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Numerical solutions for generalized Rosenau equation are considered and two energy conserva-
tive finite difference schemes are proposed. Existence of the solutions for the difference scheme

has been shown. Stability, convergence, and priori error estimate of the scheme are proved using
energy method. Numerical results demonstrate that two schemes are efficient and reliable.

1. Introduction

Consider the following initial-boundary value problem for generalized Rosenau equation:
Ut + Uyxxxt +Ux + (WF), =0, x€[0,L], t€[0,T], (1.1)
with an initial condition
u(x,0) =up(x), x€[0,L], (1.2)
and boundary conditions
u0,8) =u(L,t) =0,  uxx(0,8) = uxx(L,#) =0, t€[0,T], (1.3)

where p > 2 is a integer.

When p = 2, (1.1) is called as usual Rosenau equation proposed by Rosenau
[1] for treating the dynamics of dense discrete systems. Since then, the Cauchy problem
of the Rosenau equation was investigated by Park [2]. Many numerical schemes have
been proposed, such as Cl'-conforming finite element method by Chung and Pani [3],
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discontinuous Galerkin method by Choo et al. [4], orthogonal cubic spline collocation
method by Manickam [5], and finite difference method by Chung [6] and Omrani et al.
[7]. As for the generalized case, however, there are few studies on theoretical analysis and
numerical methods.

It can be proved easily that the problem (1.1)—(1.3) has the following conservative law:

E(t) = |[ullf, + luxl7, = E(0). (1.4)

Hence, we propose two conservative difference schemes which simulate conservative law
(1.4). The outline of the paper is as follows. In Section 2, a nonlinear difference scheme
is proposed and corresponding convergence and stability of the scheme are proved. In
Section 3, a linearized difference scheme is proposed and theoretical results are obtained. In
Section 4, some numerical experiments are shown.

2. Nonlinear Finite Difference Scheme

Let h and 7 be the uniform step size in the spatial and temporal direction, respectively. Denote
xj=jh (0<j<])ty=n7 (0<n<N) ul =ulxjty), and Z) = (u= (u)) |uo=u; =0, j =
0,1,2,...,]}. Define

un+1 +un—1 un+1 +u (2'1)
—n j j n+l/2 _ j
u] 7 u’ - 2 7
J-1 )
nony _ n.,.n n _ n o n n _ n
(u", ") = hjgoujvj, "l = ), = max [,

and in the paper, C denotes a general positive constant which may have different values in
different occurrences.

Since (1”), = (p/(p + 1)) [P uy + (17),], then the following finite difference scheme
is considered:

(), + () o (7)o B ) () [() ]} =0 2
ul =uo(xj), 0<j<J-1, (2.3)

uy =uj =0, (uf) = = (u?)ﬁ =0. (2.4)
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Lemma 2.1 (see [8]). For any two mesh functions, u,v € Zg, one has

<(uj)x’vj> = _<”J" (Ui)f>'
(o () z) = (@) (W), (25)

(4, () ) = = () (7)) = ~llwalP.

Furthermore, if (ug) vz = (U}).z = 0, then

(uf/ (uf)xx§§> = ”uxxnz- (26)

Theorem 2.2. Suppose uy € Hg [0, L], then the scheme (2.2)—(2.4) is conservative for discrete
energy, that is,

E" = u|” + ule|* = B! = = EC. (27)

X.

Proof. Computing the inner product of (2.2) with 2u™+1/2

(2.4) and Lemma 2.1, we have

, according to boundary condition

(et i)« 2 (= ) = (g72) 2u72) (2 2a2) =0,
28)
where
p= P { () ), Y L @9)
According to

((u;z+1/2>£’2u7+1/2> -0, (2.10)
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- S () () [y

j=0
J-1
__Pp n1/2\P [ n+1/2 _  n41/2 ni1/2\P _ (. n+1/2\P], n+1/2
Tp+il .=O{<”f ) (2 =t 2) + [ (2 2)” = () a2
! (2.11)
P/ m2\PL i n1/2\P| . n+1/2
T+l [(”i+1 ) () ]ujﬂ
j=0
P c <un+1/2>7”1un+1/2+(un+1/2>7’ L2
p+14 j j-1 j-1 )
j=0
=0,
we obtain
n+l 2 ny2 n+1 2 n 2
u - ||1/l ” + Uyx - ”uxx” =0. (212)
By the definition of E”, (2.7) holds. O

To prove the existence of solution for scheme (2.2)—(2.4), the following Browder fixed
point Theorem should be introduced. For the proof, see [9].

