

Department of Applied Science, Naval Academy, P.O. Box 90175, Zuoying, Kaohsiung 8/303, Taiwan
Correspondence should be addressed to Kuan-Ju Chen, kuanju@mail.cna.edu.tw
Received 16 December 2008; Accepted 6 July 2009
Recommended by Wenming Zou
We proved a multiplicity result for strongly indefinite semilinear elliptic systems $-\Delta u+u=$ $\pm 1 /\left(1+|x|^{a}\right)|v|^{p-2} v$ in $\mathbb{R}^{N},-\Delta v+v= \pm 1 /\left(1+|x|^{b}\right)|u|^{q-2} u$ in \mathbb{R}^{N} where a and b are positive numbers which are in the range we shall specify later.

Copyright © 2009 Kuan-Ju Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we shall study the existence of multiple solutions of the semilinear elliptic systems

$$
\begin{align*}
& -\Delta u+u= \pm \frac{1}{(1+|x|)^{a}}|v|^{p-2} v \quad \text { in } \mathbb{R}^{N} \\
& -\Delta v+v= \pm \frac{1}{(1+|x|)^{b}}|u|^{q-2} u \quad \text { in } \mathbb{R}^{N} \tag{1.1}
\end{align*}
$$

where a and b are positive numbers which are in the range we shall specify later. Let us consider that the exponents $p, q>2$ are below the critical hyperbola

$$
\begin{equation*}
1>\frac{1}{p}+\frac{1}{q}>\frac{N-2}{N} \quad \text { for } N \geq 3 \tag{1.2}
\end{equation*}
$$

so one of p and q could be larger than $2 N /(N-2)$; for that matter, the quadratic part of the energy functional

$$
\begin{equation*}
I^{ \pm}(u, v)= \pm \int(\nabla u \cdot \nabla v+u v) d x-\frac{1}{p} \int \frac{1}{(1+|x|)^{a}}|v|^{p} d x-\frac{1}{q} \int \frac{1}{(1+|x|)^{b}}|u|^{q} d x \tag{1.3}
\end{equation*}
$$

has to be redefined, and we then need fractional Sobolev spaces.
Hence the energy functional $I^{ \pm}$is strongly indefinite, and we shall use the generalized critical point theorem of Benci [1] in a version due to Heinz [2] to find critical points of $I^{ \pm}$. And there is a lack of compactness due to the fact that we are working in \mathbb{R}^{N}.

In [3], Yang shows that under some assumptions on the functions f and g there exist infinitely many solutions of the semilinear elliptic systems

$$
\begin{array}{ll}
-\Delta u+u= \pm g(x, v) & \text { in } \mathbb{R}^{N} \\
-\Delta v+v= \pm f(x, u) & \text { in } \mathbb{R}^{N} \tag{1.4}
\end{array}
$$

We shall propose herein a result similar to [3] for problem (1.1).

2. Abstract Framework and Fractional Sobolev Spaces

We recall some abstract results developed in [4] or [5].
We shall work with space E^{s}, which are obtained as the domains of fractional powers of the operator

$$
\begin{equation*}
-\Delta+i d: H^{2}\left(\mathbb{R}^{N}\right) \cap H^{1}\left(\mathbb{R}^{N}\right) \subset L^{2}\left(\mathbb{R}^{N}\right) \longrightarrow L^{2}\left(\mathbb{R}^{N}\right) \tag{2.1}
\end{equation*}
$$

Namely, $E^{s}=D\left((-\Delta+i d)^{s / 2}\right)$ for $0 \leq s \leq 2$, and the corresponding operator is denoted by $A^{s}: E^{s} \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$. The spaces E^{s}, the usual fractional Sobolev space $H^{s}\left(\mathbb{R}^{N}\right)$, are Hilbert spaces with inner product

$$
\begin{equation*}
\langle u, v\rangle_{E^{s}}=\int A^{s} u A^{s} v d x \tag{2.2}
\end{equation*}
$$

and associates norm

$$
\begin{equation*}
\|u\|_{E^{s}}^{2}=\int\left|A^{s} u\right|^{2} d x \tag{2.3}
\end{equation*}
$$

It is known that A^{s} is an isomorphism, and so we denote by A^{-s} the inverse of A^{s}.
Now let $s, t>0$ with $s+t=2$. We define the Hilbert space $E=E^{s} \times E^{t}$ and the bilinear form $B: E \times E \rightarrow \mathbb{R}$ by the formula

$$
\begin{equation*}
B((u, v),(\phi, \psi))=\int A^{s} u A^{t} \psi+A^{s} \phi A^{t} v \tag{2.4}
\end{equation*}
$$

