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We study a cubic predator-prey system with stage structure for the prey. This system is a
generalization of the two-species Lotka-Volterra predator-prey model. Firstly, we consider the
asymptotical stability of equilibrium points to the system of ordinary differential equations type.
Then, the global existence of solutions and the stability of equilibrium points to the system
of weakly coupled reaction-diffusion type are discussed. Finally, the existence of nonnegative
classical global solutions to the system of strongly coupled reaction-diffusion type is investigated
when the space dimension is less than 6, and the global asymptotic stability of unique positive
equilibrium point of the system is proved by constructing Lyapunov functions.

1. Introduction and Mathematical Model

The predator-prey model as, which follows, the ordinary differential equation system

du

dt
=

(
b1 + b2u − b3u

2
)
u − b4uv,

dv

dt
= −cv +

(
αu − βv

)
v

(1.1)

is said to be the general Lotka-Volterra predator-prey model in [1–3], and to be cubic
predator-prey system in [4], where u, v are the population densities of prey and predator
species at time t, respectively. b3, b4, c, α, β are positive constants, b1 is nonnegative as the
intrinsic growth rate of prey population, and the sign of b2 is undetermined. c is the net
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mortality rate of predator population, and the survival of predator species is dependent on
the survival state of prey species, and b2u − b3u

2, βv are the respective density restriction
terms of prey and predator species. b4u is the predation rate of the predator, and αu is the
conversion rate of the predator. In [4], three questions about system (1.1) are discussed: the
stability of nonnegative equilibrium points, and the existence, as well as numbers of limit
cycle.

Referring to [5], we establish cubic predator-prey system with stage structure for the
prey as follows:

dx1

dt
= η1x2 − r1x1 − η2x1 + b2x

2
1 − b3x

3
1 − b4x1x3,

dx2

dt
= η2x1 − r2x2,

dx3

dt
= −cx3 +

(
αx1 − βx3

)
x3,

(1.2)

where x1 and x2 are the population densities of the immature and mature prey species,
respectively, and x3 denotes the density of the predator species. The predators live only on
the immature prey species, as well as the survival of the predator species is dependent on the
survival state of the immature prey species. η1, η2, r1, r2, b3, b4, c, α, β are positive constants,
and the sign of b2 is undetermined. η1 and r1 are the birth rate and the mortality rate of the
immature prey species, respectively. r2 and c are the net mortality rate of the mature prey
population and the predator population, and η2 is the conversion rate of the immature prey
to the mature prey species. b2x1 − b3x

2
1 and βx3 are the respective density restriction terms of

the immature prey species and predator species. b4x1 is the predation rate of the predator to
the immature prey population, and αx1 is the conversion rate of the predator.

Using the scaling

u1 =
α

r2
x1, u2 =

α

η2
x2, u3 =

β

r2
x3, dτ = r2dt, (1.3)

and redenoting τ by t, system (1.2) reduces to

du1

dt
= a0u2 − a1u1 + a2u

2
1 − a3u

3
1 − ku1u3,

du2

dt
= u1 − u2,

du3

dt
= (−b + u1 − u3)u3,

(1.4)

where a0 = η1η2/r
2
2 , a1 = (r1+η2)/r2, a2 = b2/α, a3 = b3/r2, k = b4/β, and b = c/r2 are positive

constants, and a2 = b2/α is undetermined to the sign.
To take into account the inhomogeneous distribution of the predators and prey in

different spatial locations within a fixed bounded domain Ω ⊂ R
N at any given time, and

the natural tendency of each species to diffuse to areas of smaller population concentration,
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we derive the following PDE system of reaction-diffusion type:

u1t − d1Δu1 = a0u2 − a1u1 + a2u
2
1 − a3u

3
1 − ku1u3, x ∈ Ω, t > 0,

u2t − d2Δu2 = u1 − u2, x ∈ Ω, t > 0,

u3t − d3Δu3 = (−b + u1 − u3)u3, x ∈ Ω, t > 0,

∂ηui = 0, i = 1, 2, 3, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x) ≥ 0, i = 1, 2, 3, x ∈ Ω,

(1.5)

where ∂η = ∂/∂η, η is the unit outward normal vector of the boundary ∂Ω which we will
assume to be smooth. The homogeneous Neumann boundary condition indicates that the
above system is self-contained with zero population flux across the boundary. The positive
constants d1, d2, and d3 are said to be the diffusion coefficients, and the initial values ui0(x)
(i = 1, 2, 3) are nonnegative smooth functions.

Note that, in recent years, there has been considerable interest to investigate the global
behavior of a system of interacting populations by taking into account the effect of self as well
as cross-diffusion. According to the ideas in [6–13], especially to [8, 9], the cross-diffusion
term will be only included in the third equation, that is, the following cross-diffusion system:

ut = Δ
(
d1u + α11u

2
)
+ a0v − a1u + a2u

2 − a3u
3 − kuw, x ∈ Ω, t > 0,

vt = Δ
(
d2v + α22v

2
)
+ u − v, x ∈ Ω, t > 0,

wt = Δ
(
d3w + α31uw + α32vw + α33w

2
)
+ (−b + u −w)w, x ∈ Ω, t > 0,

uη(x, t) = vη(x, t) = wη(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, x ∈ Ω.

(1.6)

In the above, di, αii (i = 1, 2, 3), α31, and α32 are positive constants. d1, d2 and d3 are the
diffusion rates of the three species, respectively. αii (i = 1, 2, 3) are referred to as self-
diffusion pressures. α31 and α32 are cross-diffusion pressures. The term self-diffusion implies
the movement of individuals from a higher to a lower concentration region. Cross-diffusion
expresses the population fluxes of one species due to the presence of the other species.
Generally, the value of the cross-diffusion coefficient may be positive, negative, or zero. The
term positive cross-diffusion coefficient denotes the movement of the species in the direction
of lower concentration of another species, and negative cross-diffusion coefficient denotes
that one species tends to diffuse in the direction of higher concentration of another species
[9].

The main purpose of this paper is to study the asymptotic behavior of the solutions
of the reaction-diffusion system (1.5) and the global existence of the solution of the cross-
diffusion system (1.6). But it is necessary to denonstrate that the conclusion for the existence
of global solution of system (1.6) in this paper is the generalization of the work to Lotka-
Volterra competition model with cross-diffusion [11] and that the convergence of solution
investigated in this paper which is not discussed in [11].
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The paper will be organized as follows. In Section 2, we analyze the asymptotical
stability of equilibrium points for the ODE system (1.4) via linearization and the Lyapunov
method. In Section 3, we prove the global existence of solutions and the stability of the
equilibrium points to the diffusion system (1.5). In Section 4, we investigate the existence of
nonnegative classical global solutions by assuming a0, a1, a2, a3, k, b to be positive constants
only for the simplicity of calculation, and the global asymptotic stability of unique positive
equilibrium point to the cross-diffusion system (1.6).

2. Equilibrium Solution of the ODE System

In this section we discuss the stability of unique positive equilibrium point for system (1.4).
The following theorem shows that the solution of system (1.4) is bounded.