Lemma 2.3 (Browder fixed point Theorem). Let H be a finite dimensional inner product space.
Suppose that g : H — H is continuous and there exists an a > 0 such that (g(x),x) > 0 for all
x € H with ||x|| = a. Then there exists x* € H such that g(x*) = 0 and ||x*|| < a.

Theorem 2.4. There exists u™ € Zg satisfying the difference scheme (2.2)—(2.4).

Proof. By the mathematical induction, for n < N — 1, assume that ulul, o ut satisfy (2.2)-
(2.4). Next we prove that there exists u"*! satisfying (2.2)-(2.4).
Define a operator g on Z as follows:

T
8(v) =20 = 2u" + 2037 — 2Uy 2 + TUR + 5 fl

-1
{@) @)+ @)1} @)
Taking the inner product of (2.13) with v, we get

(vz,0) =0, <(Ui)p_1 (07) + [(©)] v) =0,
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(8(0),0) = 2|0l = 2(u", v) + 2l[ves* = 218k, V)
> 2|02 = 20| - o]l + 2lowell® - 2lee ]| - ol
> 2ljo|l? = (Jlull® + [o]) + 2lvecl? = (wael® + l[oeel?)

2 2 2 2
> JJoll? = (11" + e ]?) + ol

2 2 2
> [lo)* = ("I + ).

(2.14)
Obviously, for all v € Z), (g(v),v) > 0 with [[o|]> = [[u"|]* + [[u”|* + 1. It follows from
Lemma 2.3 that there exists v* € Zg which satisfies g(v*) = 0. Let u™! = 20* — ", it can
be proved that ! is the solution of the scheme (2.2)—(2.4). O

Next, we discuss the convergence and stability of the scheme (2.2)-(2.4). Let v(x, t) be
the solution of problem (1.1)—(1.3), U? = v(xj,t,), then the truncation of the scheme (2.2)-
(2.4) is

7 0, )t O, 2 {6, ) e

Using Taylor expansion, we know that r = O(7* + h*) holds if 7,h — 0.

Lemma 2.5. Suppose that u € HZ[0,L), then the solution of the initial-boundary value problem
(1.1)—(1.3) satisfies

lull,, <C e, <€ lull, < C. (2.16)

Proof. 1t follows from (1.4) that

lull,, <C luxelly, < C (2.17)

Using Holder inequality and Schwartz inequality, we get

L L
Ul dX = —j Uy dX

L
||ux||i2 = j UyUrdx = uux|5 —f
0 0 (2.18)

0

1 2 2
< Nl - el < 5 (el + el ,)-

Hence, ||ux||r, < C. According to Sobolev inequality, we have [Ju||,, < C. O
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Lemma 2.6 (Discrete Sobolev’s inequality [10]). There exist two constant Cy and C, such that

[t ll, < Call™|| + Calfeill (2.19)

Lemma 2.7 (Discrete Gronwall inequality [10]). Suppose w(k), p(k) are nonnegative mesh
functions and p(k) is nondecreasing. If C > 0 and

w(k) < p(k) + CTEw(l), vk, (2.20)
1=0
then
w(k) < p(k)ec™, Vk. (2.21)

Theorem 2.8. Suppose ug € H;[0, L], then the solution u™ of (2.2) satisfies ||u"|| < C, |luZ|| < C,
which yield ||u"||, <C (n=1,2,...,N).

Proof. It follows from (2.7) that

W' <C il < C. (2.22)
Using Lemma 2.1 and Schwartz inequality, we get
1
a2l < il < 5 (I + el P) < C. (2.23)

According to Lemma 2.6, we have |[u"||,, < C. O

Theorem 2.9. Suppose u, € Hg[O,L], then the solution u™ of the scheme (2.2)—(2.4) converges to
the solution of problem (1.1)—(1.3) and the rate of convergence is O(7?> + h?).