Using the Cauchy-Schwarz inequality, then it is easy to see that B is continuous and symmetric. Hence B induces a self-adjoint bounded linear operator $L: E \rightarrow E$ such that

$$
\begin{equation*}
B(z, \eta)=\langle L z, \eta\rangle_{E}, \quad \text { for } z, \eta \in E . \tag{2.5}
\end{equation*}
$$

Here and in what follows $\langle\cdot, \cdot\rangle_{E}$ denotes the inner product in E induced by $\langle\cdot, \cdot\rangle_{E^{s}}$ and $\langle\cdot, \cdot\rangle_{E^{t}}$ on the product space E in the usual way. It is easy to see that

$$
\begin{equation*}
L z=L(u, v)=\left(A^{-s} A^{t} v, A^{-t} A^{s} u\right), \quad \text { for } z=(u, v) \in E . \tag{2.6}
\end{equation*}
$$

We can then prove that L has two eigenvalues -1 and 1 , whose corresponding eigenspaces are

$$
\begin{array}{cc}
E^{-}=\left\{\left(u,-A^{-t} A^{s} u\right): u \in E^{s}\right\}, & \text { for } \lambda=-1, \\
E^{+}=\left\{\left(u, A^{-t} A^{s} u\right): u \in E^{s}\right\}, & \text { for } \lambda=1, \tag{2.7}
\end{array}
$$

which give a natural splitting $E=E^{+} \oplus E^{-}$. The spaces E^{+}and E^{-}are orthogonal with respect to the bilinear form B, that is,

$$
\begin{equation*}
B\left(z^{+}, z^{-}\right)=0, \text { for } z^{+} \in E^{+}, z^{-} \in E^{-} . \tag{2.8}
\end{equation*}
$$

We can also define the quadratic form $Q: E \rightarrow \mathbb{R}$ associated to B and L as

$$
\begin{equation*}
Q(z)=\frac{1}{2} B(z, z)=\frac{1}{2}\langle L z, z\rangle_{E}=\int A^{s} u A^{t} v \tag{2.9}
\end{equation*}
$$

for all $z=(u, v) \in E$. It follows then that

$$
\begin{equation*}
\frac{1}{2}\|z\|_{E}^{2}=Q\left(z^{+}\right)-Q\left(z^{-}\right), \tag{2.10}
\end{equation*}
$$

where $z=z^{+}+z^{-}, z^{+} \in E^{+}, z^{-} \in E^{-}$. If $z=(u, v) \in E^{+}$, that is, $v=A^{-t} A^{s} u$, we have

$$
\begin{equation*}
Q(z)=\frac{1}{2}\|z\|_{E}^{2}=\frac{1}{2}\left\|\left(u, A^{-t} A^{s} u\right)\right\|_{E}^{2}=\left\|A^{s} u\right\|^{2}=\|u\|_{E^{s}}^{2} . \tag{2.11}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
Q(z)=\left\|A^{t} v\right\|^{2}=\|v\|_{E^{t}}^{2} \tag{2.12}
\end{equation*}
$$

for $z \in E^{-}$.
If $w(x):=1 /(1+|x|)^{c}$ where c is a number satisfying the condition

$$
\begin{equation*}
2 c>2 N-\gamma(N-2 s), \quad 2<\gamma<\frac{2 N}{N-2 s} \tag{2.13}
\end{equation*}
$$

and $m:=(2 N /(N-2 s)) /(2 N /(N-2 s)-\gamma)$, it follows by (2.13) that $w \in L^{m}\left(\mathbb{R}^{N}\right)$ and by Hölder inequalities that

$$
\begin{equation*}
\int w(x)|u(x)|^{\gamma} d x \leq|w|_{m}|u|_{2 N /(N-2 s)}^{\gamma} \leq c|w|_{m}\|u\|_{E^{s}}^{\gamma} . \tag{2.14}
\end{equation*}
$$

In the sequel $|\cdot|_{m}$ denotes the norm in $L^{m}\left(\mathbb{R}^{N}\right)$, and we denote by $L^{r}\left(w, \mathbb{R}^{N}\right)$ the weighted function spaces with the norm defined on E^{s} by $|u|_{w, \gamma}=\left(\int w(x)|u(x)|^{\gamma}\right)^{1 / \gamma}$. According to the properties of interpolation space, we have the following embedding theorem.