Theorem 2.1. Let (u1(t), u2(t), u3(t)) be the solution of system (1.4) with initial values ui(0) >
0 (i = 1, 2, 3), and let [0, T) be the maximal existence interval of the solution. Then 0 < ui(t) ≤
Mi (i = 1, 2, 3), t ∈ [0, T), where

M1 = max
{
u1(0) + (a0 + a1)u2(0), C0

(
1 +

a0

a1

)}
,

M2 = max
{

u1(0)
a0 + a1

,
C0

a1

}
,

M3 = max{u3(0),M1 − b}.

(2.1)

The above C0 is a positive constant depending only on a0, a1, a2, a3, and further T = +∞.

Proof. It is easy to see that (1.4) has a unique positive local solution (u1(t), u2(t), u3(t)). Let
T ∈ (0,+∞] be the maximal existence time of the solution, and combin u1 and u2 linearly, that
is, u1 + (a0 + a1)u2, it follows from (1.4) that

d

dt
[u1 + (a0 + a1)u2] ≤ −a1u2 + a0u1 + a2u

2
1 − a3u

3
1. (2.2)

Using Young inequality, we can check that there exists a positive constant C0 depending only
on a0, a1, a2, and a3 such that

a0u1 + a2u
2
1 − a3u

3
1 ≤ C0 − a1

a0 + a1
u1. (2.3)

It follows that

d

dt
[u1 + (a0 + a1)u2] ≤ C0 − a1

a0 + a1
[u1 + (a0 + a1)u2], (2.4)
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which implies that there exist M1 and M2 referring to (2.1) such that 0 < u1 ≤ M1, 0 < u2 ≤
M2, and t ∈ [0, T).

Finally, we note that du3/dt = (−b + u1 − u3)u3 ≤ (−b + M1 − u3)u3. Let M3 =
max{u3(0),M1 − b}, then

d(u3 −M3)
dt

+ (u3 −M3)u3 ≤ 0 u3(0) −M3 ≤ 0. (2.5)

From the comparison inequality for the ODE, we have u3 −M3 ≤ 0, t ∈ [0, T).
Thus the solutions for system (1.4) are bounded. Further, from the extension theorem

of solutions, we have T = +∞.

By the simple calculation, the sufficient conditions for system (1.4) having a unique
positive equilibrium point as follows:

(i) a2 − k = 2
√
a3(a1 − a0 − kb) > 2a3b; (ii) max{a1 − a0, (a2 − 2a3b)b} ≤ bk ≤ (a2 −

a3b)b, where the left equal sign holds if and only if a1 − a0 < (a2 − 2a3b)b; (iii) a1 − a0 ≤
b(a2 − a3b) ≤ kb; (iv) a1 − a0 < kb ≤ (a2 − 2a3b)b; (v) kb < a1 − a0 ≤ (a2 − a3b)b and
a2 − k ≥ max{2a3b, 2

√
a3(a1 − a0 − kb)}, where the second equal sign holds if and only if

a3b
2 > a1 − a0 − kb; (vi) 2

√
a3(a1 − a0 − kb) < a2 − k ≤ 2a3b and kb < a1 − a0 < (a2 − a3b)b.

If one of the above conditions holds, then system (1.4) has the unique positive
equilibrium point (u1, u2, u3), where

u1 = u2 =
(a2 − k) +

√
(a2 − k)2 + 4a3(kb + a0 − a1)

2a3
, u3 = u1 − b. (2.6)

Theorem 2.2. System (1.4) has the unique positive equilibrium point (u1, u2, u3) when one of the
above conditions (i), (ii), (iii), (iv), (v), and (vi) holds. If a1 −a0 < ((a2

2 − 2ka2)/4a3) + kb holds, then
(u1, u2, u3) is locally asymptotically stable.

Theorem 2.2 is easy to be obtained by using linearization; therefore, we omit its proof.
The objective of this section is to prove the following result.

Theorem 2.3. System (1.4) has the unique positive equilibrium point (u1, u2, u3) when one of the
above conditions (i), (ii), (iii), (iv), (v), and (vi) holds. If a1 − a0 < min{((a2

2 − 2ka2)/4a3) + kb, kb −
a2k/a3} holds, then (u1, u2, u3) is globally asymptotically stable.

Proof. We make use of the general Lyapunov function

V (u(t)) =
3∑
i=1

αi

(
ui − ui − ui ln

ui

ui

)
, (2.7)

where αi (i = 1, 2, 3) are positive constants. It holds that V (u(t)) ≥ 0 for any t > 0. Calculating
the derivative along each solution of system (1.4), we have
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dV

dt
=

3∑
i=1

αi
ui − ui

ui

dui

dt

= α1
u1 − u1

u1

×
{
a0

u1
[u1(u2 − u2) − u2(u1 − u1)] − u1(u1 − u1)(−a2 + a3u1 + a3u1) − ku1(u3 − u3)

}

+ α2
u2 − u2

u2

1
u2

[u2(u1 − u1) − u1(u2 − u2)] + α3u3[(u1 − u1) − (u3 − u3)]
u3 − u3

u3

= −α1(−a2 + a3u1 + a3u1)(u1 − u1)
2 − α3(u3 − u3)

2

+ (α3 − kα1)(u1 − u1)(u3 − u3) + a0α1(u1 − u1)

×
[
− u2

u1u1
(u1 − u1) +

1
u1

(u2 − u2)
]
+ α2(u2 − u2)

(u1 − u1)u2 − (u2 − u2)u1

u2u2
.

(2.8)

Let α2 = a0α1 and α3 = kα1. Then

dV

dt
= −α1(−a2 + a3u1 + a3u1)(u1 − u1)

2 − α3(u3 − u3)
2

− a0α1
1
u1

[√
u2

u1
(u1 − u1) −

√
u1

u2
(u2 − u2)

]2
.

(2.9)

We observe that

a1 − a0 < kb − a2k

a3
(2.10)

is a sufficient condition of −a2 + a3u1 + a3u1 > 0. So, when condition (2.10) holds, we have

dV

dt
≤ 0. (2.11)

Set D = {u ∈ IntR3
+ : dV/dt = 0} = {(u1, u2, u3)}. According to the Lyapunov-LaSalle

invariance principle [14], (u1, u2, u3) is global asymptotic stability if inequality (2.10) and
all conditions of Theorem 2.2 are satisfied. Theorem 2.3 is, thus, proved.

3. Stability of the PDE System without Cross-Diffusion

In this section, we first prove the global existence and uniform boundedness of solutions, then
discuss the stability of unique positive equilibrium solution for the weakly coupled reaction-
diffusion system (1.5).
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Denote that F(u) = (f1, f2, f3)
T, where u = (u1, u2, u3), f1 = a0u2 − a1u1 + a2u

2
1 − a3u

3
1 −

ku1u3, f2 = u1 − u2,and f3 = (−b + u1 − u3)u3. It is easy to see that f1, f2, f3 ∈ C1(R
3
+) with

R
3
+ = {(u1, u2, u3) | ui ≥ 0, i = 1, 2, 3}. The standard PDE theory [15] shows that (1.5) has

the unique solution (u1, u2, u3) ∈ [C(Ω × [0, T)) ∩ C2,1(Ω × (0, T))]
3
, where T ≤ +∞ is the

maximal existence time. The following theorem shows that the solution of (1.5) is uniformly
bounded, and thus T = +∞.