Proof. Subtracting (2.15) from (2.2) and letting e;.“ = U? - u;’, we have

R GO G R s [CR GO R GO
- { Gy ) [y L}

(2.24)
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n+1/2 n+1/2) 2@ n+1/2

Computing the inner product of (2.24) with 2e

2 1
- ||e"||2) + —(
T

,and using ((e ) =0, we get

n+1 2
xx

en+1

- IIer||2> +(Qr+Q2em17),  (225)

(1’;-1, 26n+1/2> _ %(

e

where

p <v;7+1/2>7"1 (v'.”l/2> B <ur;+1/2>r"1 <ur;+1/z>
p+1 ] ] % ] ] |’

A RGN

Qi =

(2.26)

According to Lemma 2.5, Theorem 2.8, and Schwartz inequality, we have

<Q1,28n+1/2> o ]zi [( n+1/2>r7 1( o 1/2>; B <u;l+1/z>rf—1 (u;ﬁl/z)i] e7+1/2

_ 1
(zﬂ”l /2) < e’.”l /2> er;+1 /2
— ] ] z J

+1/2 p-1 +1/2>7”‘1 < n+1/2> n+l/2
p+1hz[ - (w i )5S

J-1 _
_ pzfl hZO <v;l+1/2>7’ 1 <€;1+1/2>£e;1+1/2
= (2.27)

o172 n+1/2\P" —2- k( n+1/2>k < n+1/2> n+l/2
p +1 hz [ Z( ) j Yj 35

n+1/2

< ChZ

(),

i ChZ ( n+1/2>

< C| e;ﬂ/z '2 + |[ent1r2 '2]
n+1 2 12 n+1 2 ny2
SCllex™ || + llexl” + ||e +le"lI7],
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] 1

S

j=0

<Q2’28n+1/2>

J-1

Lo () = () ),
_ > :e n+1/2 I:Z_:< n+1/2>P 1-k <u}”1/2>k:| <e;‘+1/2>2 (2.28)
j

n+1

en+1/2

SC[e

n+1/2
SR

n+1

< (: 2 n2
SClllex™ || + llexll” + |le

2
2
“leF].
Furthermore,

n+1

1
(r?,26"+1/2> = (r]f’, e+ e") < I + 5 [ e

g ||e”||2] . (2.29)

Substituting (2.27)—(2.29) into (2.25), we get

(et =nemi) = (et = et ) < ox{len [+ et + flewt |+ i) e
(2.30)
Similarly to the proof of (2.23), we have
P s (e e et ) et < Qe e ), @an
and (2.30) can be rewritten as
(et = nerie) + (et - netar®) < o [fler o e + et |+ hetel?] + w2
(2.32)
Let B" = |le"||> + |le”,||%, then (2.32) is written as follows:
(1-Cr) [B"+1 - B"] <2CTB" +7|r"|. (2.33)

If 7 is sufficiently small which satisfies 1 — C7 > 0, then

[B"“ - B"] < CtB" + Cr|r"| (2.34)
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Summing up (2.34) from 0 to n — 1, we have

n-1 2 n-1
B < B +Cry ||F| +crX B (2.35)
1=0 1=0
Noticing
S g P <r-o(e -’ 0
and e = 0, we have B® = O(72 + h?). Hence
2 n-1
B" < o(T2 + h2> +Cry B (2.37)

1=0
According to Lemma 2.7, we get B” < O(7% + h?)?, that is,
le”|| < o(T2 + h2), lle™ || < o<T2 + h2>. (2.38)

It follows from (2.31) that

lexll < O(7?+ h?). (2.39)
By using Lemma 2.6, we have

le"]l., < o(T2 + h2>. (2.40)
This completes the proof of Theorem 2.9. O

Similarly, the following theorem can be proved.