Theorem 2.1. Let $s>0$. one defines the operator $\Theta: H^{s}\left(\mathbb{R}^{N}\right) \rightarrow H^{-s}\left(\mathbb{R}^{N}\right)$ as follows: for u, $\phi \in H^{s}\left(\mathbb{R}^{N}\right)$,

$$
\begin{equation*}
\langle\Theta(u), \phi\rangle=\int w(x)|u|^{\gamma-2} u \phi d x \tag{2.15}
\end{equation*}
$$

Then the inclusion of $H^{s}\left(\mathbb{R}^{N}\right)$ into $L^{\gamma}\left(w, \mathbb{R}^{N}\right)$ is compact if $2<\gamma<2 N /(N-2 s)$.
Proof. Observe that, by Hölder's inequality and (2.14), we have

$$
\begin{equation*}
|\langle\Theta(u), \phi\rangle| \leq\left.\int\left|w(x)^{1 / \gamma^{\prime}}\right| u\right|^{\gamma-1} w(x)^{1 / \gamma} \phi \mid \leq\left(\int w(x)|u|^{\gamma}\right)^{1 / \gamma^{\prime}}\left(\int w(x)|\phi|^{\gamma}\right)^{1 / \gamma}<\infty, \tag{2.16}
\end{equation*}
$$

where $1 / \gamma+1 / \gamma^{\prime}=1$; hence Θ is well defined.

Then we will claim that Θ is compact. Since $w(x) \in L^{m}\left(\mathbb{R}^{N}\right)$, for any $\varepsilon>0$, there exists $K>0$, such that $\left(\int_{|x|>K} w(x)^{m}\right)^{1 / m}<\epsilon$. Now, suppose $u_{n} \rightharpoonup u$ weakly in $H^{s}\left(\mathbb{R}^{N}\right)$. We estimate

$$
\begin{align*}
& \left\|\Theta\left(u_{n}\right)-\Theta(u)\right\|_{H^{-s}} \\
& =\sup _{\|\phi\|_{E^{s}} \leq 1}\left|\left\langle\Theta\left(u_{n}\right)-\Theta(u), \phi\right\rangle\right| \\
& =\sup _{\|\phi\|_{E^{5} \leq 1} \leq 1}\left|\int w(x)\left(\left|u_{n}\right|^{\mid-2} u_{n}-|u|^{\gamma-2} u\right) \phi\right| \\
& =\left.\sup _{\|\phi\|_{E^{s} \leq 1} \leq}\left|(\gamma-1) \int w(x)\right| \theta\right|^{\gamma-2}\left(u_{n}-u\right) \phi \mid, \quad \text { where }|\theta| \leq\left|u_{n}\right|+|u| \\
& \leq C \sup _{\|\phi\|_{E^{s}} \leq 1} \int|w(x)|\left(\left|u_{n}\right|^{\gamma-2}+|u|^{\gamma-2}\right)\left|u_{n}-u\right||\phi| \tag{2.17}\\
& \leq C \sup _{\|\phi\|_{E^{s} \leq 1}} \int\left(\left|w(x) \| u_{n}\right|^{\gamma-2}\left|u_{n}-u\right||\phi|+|w(x)||u|^{\gamma-2}\left|u_{n}-u\right||\phi|\right) \\
& \leq C\left(\sup _{\|\phi\|_{E^{\leq} \leq 1} \leq} \int_{|x| \leq K}\left(\left|w(x) \| u_{n}\right|^{\gamma-2}\left|u_{n}-u\right||\phi|+|w(x)||u|^{\gamma-2}\left|u_{n}-u\right||\phi|\right)\right. \\
& \left.+\sup _{\|\phi\|_{E^{s} \leq 1}} \int_{|x|>K}\left(|w(x)|\left|u_{n}\right|^{\gamma-2}\left|u_{n}-u\right||\phi|+|w(x)||u|^{\gamma-2}\left|u_{n}-u\right||\phi|\right)\right),
\end{align*}
$$

letting

$$
\begin{equation*}
m_{1}=\frac{2 N /(N-2 s)}{2 N /(N-2 s)-\gamma}=m, \quad m_{2}=\frac{2 N /(N-2 s)}{\gamma-2}, \quad m_{3}=\frac{2 N}{N-2 s}=m_{4}, \tag{2.18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{1}{m_{1}}+\frac{1}{m_{2}}+\frac{1}{m_{3}}+\frac{1}{m_{4}}=1, \tag{2.19}
\end{equation*}
$$

