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1. Introduction

In this paper, we shall study the existence of multiple solutions of the semilinear elliptic
systems

−Δu + u = ± 1
(1 + |x|)a |v|

p−2v in R
N,

−Δv + v = ± 1

(1 + |x|)b
|u|q−2u in R

N,

(1.1)

where a and b are positive numbers which are in the range we shall specify later. Let us
consider that the exponents p, q > 2 are below the critical hyperbola

1 >
1
p
+
1
q
>

N − 2
N

for N ≥ 3, (1.2)
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so one of p and q could be larger than 2N/(N − 2); for that matter, the quadratic part of the
energy functional

I±(u, v) = ±
∫
(∇u · ∇v + uv)dx − 1

p

∫
1

(1 + |x|)a |v|
pdx − 1

q

∫
1

(1 + |x|)b
|u|qdx (1.3)

has to be redefined, and we then need fractional Sobolev spaces.
Hence the energy functional I± is strongly indefinite, and we shall use the generalized

critical point theorem of Benci [1] in a version due to Heinz [2] to find critical points of I±.
And there is a lack of compactness due to the fact that we are working in R

N .
In [3], Yang shows that under some assumptions on the functions f and g there exist

infinitely many solutions of the semilinear elliptic systems

−Δu + u = ±g(x, v) in R
N,

−Δv + v = ±f(x, u) in R
N.

(1.4)

We shall propose herein a result similar to [3] for problem (1.1).

2. Abstract Framework and Fractional Sobolev Spaces

We recall some abstract results developed in [4] or [5].
We shall work with space Es, which are obtained as the domains of fractional powers

of the operator

−Δ + id : H2
(
R

N
)
∩H1

(
R

N
)
⊂ L2

(
R

N
)
−→ L2

(
R

N
)
. (2.1)

Namely, Es = D((−Δ + id)s/2) for 0 ≤ s ≤ 2, and the corresponding operator is denoted by
As : Es → L2(RN). The spaces Es, the usual fractional Sobolev space Hs(RN), are Hilbert
spaces with inner product

〈u, v〉Es =
∫
AsuAsvdx (2.2)

and associates norm

‖u‖2Es =
∫
|Asu|2dx. (2.3)

It is known that As is an isomorphism, and so we denote by A−s the inverse of As.
Now let s, t > 0 with s + t = 2. We define the Hilbert space E = Es × Et and the bilinear

form B : E × E → R by the formula

B
(
(u, v),

(
φ, ψ

))
=
∫
AsuAtψ +AsφAtv. (2.4)
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Using the Cauchy-Schwarz inequality, then it is easy to see that B is continuous and
symmetric. Hence B induces a self-adjoint bounded linear operator L : E → E such that

B
(
z, η

)
=
〈
Lz, η

〉
E, for z, η ∈ E. (2.5)

Here and in what follows 〈·, ·〉E denotes the inner product in E induced by 〈·, ·〉Es and 〈·, ·〉Et

on the product space E in the usual way. It is easy to see that

Lz = L(u, v) =
(
A−sAtv,A−tAsu

)
, for z = (u, v) ∈ E. (2.6)

We can then prove that L has two eigenvalues −1 and 1, whose corresponding eigenspaces
are

E− =
{(

u,−A−tAsu
)
: u ∈ Es}, for λ = −1,

E+ =
{(

u,A−tAsu
)
: u ∈ Es}, for λ = 1,

(2.7)

which give a natural splitting E = E+ ⊕ E−. The spaces E+ and E− are orthogonal with respect
to the bilinear form B, that is,

B
(
z+, z−

)
= 0, for z+ ∈ E+, z− ∈ E−. (2.8)

We can also define the quadratic form Q : E → R associated to B and L as

Q(z) =
1
2
B(z, z) =

1
2
〈Lz, z〉E =

∫
AsuAtv (2.9)

for all z = (u, v) ∈ E. It follows then that

1
2
‖z‖2E = Q(z+) −Q

(
z−

)
, (2.10)

where z = z+ + z−, z+ ∈ E+, z− ∈ E−. If z = (u, v) ∈ E+, that is, v = A−tAsu, we have

Q(z) =
1
2
‖z‖2E =

1
2
∥∥(u,A−tAsu)