Theorem 2.10. Under the conditions of Theorem 2.9, the solution of the scheme (2.2)—(2.4) is stable

3. Linearized Finite Difference Scheme

In this section, we propose a linear-implicit finite difference scheme as follows:

<u;.’>?+ <u?>xx§§?+ (u;l)f * pf— 1 { <u}1>”’1 <ﬁ7>£ i
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Theorem 3.1. Suppose uy € HS[O, L], then the scheme (3.1), (2.3), and (2.4) are conservative for
discrete energy, that is,

~ 1 2 1
B =5 (| i) + 5(

Proof. Computing the inner product of (3.1) with 2", we have

%< 2) N %< 2) N <<u;l)j,2ﬁ;’> + <p2,zﬂ;‘> =0, (3.3)

where

n+1
xx

un+1

J-1

2 ~ ~

U ||+ IIuZtz) +7hY <u}1>£u;‘+1 =E' = = E
=0

(3.2)

un+1 2 n-1

= ||Uu

(@?)”’15}“] } (3.4)
According to Lemma 2.1, we get
() 2) = () ) + () v
= (. (™)) (3.5)
)

J-1 J-1
=h <u;’>£u7+1 - h' <u;’_1 xu;‘
7=0 j=0
2 J-1 _
(P, 2)) = r%h {(u7>” @)+ () 1ﬁ;’]A}ﬁ7
j=0 *
14 - APy —n r-1_, p-1_, |_
= - 1% [(u]> (u]+1 uj_1> + <ul+1> Uy (u] 1) u]_l] u
! (3.6)
J-1
14 p-1_ p-1_
= i ,;0 [<u7> u U <u}’+1> u;‘+1u7]
__P ]zi[<u >p_1ﬂ u (u")p iy ] =0
p+1]_0 j-1 77 j j 71
Adding (3.3) and (3.5) to (3.6), we obtain
1 2 1 ) J-1 1
E( w|| - ||u"||2> + E( wit|| - ||u§x||2> + h]ZO () et - hj:o (1) ur=0. 37)

By the definition of Em, (3.2) holds. O
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Theorem 3.2. The difference scheme (3.1) is uniquely solvable.

Proof. we use the mathematical induction. Obviously, #° is determined by (2.3) and we can

choose a two-order method to compute u! (e.g., by scheme (2.2)). Assuming that u’,u!,..., u"

are uniquely solvable, consider u™*! in (3.1) which satisfies

37 25 (%) e iy 1 (4) (@) [() | o e

Taking the inner product of (3.8) with u"*!, we get

el [ el Z(PH)Z{( D7) )| s o)
Notice that
e 2 () ), ) ]
J-1 (3.10)
“ iy 2 () st - a) + () = ()t <o
It follows from (3.8) that
% un+1 + E| un+1 2 =0. (3.11)

That is, there uniquely exists trivial solution satisfying (3.8). Hence, u"”1 in (3.1) is uniquely
solvable. O

To discuss the convergence and stability of the scheme (3.1), we denote the truncation
of the scheme (3.1):

7= <v}1>?+ (v?)xxﬁ?+ <v;1>2 + Pi 1 { <07>P_1 (5;1>3? -

Using Taylor expansion, we know that ?}‘ = O(72 + h?) holds if ,h — 0.

Theorem 3.3. Suppose ug € HZ2[0,L], then the solution of (3.1) satisfies ||u"|| < C, ||u?|| < C,
which yield |u"||, <C (n=1,2,...,N).
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Proof. It follows from (3.2) that

(o= i)+ ()

n+1

n+1 u

XX

un+1

u
2

2
2
+ [zl >

(3.13)

J-1
’ + ||u§x||2> =C- ZThZ <u7> uml<C+ T<
=0

According to (2.23), we have

(o[ a2 +

that is,

n+1

n+l u

XX

n+1

u u

2
+wgw)SC+r<

2 1 1
e I SIR), (319

n+l

n+l
u xx

(1- T)| g (1- §>||u”||2 + | g (1- g)nu;xnz <C (3.15)

u

If 7 is sufficiently small which satisfies 1 — 7 > 0, we get

(o= i) + ()

which yields |[u"|| < C, ||Ju%,|| < C. According to (2.23), we get

n+1
XX

un+1

u

2
+waw)<c (3.16)

[luzll < C. (3.17)

Using Lemma 2.6, we obtain
f[u"]l,, <C. (3.18)
O

Theorem 3.4. Suppose uy € H§[O, L], then the solution u™ of the schemes (3.1), (2.3), and (2.4)
converges to the solution of problem (1.1)—(1.3) and the rate of convergence is O(T* + h?).