so that by Hölder's inequality, we observe that, for any $\varepsilon>0$, we can choose a $K>0$ so that the integral over $(|x|>K)$ is smaller than $\varepsilon / 2$ for all n, while for this fixed K, by strong convergence of u_{n} to u in $L^{2 N /(N-2 s)}\left(\mathbb{R}^{N}\right)$ on any bounded region, the integral over $(|x| \leq K)$ is smaller than $\varepsilon / 2$ for n large enough. We thus have proved that $\Theta\left(u_{n}\right) \rightarrow \Theta(u)$ strongly in $H^{-s}\left(\mathbb{R}^{N}\right)$; that is, the inclusion of $H^{s}\left(\mathbb{R}^{N}\right)$ into $L^{\gamma}\left(w, \mathbb{R}^{N}\right)$ is compact if $2<\gamma<2 N /(N-2 s)$.

3. Main Theorem

We consider below the problem of finding multiple solutions of the semilinear elliptic systems

$$
\begin{align*}
& -\Delta u+u= \pm \frac{1}{(1+|x|)^{a}}|v|^{p-2} v \quad \text { in } \mathbb{R}^{N} \\
& -\Delta v+v= \pm \frac{1}{(1+|x|)^{b}}|u|^{q-2} u \quad \text { in } \mathbb{R}^{N} . \tag{3.1}
\end{align*}
$$

Now if we choose $s, t>0, s+t=2$, such that

$$
\begin{align*}
& \left(1-\frac{1}{q}\right) \max \{p, q\}<\frac{1}{2}+\frac{s}{N^{\prime}} \\
& \left(1-\frac{1}{p}\right) \max \{p, q\}<\frac{1}{2}+\frac{t}{N^{\prime}} \tag{3.2}
\end{align*}
$$

and we assume that
(H) $2<p<2 N /(N-2 t), 2<q<2 N /(N-2 s)$ and a and b are positive numbers such that

$$
\begin{equation*}
2 a>2 N-p(N-2 t), \quad 2 b>2 N-q(N-2 s) \tag{3.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
r(x):=\frac{1}{(1+|x|)^{a}}, \quad s(x):=\frac{1}{(1+|x|)^{b}} \tag{3.4}
\end{equation*}
$$

and we let

$$
\begin{equation*}
\alpha:=\frac{2 N /(N-2 t)}{2 N /(N-2 t)-p}, \quad \beta:=\frac{2 N /(N-2 s)}{2 N /(N-2 s)-q} \tag{3.5}
\end{equation*}
$$

so that, under assumption (H), Theorem 2.1 holds, respectively, with $w(x):=r(x)$ and $\gamma:=p$, and $w(x):=s(x)$ and $\gamma:=q$; that is, the inclusion of $H^{s}\left(\mathbb{R}^{N}\right)$ into $L^{q}\left(s, \mathbb{R}^{N}\right)$ and the inclusion of $H^{t}\left(\mathbb{R}^{N}\right)$ into $L^{p}\left(r, \mathbb{R}^{N}\right)$ are compact.

If $z=(u, v) \in E=E^{s} \times E^{t}$, we let

$$
\begin{equation*}
I^{ \pm}(u, v)= \pm \int A^{s} u A^{t} v-\frac{1}{p} \int r(x)|v|^{p} d x-\frac{1}{q} \int s(x)|u|^{q} d x \tag{3.6}
\end{equation*}
$$

denote the energy of z. It is well known that under assumption (H) the energy functional $I^{ \pm}(u, v)$ is well defined and continuously differentiable on E, and for all $\eta=(\phi, \psi) \in E^{s} \times E^{t}$ we have

$$
\begin{align*}
& \pm \int A^{s} u A^{t} \psi-\int r(x)|v|^{p-2} v \psi=0 \tag{3.7}\\
& \pm \int A^{s} \phi A^{t} v-\int s(x)|u|^{q-2} u \phi=0 \tag{3.8}
\end{align*}
$$

and it is also well known that the critical points of $I^{ \pm}$are weak solutions of problem (3.1). The main theorem is the following.