Theorem 3.1. Let (u1, u2, u3) ∈ [C(Ω × [0, T)) ∩ C2,1(Ω × (0, T))]
3
be the solution of system

(1.5) with initial values ui0(x) ≥ 0 (i = 1, 2, 3), and let T be the maximal existence time.
Then 0 ≤ u1(x, t), u2(x, t) ≤ M1, 0 ≤ u3(x, t) ≤ M2, and t ∈ [0, T), where M1 is a
positive constant depending only on Ω and all coefficients of (1.5) and ‖ui0‖L∞(Ω) (i = 1, 2),
M2 = max{‖u30‖L∞(Ω),M1 − b}. Furthermore, T = +∞ and ui(x, t) > 0 on Ω for any t > 0 if
ui0 ≥ (/≡ )0 (i = 1, 2, 3).

Proof. Let (u1, u2, u3) be the solution of (1.5) with initial values ui0(x) ≥ 0 (i = 1, 2, 3). From
the maximum principle for parabolic equations [16], it is not hard to verify that ui(x, t) ≥ 0
for (x, t) ∈ Ω × [0, T) (i = 1, 2, 3), where T is the maximal existence time of the solution
(u1, u2, u3). Furthermore, we know by the strong maximum principle that ui(x, t) > 0 on Ω
for all t > 0 if ui0 ≥ (/≡ )0 (i = 1, 2, 3). Next we prove that the solution (u1, u2, u3) is bounded
on Ω × [0, T).

Integrating the first two equations of (1.5) over Ω and adding the results linearly, we
have that, by Young inequality,

d

dt

∫

Ω
[u1 + (a0 + a1)u2]dx ≤

∫

Ω
(a0u1 − a1u2)dx +

∫

Ω

(
a2u

2
1 − a3u

3
1

)
dx

≤ −a1

∫

Ω
u2dx +

∫

Ω

[(
a0 +

a2
2

a3

)
u1 − a2u

2
1

]
dx

≤ C − a1

a0 + a1

∫

Ω
[u1 + (a0 + a1)u2]dx

(3.1)

for some positive constant C depending only on the coefficients of (1.5). Therefore,
‖u1,2(t)‖L1(Ω) is bounded in [0,∞). Using [17, Exercise 5 of Section 3.5], we obtain that
‖u1,2(t)‖L∞(Ω) is also bounded in [0,∞). Now note that supΩ×[0,∞)u1,2(x, t) ≤ M1. The
maximum principle gives u3(x, t) ≤ max{‖u30‖L∞(Ω),M1−b} := M2. The proof of Theorem 3.1
is completed.

In order to prove the global stability of unique positive equilibrium solution for system
(1.5), we first recall the following lemma which can be found in [7, 17].

Lemma 3.2. Let a and b be positive constants. Assume that φ, ϕ ∈ C1([a,∞)), ϕ(t) > 0, and
φ is bounded from below. If φ′(t) ≤ −bϕ(t), and ϕ′(t) ≤ K in [a,∞) for some constant K, then
limt→∞ϕ(t) = 0.
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Let 0 = μ1 < μ2 < μ3 < · · · be the eigenvalues of the operator −Δ on Ω with the
homogeneous Neumann boundary condition, and let E(μi) be the eigenspace corresponding

to μi in C1(Ω). Denote that X = {u ∈ [C1(Ω)]
3
∂ηu = 0, x ∈ ∂Ω}, {φij ; j = 1, 2, . . . ,dimE(μi)} is

an orthonormal basis of E(μi), and Xij = {c · φij | c ∈ R3}. Then

X =
∞⊕
i=1

Xi, Xi =
dimE(μi)⊕

j=1

Xij . (3.2)

Next we present the clear proof of the the global stability by two steps:

Step 1 (Local Stability). Let D = diag(d1, d2, d3) and L = D + Fu(u)DΔ + {aij}, where

Fu(u) =

⎛
⎜⎜⎝

−2a3u
2
1 + a2u1 − a0 a0 −ku1

1 −1 0

u3 0 −u3

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎟⎟⎠. (3.3)

The linearization of (1.5) at u is

ut = Lu. (3.4)

For each i ≥ 1, Xi is invariant under the operator L, and λ is an eigenvalue of L on Xi if and
only if it is an eigenvalue of the matrix −μiD + Fu(u).

The characteristic polynomial of −μiD + Fu(u) is given by

ϕi(λ) = λ3 +Aiλ
2 + Biλ + Ci, (3.5)

where

Ai = μi(d1 + d2 + d3) − a11 − a33 + 1,

Bi = μ2
i (d1d2 + d1d3 + d2d3) + μi[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

+ a11a33 − a13a31 − a33 − (a11 + a0),

Ci = μ3
i d1d2d3 + μ2

i (d1d3 − a11d2d3 − a33d1d2)

− μi[d1a33 − d2(a11a33 − a13a31) + d3(a11 + a0)] + a33(a11 + a0) − a13a31.

(3.6)

Thus

Hi = AiBi − Ci = P3μ
3
i + P2μ

2
i + P1μi + P0, (3.7)



Boundary Value Problems 9

where P0, P1, P2, and P3 are given by

P0 = (a11 + a33)[a13a31 + a33 − a11a33 + (a11 + a0)] − a33(1 + a0) − (a11 + a0),

P1 = d1[a11a33 − a13a31 − (a11 + a0)] − d2[(a11 + a0) + a33] + d3(a11a33 − a33 − a13a31)

− (a11 + a33 − 1)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)],

P2 = (d1 + d2 + d3)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

− a11d1(d2 + d3) + d2(d1 + d3) − a33d3(d1 + d2),

P3 = (d1 + d2)(d1d2 + d1d3 + d2d3) + d2
3(d1 + d2).