Proof. Subtracting (3.12) from (3.1) and letting e; = v} —uj, we have

7= ) (e (e o { 1) G )
L) @)+ [y ] L

(3.19)
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Computing the inner product of (3.19) with 2e", we get

(7.22")

< (I Tl ) el e ) + ()22 + @ 220
(3.20)
where
Q= 2 | ) #1), - () (),
(3.21)
-1
Q= {17 @) - [ =) )
Notice that
J-1 _ _
(0:,2%") = 20 () @), - () @) e
= —n\ =n hG n\" () on
= pzz_ihlZO(U?)P 1<el)xe " pzi1 ,_0[<Uf>p - (”7>p 1]( 1>x
j j=
7-1 i J-1r p-2 o (3.22)
S @F R @) @)
j=0 j=0 k=0
< ClIZHI + eI + I |1]
<Cl|ler! 2+ en! 2+ et 2+||e"||2+ e 2],
and similarly
(Qu,28") < Cl||er* 2+ en! 2+ et 2+||e”||2+ e ! 2]. (3.23)
Furthermore, we get
<F}L,2§n> _ (;;l,enu +en—1> < ||7n”z+%[ o |2 s [t 2],
(3.24)
<<e}l>f,ZE"> _ <<e;l>f’ e+l +en—1> < ||e§||2 +% e+l 2 e 2].
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Substituting (3.22)—(3.24) into (3.20), we get

(11 ) o

2
+

2 _ n-1

n+1
e xx

e

2)
n+1
X

n+1
exx

(3.25)

2 2
< CT[ en+1 en—l 4 “enHZ " T ||€Z||2 + ;—1

e

e

2 2
+27||7"|°.

Similarly to the proof of (2.31), (3.25) can be written as

2 2 2 2
[ (et i)+ (et netat®)] = [ (e ) + Cletl? + e[
2 2 2 2
<crflemt o nem « et ems | nen+ en [ + 2rimie
(3.26)
Let D" = (|le™|? + |le"||*) + (|le™]|* + |le™,||*), then (3.26) is written as follows:
n _ myn-1 n+1 2 n 2 n-1 2 n+1 2 n o2 n-1 2 ~=ny2
D"-D"" <Crl||le +le"|I” + |le + e || Flleddl” + ||erx +27||7"]
(3.27)
< Cr(D"+ D" + 217,
that is,
(1-Cr) [D" - DH] <2CTD"™ + 2772 (3.28)
If 7 is sufficiently small which satisfies 1 — Ct > 0, then
[D” - DH] < CrD™ + Cr|||2. (3.29)
Summing up (3.29) from 1 to n, we have
n 2 n
D" <D+ CTZ”?’ || +Ccry D (3.30)
1=1 1=1
Choosing a two-order method to compute u! (e.g., by scheme (2.2)) and noticing
i 2 2 2
=l ~1 . 2,12
Tlg;”r ” SnTrllsllaé r ” <T O<T +h ) , (3.31)
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Table 1: The errors estimates in the sense of || - ||, when p =2 and 7 = 0.1.

15

h=1/8 h=1/16 h=1/32
Scheme (2.2)  Scheme (3.1)  Scheme (2.2)  Scheme (3.1)  Scheme (2.2)  Scheme (3.1)
F=2 4.7028¢ - 8 4.7035¢ - 8 5.8077e — 9 5.8145¢ — 8 1.0617e -9 1.0692¢ -9
t=4 1.2527e -7 1.2528e -7 1.8815e - 8 1.8823e -8 3.9301e -9 3.9387¢ -9
t=6 2.3471e -7 2.3472e -7 3.9308¢e - 8 3.9318¢e -8 8.6770e — 9 8.6778e — 9
t=8 3.7529¢ - 7 3.7531e -7 6.7171e — 8 6.7191e — 8 1.5273e -8 1.5287¢ -8
t=10 5.4699% -7 5.4701e -7 1.0272e -7 1.0273e -7 2.3778e — 8 2.379%4e -8
Table 2: The errors estimates in the sense of || - ||, when p = 4 and 7 = 0.1.
h=1/8 h=1/16 h=1/32

Scheme (2.2)

Scheme (3.1)

Scheme (2.2)

Scheme (3.1)

Scheme (2.2)