Theorem 3.1. Under assumption (H), problem (3.1) possesses infinitely many solutions $\pm(u, v)$.
Since the functional $I^{ \pm}$are strongly indefinite, a modified multiplicity critical points theorem Heinz [2] which is the generalized critical point theorem of Benci [1] will be used. For completeness, we state the result from here.

Theorem 3.2. (see [2]) Let E be a real Hilbert space, and let $I \in C^{1}(E, \mathbb{R})$ be a functional with the following properties:
(i)I has the form

$$
\begin{equation*}
I(z)=\frac{1}{2}(L z, z)+\varphi(z) \quad \forall z \in E \tag{3.9}
\end{equation*}
$$

where L is an invertible bounded self-adjoint linear operator in E and where $\varphi \in C^{1}(E, \mathbb{R})$ is such that $\varphi(0)=0$ and the gradient $\nabla \varphi: E \rightarrow E$ is a compact operator;
(ii) I is even, that is $I(-z)=I(z)$ for all $z \in E$;
(iii) I satisfies the Palais-Smale condition. Furthermore, let

$$
\begin{equation*}
E=E^{+} \oplus E^{-} \tag{3.10}
\end{equation*}
$$

be an orthogonal splitting into L-invariant subspaces E^{+}, E^{-}such that $\pm(L z, z) \geq 0$ for all $z \in E^{ \pm}$. Then,
(a) suppose that there is an m-dimensional linear subspace E_{m} of $E^{+}(m \in \mathbb{N})$ such that for the spaces $V:=E^{+}, W=E^{-} \oplus E_{m}$ one has
(iv) $\exists \rho_{0}>0$ such that $\inf \{I(z): z \in V,\|z\|=\rho\}>0$ for all $\rho \in\left(0, \rho_{0}\right]$;
(v) $\exists c_{\infty} \in \mathbb{R}$ such that $I(z) \leq c_{\infty}$ for all $z \in W$.Then there exist at least m pairs $\left(z_{j},-z_{j}\right)$ of critical points of I such that $0<I\left(z_{j}\right) \leq c_{\infty}(j=1, \ldots, m)$;
(b) a similar result holds when $E_{m} \subset E^{-}$, and one takes $V:=E^{-}, W=E^{+} \oplus E_{m}$.

It is known from Section 2 that the operator L induced by the bilinear form B is an invertible bounded self-adjoint linear operator satisfying $\pm\langle L z, z\rangle_{E} \geq 0$ for all $z \in E^{ \pm}$. We shall
need some finite dimensional subspace of E. Let $\left(e_{j}\right), j=1,2, \ldots$, be a complete orthogonal system in $H^{s}\left(\mathbb{R}^{N}\right)$. Let H_{n} denote the finite dimensional subspaces of $H^{s}\left(\mathbb{R}^{N}\right)$ generated by $\left(e_{j}\right), j=1,2, \ldots, n$. Since $A^{s}: H^{s}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ and $A^{t}: H^{t}\left(\mathbb{R}^{N}\right) \rightarrow L^{2}\left(\mathbb{R}^{N}\right)$ are isomorphisms, we know that $\widehat{e}_{j}=A^{-t} A^{s} e_{j}, j=1,2, \ldots$, is a complete orthogonal system in $H^{t}\left(\mathbb{R}^{N}\right)$. Let \widehat{H}_{n} denote the finite dimensional subspaces of $H^{t}\left(\mathbb{R}^{N}\right)$ generated by $\left(\widehat{e}_{j}\right), j=1$, $2, \ldots, n$. For each $n \in \mathbb{N}$, we introduce the following subspaces of E^{+}and E^{-}:

$$
\begin{align*}
& E_{n}^{+}=\text {subspace of } E^{+} \text {generated by }\left(e_{j}, \widehat{e}_{j}\right), \quad j=1,2, \ldots, n, \\
& E_{n}^{-}=\text {subspace of } E^{-} \text {generated by }\left(e_{j},-\widehat{e}_{j}\right), \quad j=1,2, \ldots, n . \tag{3.11}
\end{align*}
$$