(3.8)

According to the Routh-Hurwitz criterion [18], for each i ≥ 1, the three roots λi,1, λi,2, λi,3 of
ϕi(λ) = 0 all have negative real parts if and only if Ai > 0, Ci > 0, and Hi > 0. Noting
that a33 < 0 and a13a31 < 0, the three roots have negative real parts if a11 + a0 < 0. A direct
calculation shows that a11 + a0 is negative if

a1 − a0 <
a2
2 − 2a2k

4a3
+ kb. (3.9)

Now we can conclude that there exists a positive constant δ such that

Re{λi,1},Re{λi,2},Re{λi,3} ≤ −δ, i ≥ 1. (3.10)

In fact, let λ = μiξ, then

ϕi(λ) = μ3
i ξ

3 +Aiμ
2
i ξ

2 + Biμiξ + Ci � ϕ̃i(ξ). (3.11)

Since μi → ∞ as i → ∞, it follows that

lim
i→∞

ϕ̃i(ξ)

μ3
i

= ξ3 + (d1 + d2 + d3)ξ2 + (d1d2 + d2d3 + d1d3)ξ + d1d2d3 � ϕ̃(ξ). (3.12)

It is easy to see that d1, d2, d3 are the three roots of ϕ̃(ξ) = 0. Thus, there exists a positive
constant δ such that

Re{−d1},Re{−d2},Re{−d3} ≤ −δ. (3.13)

By continuity, we see that there exists i0 such that the three roots ξi,1, ξi,2, ξi,3 of ϕ̃i(ξ) = 0
satisfy

Re{ξi,1},Re{ξi,2},Re{ξi,3} ≤ −δ
2
, i ≥ i0. (3.14)
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So

Re{λi,1},Re{λi,2},Re{λi,3} ≤ −μiδ

2
≤ − δ̂

2
, i ≥ i0. (3.15)

Let

−δ̃ = max
1≤i≤i0

{Re{λi,1},Re{λi,2},Re{λi,3}}, (3.16)

then δ̃ > 0, and (3.10) holds for δ = min{δ̃, δ̂/2}.
Consequently, the spectrum of L, consisting only of eigenvalues, lies in {Re λ ≤ −δ} if

(3.9) holds, and the local stability of u follows [19, Theorem 5.1.1].

Step 2 (Global Stability). In the following, C denotes a generic positive constant which does
not depend on x ∈ Ω and t ≥ 0. Let u be the unique positive solution. Then it follows from
Theorem 3.1 that u(·, t) is bounded uniformly onΩ, that is, ‖ui(·, t)‖∞ ≤ C for all t ≥ 0. By [20,
Theorem A2],

‖ui(·, t)‖C2,α(Ω) ≤ C, ∀t ≥ 1. (3.17)

Define the Lyapunov function

E(t) =
∫

Ω

(
u1 − u1 − u1 ln

u1

u1

)
dx + a0

∫

Ω

(
u2 − u2 − u2 ln

u2

u2

)
dx

+ k

∫

Ω

(
u3 − u3 − u3 ln

u3

u3

)
dx.

(3.18)

Then E(t) ≥ 0 for all t > 0. Using (1.5) and integrating by parts, we have

E′(t) =
∫

Ω

(
u1 − u1

u1
u1t + a0

u2 − u2

u2
u2t + k

u3 − u3

u3
u3t

)
dx

= −
∫

Ω

(
d1u1

u2
1

|∇u1|2 + a0
d2u2

u2
2

|∇u2|2 + k
d3u3

u2
3

|∇u3|2
)
dx

+
∫

Ω

[
u1 − u1

u1
f1(u) + a0

u2 − u2

u2
f2(u) + k

u3 − u3

u3
f3(u)

]
dx

≤
∫

Ω

{
− (−a2 + a3u1 + a3u1)(u1 − u1)

2 − k(u3 − u3)
2

+ a0(u1 − u1)
[
− u2

u1u1
(u1 − u1) +

1
u1

(u2 − u2)
]

+a0(u2 − u2)
(u1 − u1)u2 − (u2 − u2)u1

u2u2

}
dx
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=
∫

Ω

[
−(−a2 + a3u1 + a3u1)(u1 − u1)

2 − k(u3 − u3)
2
]
dx

− a0

u1

∫

Ω

[√
u2

u1
(u1 − u1) −

√
u1

u2
(u2 − u2)

]2
dx

≤ −
∫

Ω
(−a2 + a3u1 + a3u1)(u1 − u1)

2dx − k

∫

Ω
(u3 − u3)

2dx.

(3.19)

Taking l1 = −a2 + a3u1 and l3 = k, we have that

E′(t) ≤ −l1
∫

Ω
(u1 − u1)

2dx − l3

∫

Ω
(u3 − u3)

2dx, (3.20)

where l1 > 0 holds for

(a1 − a0) <
(a3b − a2)k

a3
. (3.21)

From Theorem 3.1 the solution ui of (1.5) is bounded, and so are the derivatives of (u1 − u1)
2

and (u3 − u3)
2 by equations in (1.5). Applying Lemma 3.2, we obtain

lim
t→∞

∫

Ω
(u1 − u1)

2dx = 0, lim
t→∞

∫

Ω
(u3 − u3)

2dx = 0. (3.22)

As u2
i ≤ C, it follows that

E′(t) ≤ −
∫

Ω

(
d1u1

u2
1

|∇u1|2 + a0
d2u2

u2
2

|∇u2|2 + k
d3u3

u2
3

|∇u3|2
)
dx

≤ −C
∫

Ω

(
|∇u1|2 + |∇u2|2 + |∇u3|2

)
dx

� −ϕ(t).

(3.23)

Using inequality (3.17) and system (1.5), the derivative of ϕ(t) is bounded in [1,∞). From
Lemma 3.2, we conclude that ϕ(t) → 0 as t → ∞. Therefore

lim
t→∞

∫

Ω

(
|∇u1|2 + |∇u2|2 + |∇u3|2

)
dx = 0. (3.24)

Using the Poincaré inequality yields

lim
t→∞

∫

Ω
(u1 − ũ1)

2dx = lim
t→∞

∫

Ω
(u2 − ũ2)

2dx = lim
t→∞

∫

Ω
(u3 − ũ3)

2dx = 0, (3.25)
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where ũi(t) = (1/|Ω|) ∫Ω uidx, i = 1, 2, 3. Thus, it follows from (3.22) and (3.25) that

|Ω|(ũ1(t) − u1)
2 =

∫

Ω
(u1 − u1)

2dx ≤ 2
∫

Ω
(ũ1 − u1)

2dx + 2
∫

Ω
(u1 − u1)

2dx −→ 0 (3.26)

as t → ∞. So we have ũ1(t) → u1 as t → ∞. Similarly, ũ3(t) → u3 as t → ∞. Therefore,
there exists a sequence {tm}with tm → ∞ such that ũ′

1(tm) → 0. As ũ2(tm) is bounded, there
exists a subsequence of {tm}, still denoted by the same notation, and nonnegative constant û2

such that

ũ2(tm) −→ û2. (3.27)

At t = tm, from the first equation of (1.5), we have

|Ω|ũ′
1(tm) =

∫

Ω
u1tdx

∣∣∣∣
tm

=
∫

Ω

(
dΔu1 + f1(u)

)
dx

∣∣∣∣
tm

=
∫

Ω

a0

u1
[u1(u2 − u2) − u2(u1 − u1)]dx

∣∣∣∣
tm

+
∫

Ω
−u1(u1 − u1)(−a2 + a3u1 + u1)dx

∣∣∣∣
tm

+
∫

Ω
−ku1(u3 − u3)dx

∣∣∣∣
tm

−→ 0.