∥∥2
E = ‖Asu‖2 = ‖u‖2Es . (2.11)
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Similarly

Q(z) =
∥∥Atv

∥∥2 = ‖v‖2Et (2.12)

for z ∈ E−.
If w(x) := 1/(1 + |x|)c where c is a number satisfying the condition

2c > 2N − γ(N − 2s), 2 < γ <
2N

N − 2s
(2.13)

and m := (2N/(N − 2s))/(2N/(N − 2s) − γ), it follows by (2.13) that w ∈ Lm(RN) and by
Hölder inequalities that

∫
w(x)|u(x)|γdx ≤ |w|m|u|γ2N/(N−2s) ≤ c|w|m‖u‖γEs . (2.14)

In the sequel | · |m denotes the norm in Lm(RN), and we denote by Lγ(w,RN) the weighted
function spaces with the norm defined on Es by |u|w,γ = (

∫
w(x)|u(x)|γ)1/γ . According to the

properties of interpolation space, we have the following embedding theorem.

Theorem 2.1. Let s > 0. one defines the operator Θ : Hs(RN) → H−s(RN) as follows: for u,
φ ∈ Hs(RN),

〈Θ(u), φ〉 =
∫
w(x)|u|γ−2uφdx. (2.15)

Then the inclusion of Hs(RN) into Lγ(w,RN) is compact if 2 < γ < 2N/(N − 2s).

Proof. Observe that, by Hölder’s inequality and (2.14), we have

∣∣〈Θ(u), φ〉∣∣ ≤
∫∣∣∣w(x)1/γ

′ |u|γ−1w(x)1/γφ
∣∣∣ ≤

(∫
w(x)|u|γ

)1/γ ′ (∫
w(x)

∣∣φ∣∣γ
)1/γ

< ∞, (2.16)

where 1/γ + 1/γ ′ = 1; hence Θ is well defined.
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Then we will claim that Θ is compact. Sincew(x) ∈ Lm(RN), for any ε > 0, there exists
K > 0, such that (

∫
|x|>Kw(x)m)1/m < ε. Now, suppose un ⇀ uweakly inHs(RN). We estimate

‖Θ(un) −Θ(u)‖H−s

= sup
‖φ‖Es

≤1

∣∣〈Θ(un) −Θ(u), φ
〉∣∣

= sup
‖φ‖Es

≤1

∣∣∣∣
∫
w(x)

(
|un|γ−2un − |u|γ−2u

)
φ

∣∣∣∣

= sup
‖φ‖Es

≤1

∣∣∣∣(γ − 1
) ∫

w(x)|θ|γ−2(un − u)φ
∣∣∣∣, where |θ| ≤ |un| + |u|

≤ C sup
‖φ‖Es

≤1

∫
|w(x)|

(
|un|γ−2 + |u|γ−2

)
|un − u|∣∣φ∣∣

≤ C sup
‖φ‖Es

≤1

∫(
|w(x)||un|γ−2|un − u|∣∣φ∣∣ + |w(x)||u|γ−2|un − u|∣∣φ∣∣)

≤ C

⎛
⎝ sup

‖φ‖Es
≤1

∫
|x|≤K

(
|w(x)||un|γ−2|un − u|∣∣φ∣∣ + |w(x)||u|γ−2|un − u|∣∣φ∣∣)

+ sup
‖φ‖Es

≤1

∫
|x|>K

(
|w(x)||un|γ−2|un − u|∣∣φ∣∣ + |w(x)||u|γ−2|un − u|∣∣φ∣∣)

⎞
⎠,

(2.17)

letting

m1 =
2N/(N − 2s)

2N/(N − 2s) − γ
= m, m2 =

2N/(N − 2s)
γ − 2

, m3 =
2N

N − 2s
= m4, (2.18)

we have

1
m1

+
1
m2

+
1
m3

+
1
m4

= 1, (2.19)

so that by Hölder’s inequality, we observe that, for any ε > 0, we can choose a K > 0 so
that the integral over (|x| > K) is smaller than ε/2 for all n, while for this fixed K, by strong
convergence of un to u in L2N/(N−2s)(RN) on any bounded region, the integral over (|x| ≤ K)
is smaller than ε/2 for n large enough. We thus have proved that Θ(un) → Θ(u) strongly in
H−s(RN); that is, the inclusion of Hs(RN) into Lγ(w,RN) is compact if 2 < γ < 2N/(N − 2s).
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3. Main Theorem

We consider below the problem of findingmultiple solutions of the semilinear elliptic systems

−Δu + u = ± 1
(1 + |x|)a |v|

p−2v in R
N,

−Δv + v = ± 1

(1 + |x|)b
|u|q−2u in R

N.