Lemma 3.3. The functional $I^{ \pm}$defined in (3.6) satisfies conditions (ii), (iv), and (v) of Theorem 3.2.
Proof. Condition (ii) is an immediate consequence of the definition of $I^{ \pm}$. For condition (iv), by (2.11) and Theorem 2.1, for $z \in V:=E^{ \pm}$,

$$
\begin{align*}
I^{ \pm}(z) & = \pm \int A^{s} u A^{t} v d x-\frac{1}{p} \int r(x)|v|^{p} d x-\frac{1}{q} \int s(x)|u|^{q} d x \tag{3.12}\\
& \geq \frac{1}{2}\|z\|_{E}^{2}-C\|z\|_{E}^{p}-C\|z\|_{E^{\prime}}^{q}
\end{align*}
$$

and since $p, q>2$, we conclude that $I^{ \pm}(z)>0$ for $z \in E^{ \pm}$with $\|z\|$ small.
Next, let us prove condition (v). Let $n \in \mathbb{N}$ be fixed, let $z \in W=E_{n}^{ \pm} \oplus E^{\mp}$, and write $z=(u, v)$ and $z=z^{+}+z^{-}$. We have

$$
\begin{align*}
I^{ \pm}(z) & = \pm\left[Q\left(z^{+}\right)+Q\left(z^{-}\right)\right]-\frac{1}{p} \int r(x)|v|^{p} d x-\frac{1}{q} \int s(x)|u|^{q} d x \tag{3.13}\\
& =-\frac{1}{2}\left\|z^{\mp}\right\|_{E}^{2}+\frac{1}{2}\left\|z^{ \pm}\right\|_{E}^{2}-\frac{1}{p} \int r(x)|v|^{p} d x-\frac{1}{q} \int s(x)|u|^{q} d x
\end{align*}
$$

Let $z^{+}=\left(u^{+}, v^{+}\right) \in E^{+}$and $z^{-}=\left(u^{-}, v^{-}\right) \in E^{-}$. Then we have $v^{+}=A^{-t} A^{s} u^{+}$and $v^{-}=$ $-A^{-t} A^{s} u^{-}$. Furthermore, we may write $u^{\mp}=\lambda u^{ \pm}+\widehat{u}$, where \widehat{u} is orthogonal to $u^{ \pm}$in $L^{2}\left(s, \mathbb{R}^{N}\right)$. We also have $v^{\mp}=\tau v^{ \pm}+\widehat{v}$, where \widehat{v} is orthogonal to $v^{ \pm}$in $L^{2}\left(r, \mathbb{R}^{N}\right)$. It is easy to see that either λ or τ is positive. Suppose $\lambda>0$. Then we have

$$
\begin{align*}
(1+\lambda) \int s(x)\left|u^{ \pm}\right|^{2} d x & =\int s(x)\left[(1+\lambda) u^{ \pm}+\widehat{u}\right] u^{ \pm} d x \tag{3.14}\\
& \leq|u|_{s, \alpha}\left|u^{ \pm}\right|_{s, \alpha^{\prime}}
\end{align*}
$$

Using the fact that the norms in $E_{n}^{ \pm}$are equivalent we obtain

$$
\begin{equation*}
\left|u^{ \pm}\right|_{s, \alpha^{\prime}} \leq C|u|_{s, \alpha} \tag{3.15}
\end{equation*}
$$

with constant $C>0$ independent of u. So from (3.13) and (2.11) we obtain

$$
\begin{align*}
I^{ \pm}(z) & \leq-\frac{1}{2}\left\|z^{\mp}\right\|_{E}^{2}+\frac{1}{2}\left\|z^{ \pm}\right\|_{E}^{2}-C\left|u^{ \pm}\right|_{s, \alpha}^{\alpha} \\
& =-\frac{1}{2}\left\|z^{\mp}\right\|_{E}^{2}+\left\|u^{ \pm}\right\|_{E^{s}}^{2}-C\left|u^{ \pm}\right|_{s, \alpha}^{\alpha} \tag{3.16}
\end{align*}
$$

The same arguments can be applied if $\tau>0$. So the result follows from (3.16).
A sequence $\left\{z_{n}\right\}$ is said to be the Palais-Smale sequence for $I^{ \pm}$((PS)-sequence for short) if $\left|I^{ \pm}\left(z_{n}\right)\right| \leq C$ uniformly in n and $\nabla I^{ \pm}\left(z_{n}\right) \xrightarrow{n} 0$ in E^{*}. We say that $I^{ \pm}$satisfies the Palais-Smale condition ((PS)-condition for short) if every (PS)-sequence of $I^{ \pm}$is relatively compact in E.