(3.28)

In view of (3.22) and (3.27), it follows from (3.28) that û2 = u2, thus

lim
m→∞

ũ2(tm) = u2. (3.29)

According to (3.17), there exists a subsequence of {tm}, denoted still by {tm}, and
nonnegative functions wi ∈ C2(Ω), such that

lim
m→∞

‖ui(·, tm) −wi(·)‖C2(Ω) = 0, i = 1, 2, 3. (3.30)

In view of (3.29) and noting that in fact ũ1(t) → u1 and ũ3(t) → u3, we know thatwi ≡ ui, i =
1, 2, 3. Therefore,

lim
m→∞

‖ui(·, tm) − ui‖C2(Ω) = 0, i = 1, 2, 3. (3.31)

The global asymptotic stability of u follows from (3.31) and the local stability of u.

Theorem 3.3. System (1.5) has the unique positive equilibrium point (u1, u2, u3) when one of the
conditions (i), (ii), (iii), (iv), (v), and (vi) in Section 2 holds. If (3.9) and (3.21) hold, then (u1, u2, u3)
is globally asymptotically stable.
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4. Global Existence of Classical Solutions and Convergence

In this section, we discuss the existence of nonnegative classical global solutions and the
global asymptotic stability of unique positive equilibrium point of system (1.6).

Some notations throughout this section are as follows: QT = Ω × [0, T), u ∈
Wk

p (Ω) means that Dαu ∈ Lp(Ω) for any |α| ≤ k with α = (α1, α2, . . . , αn), ‖u‖Wk
p (Ω) =

(
∫
Ω

∑
|α|≤k |Dαu|pdx)1/p, u ∈ W2,1

p (QT ) means that u, uxi , uxixj (i, j = 1, 2, . . . , n) and ut

are in Lp(QT ), ‖u‖W2,1
p (QT ) = (

∫
QT
(|u|p + |Du|p + |D2u|p + |ut|p)dx dt)

1/p
, and ‖u‖V2(QT ) =

sup0≤t≤T‖u(·, t)‖L2(Ω) + ‖∇u‖L2(QT ) with V2(QT ) = L∞((0, T), L2(Ω)) ∩W1,0
2 (QT ).

To obtain C2+α,1+α/2(QT ) normal estimates of the solution for (1.6), we present a series
of lemmas in the following.

Lemma 4.1. Let (u, v,w) be the solution of (1.6). Then there exists a positive constantM0(≥1) such
that

0 ≤ u, v ≤ M0, 0 ≤ w, ∀t ≥ 0. (4.1)

Proof. By applying the comparison principle [20] to system (1.6), we have u ≥ 0, v ≥ 0, and
w ≥ 0 in QT . To prove that u, v ≤ M0 in the following, we consider the auxiliary problem

ut − (d1 + 2α11u)Δu + 2α11

n∑
i=1

uxiuxi = f1, x ∈ Ω, t > 0,

vt − (d2 + 2α22v)Δv + 2α22

n∑
i=1

vxivxi = f2, x ∈ Ω, t > 0,

∂ηu(x, t) = ∂ηv(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ (/≡ )0, v(x, 0) = v0(x) ≥ (/≡ )0, x ∈ Ω.

(4.2)

Notice that the functions f1 and f2 are sufficiently smooth in R
2, and are quasimonotone in

R
2
+. Let (0, 0) and (M,N) be a pair of upper-lower solutions for (4.2), where M and N are

positive constants. Direct calculation with inequalities

a0N − a1M + a2M
2 − a3M

3 ≤ 0,

M −N ≤ 0,

u0 ≤ M, v0 ≤ N

(4.3)

yields M = max{(a2 +
√
a2
2 + 4a3|a0 − a1|)/2a3, ‖u0‖L∞(Ω)} and N = max{M, ‖v0‖L∞(Ω)}. It

follows that there exists M0 = Kmax{M,N} ≥ 1 for any t ≥ 0, where K is a big enough
positive constant such that (4.1) holds.
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Lemma 4.2. Let X = (d1 + α11u)u, and u ∈ L∞(QT ) for the solution to following equation:

ut = Δ[(d1 + α11u)u] + f1, (x, t) ∈ Ω × (0, T),

∂ηu = 0, (x, t) ∈ ∂Ω × (0, T),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(4.4)

where d1, α11 are positive constants and 0 ≤ w ∈ L2(QT ). Then there exists a positive constant C(T),
depending on ‖u0‖W1

2 (Ω) and ‖u0‖L∞(Ω), such that

‖X‖W2,1
2 (QT ) ≤ C(T). (4.5)

Furthermore,

∇X ∈ V2(QT ), ∇u ∈ L2(n+2)/n(QT ). (4.6)

Proof. It is easy to check, from X = (d1 + α11u)u, that

Xt = (d1 + 2α11u)ΔX + C1 − C2w, (4.7)

where C1 = (d1 + 2α11u)(a0v − a1u + a2u
2 − a3u

3) and C2 = k(d1 + 2α11u)u. C1 and C2 are
bounded inQT from (4.1). Multiplying (4.7) by −ΔX, and integrating by parts overQt, yields

1
2

∫

Ω
|∇X(x, t)|2dx − 1

2

∫

Ω
|∇X(x, 0)|2dx + d1

∫

Qt

|ΔX|2dx dt

≤
∫

QT

|C1 + C2w‖ΔX|dx dt.

(4.8)

Using Hölder inequality and Young inequality to estimate the right side of (4.8), we have

‖C1 + C2w‖L2(QT )‖ΔX‖L2(QT ) ≤ m1

(
1 + ‖w‖L2(QT )

)
‖ΔX‖L2(QT )

≤ m2
1(1 +M3)2

2d1
+
d1

2
‖ΔX‖2L2(QT )

(4.9)

with some m1 > 0. Substituting (4.9) into (4.8) yields

sup
0≤t≤T

∫

Ω
|∇X(x, t)|2dx + d1

∫

Qt

|ΔX|2dx dt ≤ m2, (4.10)
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where m2 depends on ‖u0‖W1
2 (Ω) and ‖u0‖L∞(Ω). Since X ∈ L2(QT ), the elliptic regularity

estimate [10, Lemma 2.3] yields

∫

QT

|Xxixj |2dx dt ≤ m3, i, j = 1, . . . , n. (4.11)

From (4.7), we have Xt ∈ L2(QT ). Hence, ‖X‖W2,1
2 (QT ) ≤ C(T). Moreover, the Sobolev

embedding theorem shows that (4.6) holds.

Lemma 4.3 (Lemma 4.3 can be presented by combining Lemmas 2.3 and 2.4 in [11]). Let p >
1, p̃ = 2 + 4p/n(q + 1), and let w satisfy

sup
0≤t≤T

‖w‖L2p/(p+1)(Ω) + ‖∇w‖L2(QT ) < ∞, (4.12)

and there exist positive constants β ∈ (0, 1) and CT such that
∫
Ω |w(·, t)|βdx ≤ CT (∀t ≤ T). Then

there exists a positive constant M′ independent of w but possibly depending on n, Ω, p, β, and CT

such that

‖w‖Lq̃(QT ) ≤ M′

⎧
⎨
⎩1 +

(
sup
0≤t≤T

‖w(t)‖L2p/(p+1)(Ω)

)4p/n(p+1)p̃

‖∇w‖2/p̃
L2(QT )

⎫
⎬
⎭. (4.13)

Finally, one proposes some standard embedding results which are important to obtain the
C2+α,1+α/2(QT ) normal estimates of the solution for (1.6).