(3.1)

Now if we choose s, t > 0, s + t = 2, such that

(
1 − 1

q

)
max

{
p, q

}
<

1
2
+

s

N
,

(
1 − 1

p

)
max

{
p, q

}
<

1
2
+

t

N
,

(3.2)

and we assume that
(H) 2 < p < 2N/(N − 2t), 2 < q < 2N/(N − 2s) and a and b are positive numbers such

that

2a > 2N − p(N − 2t), 2b > 2N − q(N − 2s). (3.3)

We set

r(x) :=
1

(1 + |x|)a , s(x) :=
1

(1 + |x|)b (3.4)

and we let

α :=
2N/(N − 2t)

2N/(N − 2t) − p
, β :=

2N/(N − 2s)
2N/(N − 2s) − q

(3.5)

so that, under assumption (H), Theorem 2.1 holds, respectively, withw(x) := r(x) and γ := p,
andw(x) := s(x) and γ := q; that is, the inclusion ofHs(RN) into Lq(s,RN) and the inclusion
ofHt(RN) into Lp(r,RN) are compact.

If z = (u, v) ∈ E = Es × Et, we let

I±(u, v) = ±
∫
AsuAtv − 1

p

∫
r(x)|v|pdx − 1

q

∫
s(x)|u|qdx (3.6)
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denote the energy of z. It is well known that under assumption (H) the energy functional
I±(u, v) is well defined and continuously differentiable on E, and for all η = (φ, ψ) ∈ Es × Et

we have

±∫AsuAtψ − ∫
r(x)|v|p−2vψ = 0, (3.7)

±∫AsφAtv − ∫
s(x)|u|q−2uφ = 0, (3.8)

and it is also well known that the critical points of I± are weak solutions of problem (3.1). The
main theorem is the following.

Theorem 3.1. Under assumption (H), problem (3.1) possesses infinitely many solutions ±(u, v).

Since the functional I± are strongly indefinite, a modified multiplicity critical points
theorem Heinz [2] which is the generalized critical point theorem of Benci [1] will be used.
For completeness, we state the result from here.

Theorem 3.2. (see [2]) Let E be a real Hilbert space, and let I ∈ C1(E,R) be a functional with the
following properties:

(i)I has the form

I(z) =
1
2
(Lz, z) + ϕ(z) ∀z ∈ E, (3.9)

where L is an invertible bounded self-adjoint linear operator in E and where ϕ ∈ C1(E,R) is such that
ϕ(0) = 0 and the gradient ∇ϕ : E → E is a compact operator;

(ii) I is even, that is I(−z) = I(z) for all z ∈ E;
(iii) I satisfies the Palais-Smale condition. Furthermore, let

E = E+ ⊕ E− (3.10)

be an orthogonal splitting into L-invariant subspaces E+, E− such that ±(Lz, z) ≥ 0 for all z ∈ E±.
Then,

(a) suppose that there is an m-dimensional linear subspace Em of E+(m ∈ N) such that for the
spaces V := E+, W = E− ⊕ Em one has

(iv) ∃ρ0 > 0 such that inf{I(z) : z ∈ V , ||z|| = ρ} > 0 for all ρ ∈ (0, ρ0];
(v) ∃c∞ ∈ R such that I(z) ≤ c∞ for all z ∈ W .Then there exist at least m pairs (zj ,−zj) of

critical points of I such that 0 < I(zj) ≤ c∞ (j = 1, . . . , m);
(b) a similar result holds when Em ⊂ E−, and one takes V := E−, W = E+ ⊕ Em.