Lemma 3.4. Under assumption (H), the functional $I^{ \pm}$satisfies the (PS)-condition.
Proof. We first prove the boundedness of (PS)-sequences of $I^{ \pm}$. Let $z_{n}=\left(u_{n}, v_{n}\right) \in E$ be a (PS)-sequence of $I^{ \pm}$such that

$$
\begin{gather*}
\left.\left|I^{ \pm}\left(z_{n}\right)\right|=\left.\left| \pm \int A^{s} u_{n} A^{t} v_{n} d x-\frac{1}{p} \int r(x)\right| v_{n}\right|^{p} d x-\frac{1}{q} \int s(x)\left|u_{n}\right|^{q} d x \right\rvert\, \leq c \tag{3.17}\\
\left|\left\langle\nabla I^{ \pm}\left(z_{n}\right), \eta\right\rangle\right| \leq \epsilon_{n}\|\eta\|_{E} \text { where } \epsilon_{n}=o(1) \text { as } n \rightarrow \infty \text { an } \eta \in E \tag{3.18}
\end{gather*}
$$

Taking $\eta=z_{n}$ in (3.18), it follows from (3.17), (3.18), that

$$
\begin{align*}
c+\epsilon_{n}\left\|z_{n}\right\|_{E} & \geq-\frac{1}{p} \int r(x)\left|v_{n}\right|^{p} d x-\frac{1}{q} \int s(x)\left|u_{n}\right|^{q} d x+\frac{1}{2} \int r(x)\left|v_{n}\right|^{p} d x+\frac{1}{2} \int s(x)\left|u_{n}\right|^{q} d x \\
& =\left(\frac{1}{2}-\frac{1}{p}\right) \int r(x)\left|v_{n}\right|^{p} d x+\left(\frac{1}{2}-\frac{1}{q}\right) \int s(x)\left|u_{n}\right|^{q} d x \tag{3.19}
\end{align*}
$$

Next, we estimate $\left\|u_{n}\right\|_{E^{s}}$ and $\left\|v_{n}\right\|_{E^{t}}$. From (3.18) with $\eta=(\phi, 0)$, we have

$$
\begin{equation*}
\left\langle\nabla I^{ \pm}\left(z_{n}\right), \eta\right\rangle=\int A^{s} \phi A^{t} v_{n} d x-\int s(x)\left|u_{n}\right|^{q-2} u_{n} \phi d x \leq \epsilon_{n}\|\phi\|_{E^{s}} \tag{3.20}
\end{equation*}
$$

for all $\phi \in E^{s}$. Using Hölder's inequality and by (3.20), we obtain

$$
\begin{align*}
&\left|\int A^{s} \phi A^{t} v_{n} d x\right| \leq\left.\left|\int s(x)\right| u_{n}\right|^{q-2} u_{n} \phi d x \mid+\epsilon_{n}\|\phi\|_{E^{s}} \\
& \leq\left.\int\left|s(x)^{1 / q^{\prime}}\right| u_{n}\right|^{q-1} s(x)^{1 / q} \phi \mid d x+\epsilon_{n}\|\phi\|_{E^{s}} \tag{3.21}\\
& \leq\left(\int s(x)\left|u_{n}\right|^{q}\right)^{1 / q^{\prime}}\left(\int s(x)|\phi|^{q}\right)^{1 / q}+\epsilon_{n}\|\phi\|_{E^{s}} \\
& \leq\left(C\left|u_{n}\right| s, q\right. \\
& q-1 \\
&C)\|\phi\|_{E^{s}}
\end{align*}
$$

for all $\phi \in E^{s}$, which implies that

$$
\begin{equation*}
\left\|v_{n}\right\|_{E^{t}} \leq C\left|u_{n}\right|_{s, q}^{q-1}+C . \tag{3.22}
\end{equation*}
$$

Similarly, we prove that

$$
\begin{equation*}
\left\|u_{n}\right\|_{E^{s}} \leq C\left|v_{n}\right|_{r, p}^{p-1}+C \tag{3.23}
\end{equation*}
$$

Adding (3.22) and (3.23) we conclude that

$$
\begin{equation*}
\left\|u_{n}\right\|_{E^{s}}+\left\|v_{n}\right\|_{E^{t}} \leq C\left(\left|u_{n}\right|_{s, q}^{q-1}+\left|v_{n}\right|_{r, p}^{p-1}+1\right) . \tag{3.24}
\end{equation*}
$$

Using this estimate in (3.19), we get

$$
\begin{equation*}
\left|u_{n}\right|_{s, q}^{q}+\left|v_{n}\right|_{r, p}^{p} \leq C\left(\left|u_{n}\right|_{s, q}^{q-1}+\left|v_{n}\right|_{r, p}^{p-1}\right)+C . \tag{3.25}
\end{equation*}
$$

Since $q>q-1$ and $p>p-1$, we conclude that both $\left|u_{n}\right|_{s, q}$ and $\left|v_{n}\right|_{r, p}$ are bounded, and consequently $\left\|u_{n}\right\|_{E^{s}}$ and $\left\|v_{n}\right\|_{E^{t}}$ are also bounded in terms of (3.24).