Lemma 4.4. Let Ω ⊂ R
N be a fixed bounded domain and ∂Ω ⊂ C2. Then for all u ∈ W2,1

q (QT ) with
q ≥ 1, one has

(1) ‖∇u‖Lp(QT ) ≤ C‖u‖W2,1
q (QT ), for all 1 ≤ p ≤ (n + 2)q/(n + 2 − q), q < n + 2,

(2) ‖∇u‖Lp(QT ) ≤ C‖u‖W2,1
q (QT ), for all 1 ≤ p ≤ ∞, q = n + 2,

(3) ‖∇u‖Cα,α/2(QT ) ≤ C‖u‖W2,1
q (QT ) for all 1 − (n + 2)/q ≤ α ≤ 1, q > n + 2,

where C is a positive constant dependent on q, n, Ω, and T .

The main result about the global existence of nonnegative classical solution for the
cross-diffusion system (1.6) is given as follows.

Theorem 4.5. Assume that u0 ≥ 0, v0 ≥ 0, and w0 ≥ 0 satisfy homogeneous Neumann boundary
conditions and belong to C2+λ(Ω) for some λ ∈ (0, 1). Then system (1.6) has a unique nonnegative
solution u, v,w ∈ C2+λ,1+λ/2(Ω × [0,∞)) when the space dimension is n ≤ 5.
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Proof.

Step 1. L1-, L2-Estimates and Lq-Estimates of w. Firstly, integrating the third equation of (1.6)
over Ω, we have

d

dt

∫

Ω
wdx ≤ 1

2

∫

Ω
u2dx − 1

2

∫

Ω
w2dx

≤ |Ω|
2

M2
0 −

1
2|Ω|

(∫

Ω
wdx

)2

.

(4.14)

Thus

∫

Ω
wdx ≤ max

{
M0|Ω|,

∫

Ω
w0dx

}
:= M1, ∀t ≥ 0. (4.15)

Furthermore

‖w‖L1(QT ) ≤
∫T

0
M1dt := M2. (4.16)

Integrating (4.14) in [0, T] and moving terms yield

‖w‖L2(QT ) ≤
(
M2

0|Ω|T + 2‖w0‖L1(Ω)

)1/2
:= M3. (4.17)

Secondly, multiplying the third equation of (1.6) by qwq−1 (q > 1) and integrating over
Ω, we have

d

dt

∫

Ω
wqdx ≤ −4

(
q − 1

)
d3

q

∫

Ω

∣∣∣∇
(
wq/2

)∣∣∣
2
dx − 8q

(
q − 1

)
α33

(q + 1)2

∫

Ω

∣∣∣∇
(
w(q+1)/2

)∣∣∣
2
dx

− (
q − 1

)
α31

∫

Ω
∇u · ∇(wq)dx − (

q − 1
)
α32

∫

Ω
∇v · ∇(wq)dx

+ q

∫

Ω
wq(−b + u −w)dx.

(4.18)
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Integrating the above expression in [0, t] (t ≤ T) yields

∫

Ω
wq(x, t)dx +

4
(
q − 1

)
d3

q

∫

Qt

∣∣∣∇
(
wq/2

)∣∣∣
2
dx dt +

8q
(
q − 1

)
α33(

q + 1
)2

∫

Qt

∣∣∣∇
(
w(q+1)/2

)∣∣∣
2
dx dt

≤
∫

Ω
w

q

0(x)dx − (
q − 1

)
α31

∫

Qt

∇u · ∇(wq)dx dt − (
q − 1

)
α32

∫

Qt

∇v · ∇(wq)dx dt

+ q

∫

Qt

wq(−b + u −w)dx dt.

(4.19)

Since∇u ∈ L2(n+2)/n(QT ) from Lemma 4.2, and using Hölder inequality and Young inequality,
we have

− (
q − 1

)
α31

∫

Qt

∇u · ∇(wq)dx dt − (
q − 1

)
α32

∫

Qt

∇v · ∇(wq)dx dt

≤ 2q
(
q − 1

)
α31

q + 1

∣∣∣∣∣
∫

Qt

w(q−1)/2∇
(
w(q+1)/2

)
· ∇udx dt

∣∣∣∣∣

+
2q

(
q − 1

)
α32

q + 1

∣∣∣∣∣
∫

Qt

w(q−1)/2∇
(
w(q+1)/2

)
· ∇v dx dt

∣∣∣∣∣

≤ 2q
(
q − 1

)

q + 1

(
α31‖∇u‖L2(n+2)/n(QT ) + α32‖∇v‖L2(n+2)/n(QT )

)

× ‖w(q−1)/2‖Ln+2(QT )‖∇(w(q+1)/2)‖L2(QT )

≤ C3

∥∥∥∇
(
w(q+1)/2

)∥∥∥
L2(QT )

‖w(q−1)/2‖Ln+2(QT )

≤ C3ε
∥∥∥∇(w(q+1)/2)

∥∥∥
2

L2(QT )
+
C3

4ε
‖w(q−1)/2‖2Ln+2(QT ).

(4.20)

From (4.1) and αpβ ≤ (p/(p + 1))αp+1 + (1/(p + 1))βp+1 (α, β > 0), it holds that

q

∫

Qt

wq(−b + u −w)dx dt ≤ q(−b +M0)
∫

Qt

wqdx dt − q

∫

Qt

wq+1dx

≤ q(−b +M0)|QT |1/(q+1)‖w‖q
Lq+1(Qt)

− q‖w‖q+1
Lq+1(Qt)

≤ (−b +M0)
2|QT | � C4.

(4.21)
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Taking w = w(q+1)/2 and selecting a proper ε such that C3ε ≤ 4q(q − 1)α33/(q + 1)2, then
applying (4.20) and (4.21) to (4.19) yields

∫

Ω
w2q/(q+1)(x, t)dx +

4
(
q − 1

)
d3

q

∫

Qt

∣∣∣∇
(
wq/(q+1)

)∣∣∣
2
dx dt +

4q
(
q − 1

)
α33

(q + 1)2

∫

Qt

|∇w|2dx dt

≤ ‖w0‖qLq(Ω) +
C3

4ε
‖w‖2(q−1)/(q+1)

L(q−1)(n+2)/(q+1)(QT )
+ C4

≤ C5

(
1 + ‖w‖2(q−1)/(q+1)

L(q−1)(n+2)/(q+1)(QT )

)
.