It is known from Section 2 that the operator L induced by the bilinear form B is an
invertible bounded self-adjoint linear operator satisfying ±〈Lz, z〉E ≥ 0 for all z ∈ E±. We shall
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need some finite dimensional subspace of E. Let (ej), j = 1, 2,. . ., be a complete orthogonal
system in Hs(RN). Let Hn denote the finite dimensional subspaces of Hs(RN) generated
by (ej), j = 1, 2,. . .,n. Since As : Hs(RN) → L2(RN) and At : Ht(RN) → L2(RN) are
isomorphisms, we know that êj = A−tAsej , j = 1, 2,. . ., is a complete orthogonal system in
Ht(RN). Let Ĥn denote the finite dimensional subspaces of Ht(RN) generated by (êj), j = 1,
2,. . .,n. For each n ∈ N, we introduce the following subspaces of E+ and E− :

E+
n = subspace of E+ generated by

(
ej , êj

)
, j = 1, 2, . . . , n,

E−
n = subspace of E− generated by

(
ej ,−êj

)
, j = 1, 2, . . . , n.

(3.11)

Lemma 3.3. The functional I± defined in (3.6) satisfies conditions (ii), (iv), and (v) of Theorem 3.2.

Proof. Condition (ii) is an immediate consequence of the definition of I±. For condition (iv),
by (2.11) and Theorem 2.1, for z ∈ V := E±,

I±(z) = ±
∫

AsuAtvdx − 1
p

∫
r(x)|v|pdx − 1

q

∫
s(x)|u|qdx

≥ 1
2
‖z‖2E − C‖z‖pE − C‖z‖qE,

(3.12)

and since p, q > 2, we conclude that I±(z) > 0 for z ∈ E± with ||z|| small.
Next, let us prove condition (v). Let n ∈ N be fixed, let z ∈ W = E±

n ⊕ E∓, and write
z = (u, v) and z = z+ + z−. We have

I±(z) = ±[Q(z+) +Q
(
z−

)] − 1
p

∫
r(x)|v|pdx − 1

q

∫
s(x)|u|qdx

= −1
2
∥∥z∓∥∥2

E +
1
2
∥∥z±∥∥2

E − 1
p

∫
r(x)|v|pdx − 1

q

∫
s(x)|u|qdx.

(3.13)

Let z+ = (u+, v+) ∈ E+ and z− = (u−, v−) ∈ E−. Then we have v+ = A−tAsu+ and v− =
−A−tAsu−. Furthermore, we may write u∓ = λu± + û, where û is orthogonal to u± in L2(s,RN).
We also have v∓ = τv±+ v̂, where v̂ is orthogonal to v± in L2(r,RN). It is easy to see that either
λ or τ is positive. Suppose λ > 0. Then we have

(1 + λ)
∫
s(x)

∣∣u±∣∣2dx =
∫
s(x)

[
(1 + λ)u± + û

]
u±dx

≤ |u|s,α
∣∣u±∣∣

s,α′ .

(3.14)
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Using the fact that the norms in E±
n are equivalent we obtain

∣∣u±∣∣
s,α′ ≤ C|u|s,α (3.15)

with constant C > 0 independent of u. So from (3.13) and (2.11) we obtain

I±(z) ≤ −1
2
∥∥z∓∥∥2

E +
1
2
∥∥z±∥∥2

E − C
∣∣u±∣∣α

s,α

= −1
2
∥∥z∓∥∥2

E +
∥∥u±∥∥2

Es − C
∣∣u±∣∣α

s,α.

(3.16)

The same arguments can be applied if τ > 0.So the result follows from (3.16).

A sequence {zn} is said to be the Palais-Smale sequence for I± ((PS)-sequence for
short) if |I±(zn)| ≤ C uniformly in n and ∇I±(zn)

n→ 0 in E∗. We say that I± satisfies the
Palais-Smale condition ((PS)-condition for short) if every (PS)-sequence of I± is relatively
compact in E.

Lemma 3.4. Under assumption (H), the functional I± satisfies the (PS)-condition.