Finally, we show that $\left\{z_{n}\right\}$ contains a strongly convergent subsequence. It follows from $\left\|u_{n}\right\|_{E^{s}}$ and $\left\|v_{n}\right\|_{E^{t}}$ which are bounded and Theorem 2.1 that $\left\{z_{n}\right\}$ contains a subsequence, denoted again by $\left\{z_{n}\right\}=\left\{\left(u_{n}, v_{n}\right)\right\}$, such that

$$
\begin{align*}
& u_{n} \rightarrow u \text { in } E^{s}, \quad v_{n} \rightharpoonup v \text { in } E^{t}, \\
& u_{n} \longrightarrow u \text { in } L^{q}\left(s, \mathbb{R}^{N}\right), \quad 2<q<\frac{2 N}{N-2 s} \tag{3.26}\\
& v_{n} \longrightarrow v \text { in } L^{p}\left(r, \mathbb{R}^{N}\right), \quad 2<p<\frac{2 N}{N-2 t} .
\end{align*}
$$

It follows from (3.18) that

$$
\begin{align*}
& \left.\left| \pm \int A^{s} \phi A^{t} v_{n}-\int s(x)\right| u_{n}\right|^{q-2} u_{n} \phi \mid \leq \epsilon_{n}\|\phi\|_{E^{s}}, \quad \phi \in E^{s}, \tag{3.27}\\
& \left.\left| \pm \int A^{s} u_{n} A^{t} \psi-\int r(x)\right| v_{n}\right|^{p-2} v_{n} \psi \mid \leq \epsilon_{n}\|\psi\|_{E^{t}} \quad \psi \in E^{t}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\left\|v_{n}-v\right\|_{E^{t}} & =\sup \frac{\left|\int A^{s} \phi A^{t}\left(v_{n}-v\right)\right|}{\|\phi\|_{E^{s}}} \\
& \leq \sup \frac{\left|\int s(x)\left(\left|u_{n}\right|^{q-2} u_{n}-|u|^{q-2} u\right) \phi\right|}{\|\phi\|_{E^{s}}} \tag{3.28}\\
\left\|u_{n}-u\right\|_{E^{s}} & =\sup \frac{\left|\int A^{s}\left(u_{n}-u\right) A^{t} \psi\right|}{\|\psi\|_{E^{t}}} \\
& =\sup \frac{\left|\int r(x)\left(\left|v_{n}\right|^{p-2} v_{n}-|v|^{p-2} v\right) \psi\right|}{\|\psi\|_{E^{t}}} \tag{3.29}
\end{align*}
$$

and by Theorem 2.1, we conclude that $v_{n} \rightarrow v$ strongly in E^{t} and $u_{n} \rightarrow u$ strongly in E^{s}.
Proof of Theorem 3.1. Applying Lemmas 3.3 and 3.4 and Theorem 3.2, we can obtain the conclusion of Theorem 3.1.

References

[1] V. Benci, "On critical point theory for indefinite functionals in the presence of symmetries," Transactions of the American Mathematical Society, vol. 274, no. 2, pp. 533-572, 1982.
[2] H.-P. Heinz, "Existence and gap-bifurcation of multiple solutions to certain nonlinear eigenvalue problems," Nonlinear Analysis: Theory, Methods \& Applications, vol. 21, no. 6, pp. 457-484, 1993.
[3] J. Yang, "Multiple solutions of semilinear elliptic systems," Commentationes Mathematicae Universitatis Carolinae, vol. 39, no. 2, pp. 257-268, 1998.
[4] D. G. de Figueiredo and P. L. Felmer, "On superquadratic elliptic systems," Transactions of the American Mathematical Society, vol. 343, no. 1, pp. 99-116, 1994.
[5] D. G. de Figueiredo and J. Yang, "Decay, symmetry and existence of solutions of semilinear elliptic systems," Nonlinear Analysis: Theory, Methods \& Applications, vol. 33, no. 3, pp. 211-234, 1998.