(4.22)

Denote that E ≡ sup0<t<T

∫
Ω w2q/(q+1)(x, t)dx +

∫
QT

|∇w|2dx dt. Then it follows from (4.22) that

E ≤ C6

(
1 + ‖w‖2(q−1)/(q+1)

L(q−1)(n+2)/(q+1)(QT )

)
. (4.23)

It is easy to see that 2q/(q + 1) < 2 < q̃ and (q − 1)(n + 2)/(q + 1) < q̃ = 2 + 4q/n(q + 1) for any
q < n(n + 4)/(n2 − 4); hence

E ≤ C7

(
1 + ‖w‖2(q−1)/(q+1)

Lq̃(QT )

)
. (4.24)

Take β = 2/(q + 1) ∈ (0, 1). Then it follows from L1(Ω)-estimates of w, namely (4.15), that

‖w‖Lβ(Ω) =
(∫

Ω
|w(·, t)|βdx

)1/β

= ‖w‖1/β
L1(Ω) ≤ M

1/β
1 , ∀t ≤ T. (4.25)

It follows from Lemma 4.3 and (4.24) that

E ≤ C7

⎡
⎣1 +

(
M′ +M′ sup

0<t<T
‖w(·, t)‖4q/n(q+1)q̃

L2q/(q+1)(Ω)
‖∇w‖2/q̃

L2(QT )

)2(q−1)/(q+1)⎤
⎦

≤ C8

⎡
⎣1 +

(
sup
0<t<T

‖w(·, t)‖2q/(q+1)
L2q/(q+1)(Ω)

)4(q−1)/n(q+1)q̃(
‖∇w‖2

L2(QT )

)2(q−1)/(q+1)q̃
⎤
⎦

≤ C8

(
1 + E((2+n)/nq̃)·2((q−1)/(q+1−))

)
.

(4.26)

Since ((2 + n)/nq̃) · (2(q − 1)/(q + 1)) ∈ (0, 1), E is bounded by contrary proof. It follows
that ‖w‖Lq̃(QT ) is bounded, that is, w ∈ L(q+1)q̃/2(QT ). It is easy to check that (q + 1)q̃/2 ∈
(1, 2(n + 1)/(n − 2)) for all q < n(n + 4)/(n2 − 4) still denote (q + 1)q̃/2 by q, then

w ∈ Lq(QT ), ∀q ∈
(
1,

2(n + 1)
n − 2

)
. (4.27)
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Finally, we observe that q = 2 satisfies (n2 − 4)q < n2 + 4n with n = 2, 3, 4, 5. So take q = 2 for
(4.17) and (4.19). Then there exists a positive constant M4 such that

‖w‖V2(QT ) ≤ M4. (4.28)

Step 2. L∞-Estimates of w. We rewrite the third equation of (1.6) as a linear parabolic equation

∂w

∂t
=

n∑
i,j=1

∂

∂xi

(
aij(x, t)

∂w

∂xj

)
+

n∑
i=1

∂

∂xi
(ai(x, t)w) − (b − u +w)w, (4.29)

where aij(x, t) = (d3 + α31u + α32v + 2α33w)δij , ai(x, t) = α31(∂u/∂xi) + α32(∂v/∂xi), δij are
Kronecker symbols.

To apply the maximum principle [15, Theorem 7.1, page 181] to (4.15) to obtain w ∈
L∞(QT ), we need to verify that the following conditions hold: (1) ‖w‖V2(QT ) is bounded; (2)∑n

i,j=1 aij(x, t)ξiξj ≥ ν
∑n

i=1 ξ
2
i ; (3) ‖∑n

i=1 a
2
i (x, t), b − u +w‖

Lq,r(QT )
≤ μ1, where ν and μ1 are

positive constants, and q and r satisfy

1
r
+

n

2q
= 1 − χ, 0 < χ < 1,

q ∈
[

n

2
(
1 − χ

) ,+∞
)

r ∈
[

1
1 − χ

,+∞
)
, n ≥ 2.

(4.30)

Next we verify conditions (1)–(3) in turn. From (4.28), condition (1) is true for n ≤ 5.
One can choose ν = d3 such that condition (2) holds. To verify condition (3), the first equation
of (1.6) is written in the divergence form

ut = ∇ · [(d1 + 2α11u)∇u] + a0v − a1u + a2u
2 − a3u

3 − kuw, (4.31)

where d1 +2α11u is bounded inQT by Lemma 4.1, and a0v−a1u+a2u
2 −a3u

3 −kuw ∈ Lq(QT )
for q ∈ ((n + 2)/2, 2(n + 1)/(n − 2)) from (4.27). Application of the Hölder continuity result
[15, Theorem 10.1, page 204] to (4.19) yields

u ∈ Cβ,β/2
(
QT

)
, β ∈ (0, 1). (4.32)

Returning to (4.7), since C1 + C2w ∈ Lq(QT ) for any q ∈ ((n + 2)/2, 2(n + 1)/n − 2) by (4.1)
and (4.27), and d1 + α11u ∈ Cβ,β/2(QT ) by (4.32), then by applying the parabolic regularity
theorem [15, Theorem 9.1, pages 341-342] to (4.7)we have

X ∈ W2,1
q (QT ), ∀q ∈

(
n + 2
2

,
2(n + 1)
n − 2

)
. (4.33)

Hence ∇X ∈ L(n+2)q/(n+2−q)(QT ) from Lemma 4.4, which shows that ∇u ∈ L(n+2)q/(n+2−q)(QT ).
Similarly, ∇v ∈ L(n+2)q/(n+2−q)(QT ) by the second equation of (1.6). Now we can show that
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|∇u|2, |∇v|2 ∈ L(n+2)q/2(n+2−q)(QT ), which imply that
∑n

i=1 a
2
i (x, t) ∈ L(n+2)q/2(n+2−q)(QT ). In

addition, b − u + w obviously belongs to Lq(QT ). It follows that one can select q = r =
(n+2)p/2(n+2−p). Now the above three conditions are satisfied, andw ∈ L∞(QT ) from [15,
Theorem 7.1, page 181]. Recalling Lemma 4.1, thus there exists a positive constantM5 for any
T > 0 such that

‖u‖L∞(QT ), ‖v‖L∞(QT ), ‖w‖L∞(QT ) ≤ M5. (4.34)

Step 3. The Proof of the Classical Solution (u, v,w)of (1.6) in QT for Any T > 0. Because
(d1u + α11u

2α)t = (d1 + 2α11u)Δ(d1u + α11u
2) + (d1 + 2α11u)f1, we have from (4.34) that

X = d1u + α11u
2 ∈ W2,1

q (QT ) for any q > 1. So ∇X ∈ Cβ∗,β∗/2(QT ) for all β∗ ∈ (0, 1). It
follows from [15, Lemma 3.3, page 80] that X ∈ C1+β∗,(1+β∗)/2(QT ). And direct calculation

X = (d1 + α11u)u yields u = (−d1 +
√
d2
1 + 4α11X)/2α11. So we have

u ∈ C1+β∗,(1+β∗)/2
(
QT

)
, ∀β∗ ∈ (0, 1). (4.35)

The third equation of (1.6) can be written as

wt = ∇ · [(d3 + α31u + α32v + 2α33w)∇w + (α31∇u + α32∇v)w] + (−b + u −w)w. (4.36)