Proof. We first prove the boundedness of (PS)-sequences of I±. Let zn = (un, vn) ∈ E be a
(PS)-sequence of I± such that

∣∣I±(zn)∣∣ =
∣∣∣∣±

∫
AsunA

tvndx − 1
p

∫
r(x)|vn|pdx − 1

q

∫
s(x)|un|qdx

∣∣∣∣ ≤ c, (3.17)

∣∣〈∇I±(zn), η
〉∣∣ ≤ εn

∥∥η∥∥Ewhere εn = o(1) as n → ∞ an η ∈ E. (3.18)

Taking η = zn in (3.18), it follows from (3.17), (3.18), that

c + εn‖zn‖E ≥ −1
p

∫
r(x)|vn|pdx − 1

q

∫
s(x)|un|qdx +

1
2

∫
r(x)|vn|pdx +

1
2

∫
s(x)|un|qdx

=
(
1
2
− 1
p

)∫
r(x)|vn|pdx +

(
1
2
− 1
q

)∫
s(x)|un|qdx.

(3.19)

Next, we estimate ‖un‖Es and ‖vn‖Et . From (3.18) with η = (φ, 0), we have

〈∇I±(zn), η〉 =
∫
AsφAtvndx −

∫
s(x)|un|q−2unφdx ≤ εn

∥∥φ∥∥Es (3.20)
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for all φ ∈ Es. Using Hölder’s inequality and by (3.20), we obtain

∣∣∣∣
∫
AsφAtvndx

∣∣∣∣ ≤
∣∣∣∣
∫
s(x)|un|q−2unφdx

∣∣∣∣ + εn
∥∥φ∥∥Es

≤
∫∣∣∣s(x)1/q′ |un|q−1s(x)1/qφ

∣∣∣dx + εn
∥∥φ∥∥Es

≤
(∫

s(x)|un|q
)1/q′(∫

s(x)
∣∣φ∣∣q

)1/q

+ εn
∥∥φ∥∥Es

≤
(
C|un|q−1s,q + C

)∥∥φ∥∥Es

(3.21)

for all φ ∈ Es, which implies that

‖vn‖Et ≤ C|un|q−1s,q + C. (3.22)

Similarly, we prove that

‖un‖Es ≤ C|vn|p−1r,p + C. (3.23)

Adding (3.22) and (3.23)we conclude that

‖un‖Es + ‖vn‖Et ≤ C
(
|un|q−1s,q + |vn|p−1r,p + 1

)
. (3.24)

Using this estimate in (3.19), we get

|un|qs,q + |vn|pr,p ≤ C
(
|un|q−1s,q + |vn|p−1r,p

)
+ C. (3.25)

Since q > q − 1 and p > p − 1, we conclude that both |un|s,q and |vn|r,p are bounded, and
consequently ‖un‖Es and ‖vn‖Et are also bounded in terms of (3.24).

Finally, we show that {zn} contains a strongly convergent subsequence. It follows from
‖un‖Es and ‖vn‖Et which are bounded and Theorem 2.1 that {zn} contains a subsequence,
denoted again by {zn} = {(un, vn)}, such that

un ⇀ u in Es, vn ⇀ v in Et,

un −→ u in Lq
(
s,RN

)
, 2 < q <

2N
N − 2s

,

vn −→ v in Lp
(
r,RN

)
, 2 < p <

2N
N − 2t

.

(3.26)
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It follows from (3.18) that

∣∣∣∣±
∫
AsφAtvn −

∫
s(x)|un|q−2unφ

∣∣∣∣ ≤ εn
∥∥φ∥∥Es , φ ∈ Es,

∣∣∣∣±
∫
AsunA

tψ −
∫
r(x)|vn|p−2vnψ

∣∣∣∣ ≤ εn
∥∥ψ∥∥Et , ψ ∈ Et.

(3.27)

Therefore,

‖vn − v‖Et = sup

∣∣∫ AsφAt(vn − v)
∣∣∥∥φ∥∥Es

≤ sup

∣∣∣∫ s(x)(|un|q−2un − |u|q−2u
)
φ
∣∣∣∥∥φ∥∥Es

,

(3.28)

‖un − u‖Es = sup

∣∣∫ As(un − u)Atψ
∣∣∥∥ψ∥∥Et

= sup

∣∣∣∫ r(x)(|vn|p−2vn − |v|p−2v
)
ψ
∣∣∣∥∥ψ∥∥Et

,

(3.29)

and by Theorem 2.1, we conclude that vn → v strongly in Et and un → u strongly in Es.

Proof of Theorem 3.1. Applying Lemmas 3.3 and 3.4 and Theorem 3.2, we can obtain the conc-
lusion of Theorem 3.1.
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