Scheme (3.1)

t=2 4.6363e - 8 4.6358e - 8 5.5803e -9 5.5749¢ - 8 1.0400e -9 1.0340e -9
t=4 1.2377e -7 1.2376e -7 1.8485e - 8 1.8479e - 8 3.8859e -9 3.8798e -9
t=6 2.3221e -7 2.3220e -7 3.8575e - 8 3.8743e - 8 8.6015e -9 8.5936e -9
t=8 3.7165e - 7 3.7164e -7 6.6364e — 8 6.6352e - 8 1.5181e -8 1.5176e - 8
t=10 5.4204e-7 5.4203e - 7 1.0197e -7 1.0197e -7 2.3657e — 8 2.3649¢ - 8
we have
2 n-1
D" < o(T2 + h2> +Cry D (3.32)
1=0
According to Lemma 2.7, we get D" < O(72 + h?)?, that is,
lerll<O(r2+ 1), llekl < O(+ ). (3.33)
According to (2.31), we get
lezll < O(7* + 1?). (3.34)
By using Lemma 2.6, we have
le"|l,, < O(7* + ). (3.35)
This completes the proof of Theorem 3.4. O

Similarly, the following theorem can be proved that.

Theorem 3.5. Under the conditions of Theorem 3.4, the solution of the schemes (3.1), (2.3), and (2.4)

are stable by || - ||oo-
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Table 3: The errors estimates in the sense of || - ||, when p = 8 and 7 = 0.1.

h=1/8 h=1/16

h=1/32

Scheme (2.2)

Scheme (3.1)  Scheme (2.2)  Scheme (3.1)  Scheme (2.2)  Scheme (3.1)

t=2 4.6349¢ — 8 4.6353e — 8 5.5673e — 9 5.5571e — 8 1.0254¢ -9 1.0301e -9
t=4 1.2375e -7 1.2377e -7 1.8468e — 8 1.8476e — 8 3.8683e — 9 3.8764e — 9
t=6 2.3219e -7 2.3220e -7 3.8733e — 8 3.8741e — 8 8.5827¢ - 9 8.5914e — 9
t=8 3.7163e -7 3.7164e -7 6.6344e — 8 6.6352e — 8 1.5165¢ - 8 1.5173e - 8
t=10 5.4202e -7 5.4203e -7 1.0195¢ -7 1.0196e -7 2.3631e — 8 2.3645e — 8
x1073
47328
47328 |
47328 |
%
2 47328}
[}
2
§4.7328;= * % % % % % % x4
A
47328 |
47328 |
47328 : : : : : : : :
1 2 3 4 5 6 7 8 9 10

Figure 1: Energy of scheme (2.2) when h =1/32and 7 = 0.1.

4. Numerical Experiments

Consider the generalized Rosenau equation:

Up + Unexext + U + (W), =0, (x, 1) €[0,1] x [0, T], (4.1)
with an initial condition
u(x,0) =x*(1-x)* x€]0,1], (4.2)
and boundary conditions
u(0,t) =u(1,t) =0, Uy (0,1) = uxx(1,6) =0, t€[0,T]. (4.3)

We construct two schemes to (4.1)—(4.3) as nonlinear scheme (2.2) and linearized
scheme (3.1). Since we do not know the exact solution of (4.1)-(4.3), we consider the
solution on mesh h = 1/160 as reference solution and obtain the error estimates on mesh
h=1/8,1/16,1/32, respectively, for different choices of p, where we take p = 2,4, 8. To verify
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Figure 2: Energy of scheme (3.1) when h =1/32 and 7 = 0.1.

the stability of schemes, we take T = 10. The maximal errors e” are listed on Tables 1, 2, and

3.
We have shown in Theorems 2.2 and 3.1 that the numerical solutions u" of Scheme

(2.2) and Scheme (3.1) satisfy the conservation of energy, respectively. In Figure 1, we give
the values of ||u"||* + [[u",||> for h = 1/32 with fixed T = 0.1 for Scheme (2.2). In Figure 2, the

values of (1/2)(|[™|? + ||u£H?) + (1/2) (|u™||* + [|u®,||?) + Th Z{;&(u;‘),;u]’.‘” for Scheme (3.1)

xx
are presented. We can see that scheme (2.2) preserves the discrete energy better than scheme

(3.1).
From the numerical results, two finite difference schemes of this paper are efficient.
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