Summarizing the above conclusions that are proved, we know that (−b + u −w)w ∈ L∞(QT )
and u, v,w,∇u,∇v are all bounded in QT . It follows from [15, Theorem 10.1, page 204] that
there exists σ1 ∈ (0, 1) such that

w ∈ Cσ1,σ1/2
(
QT

)
. (4.37)

The proof of Lemma 4.2 is similar. Then we have ∇v ∈ L2(QT ), that is, v ∈ V2(QT ).
Applying the [13, Theorem 10.1, page 204] to the second equation (1.6), there exists σ2 ∈ (0, 1)
such that

v ∈ Cσ2,σ2/2
(
QT

)
. (4.38)

Furthermore, applying Schauder estimate [15, page 320-321] yields v ∈ C2+σ∗,1+σ∗/2(QT ) for
σ∗ = min{σ2, λ}. Selecting α = min{σ1, σ

∗} and using Sobolev embedding theorem, we have
C2+σ∗,1+σ∗/2(QT ) ↪→ Cα,α/2(QT ). Still applying Schauder estimate, we have

v ∈ C2+σ,1+σ/2
(
QT

)
, σ = min{α, λ}. (4.39)

Let w = (d3 + α31u + α32v + α33w)w. Then w satisfies

w = (d3 + α31u + α32v + 2α33w)Δw + f(x, t), (4.40)
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where f(x, t) = (d3+α31u+α32v+2α33w)(−b+u−w)w+(α31ut+α32vt)w. By (4.35)–(4.38), we
have d3 + α31u + α32v + 2α33w, f(x, t) ∈ Cα,α/2(QT ). So applying Schauder estimate to (4.40)

yieldsw ∈ C2+σ,1+σ/2(QT ). Sincew = (−(d3+α31u+α32v)+
√
(d3 + α31u + α32v)

2 + 4α33w)/2α33,
we have

w ∈ C2+σ,1+σ/2
(
QT

)
, σ = min{α, λ}. (4.41)

The first equation of (1.6) can be written as

ut = (d1 + 2α11u)Δu + g(x, t), (4.42)

where g(x, t) = 2α11|∇u|2 + a0v − a1u + a2u
2 − a3u

3 − kuw. By (4.35), (4.39), and (4.41), we
have d1 + 2α11u, g(x, t) ∈ Cα,α/2(QT ). So applying Schauder estimate to (4.42) yields

u ∈ C2+σ,1+σ/2
(
QT

)
, σ = min{α, λ}. (4.43)

In particular, if λ < α, then σ = λ; in other words, Theorem 4.5 is proved. For
the case α < λ, from Sobolev embedding theorem, we have C2+σ,1+σ/2(QT ) ↪→ Cλ,λ/2(QT ).
Repeating the above bootstrap and Shauder estimate arguments, this completes the proof of
Theorem 4.5. About space dimension n = 1, see [21].

Theorem 4.6. System (1.6) has the unique positive equilibrium point (u, v,w) when one of the
conditions (i), (ii), (iii), (iv), (v), and (vi) in Section 2 holds. Let the space dimension be n ≤ 5,
and let the initial values u0, v0, w0 be nonnegative smooth functions and satisfy the homogenous
Neumann boundary conditions. If the following condition (4.44) holds, then the solution (u, v,w)
of (1.6) converges to (u, v,w) in L2(Ω):

4αud1d2d3 > βw
[
αuα2

32(d1 + 2α11M0) + (α31M0)
2(d2 + 2α22M0)

]
, (4.44)

where α = 2/a2
0 + 1/2a3u, and β = (k + a3u)α.

Proof. Define the Lyapunov function

H(t) = α

∫

Ω

(
u − u − u ln

u

u

)
dx +

1
2

∫

Ω
(v − v)2dx + β

∫

Ω

(
w −w −w ln

w

w

)
dx, (4.45)

where α and β have been given in Theorem 4.6. Obviously,H(t) is nonnegative, andH(t) = 0
if and only if u = u, v = v, and w = w. When (u, v,w) is a positive solution of system
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(1.6), H(t) is well posed for all t ≥ 0 from Theorem 4.5. According to system (1.6), the time
derivative of H(t) satisfies

dH(t)
dt

= −
∫

Ω

[
αu

u2 (d1 + 2α11u)|∇u|2 + (d2 + 2α22v)|∇v|2

+
βw

w2 (d3 + α31u + α32v + 2α33w)|∇w|2 + β
α31w

w
∇u∇w + β

α32w

w
∇v∇w

]
dx

−
∫

Ω

{
α
[(a0

u
− a2

)
+ a3(u + u)

]
(u − u)2 + (v − v)2 + β(w −w)2

−
(
1 +

a0α

u

)
(u − u)(v − v) +

(
kα − β

)
(u − u)(w −w)

}
dx

≤ −
∫

Ω

[
αu

u2 (d1 + 2α11u)|∇u|2 + (d2 + 2α22v)|∇v|2

+
βw

w2 (d3 + α31u + α32v + 2α33w)|∇w|2 + β
α31w

w
∇u∇w + β

α32w

w
∇v∇w

]
dx

−
∫

Ω

{
α

[
a0

u
− a2

(
M + a0/a2 + 1/a2 + a2

0/4a2a3u
)

u

]
(u − u)2

−a0α

u
(u − u)(v − v) − 1

u
(v − v)2

}
dx

−
∫

Ω

[
α
a3u

2
(u − u)2 − (u − u)(v − v) + (v − v)2

]
dx

−
∫

Ω

[
α
a3u

2
(u − u)2 +

(
kα − β

)
(u − u)(w −w) + β(w −w)2

]
dx.

(4.46)

It is easy to check that the final three integrands on the right side of the above expression are
positive definite because of the electing of α, β, and the sufficient and necessary conditions of
the first integrand being positive definite are the following:

4αβuw(d1 + 2α11u)(d2 + 2α22v)(d3 + α31u + α32v + 2α33w)

> αu(βα32w)2(d1 + 2α11u) +
(
βα31wu

)2(d2 + 2α22v).
(4.47)

Noticing that (4.44) is the sufficient conditions of (4.47), so there exists a positive constant
δ > 0 such that

dH(t)
dt

≤ −δ
∫

Ω

[
(u − u)2 + (v − v)2 + (w −w)2

]
dx,

dH(t)
dt

< 0 (u, v,w)/= (u, v,w).

(4.48)
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Similar to the tedious calculations of dH(t)/dt, using integration by parts, Hölder
inequality, and (4.34), one can verify that (d/dt)

∫
Ω[(u − u)2 + (v − v)2 + (w −w)2]dx is

bounded from above. Thus we have from (4.48) and Lemma 3.2 in Section 3 that

|u(·, t) − u|2 −→ 0, |v(·, t) − v|2 −→ 0, |w(·, t) −w|2 −→ 0 (t −→ ∞). (4.49)

In addition, H(t) is decreasing for t ≥ 0, so we can conclude that the solution (u, v,w) is
globally asymptotically stable. The proof of Theorem 4.6 is completed.
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