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This paper is devoted to study the existence of periodic solutions of the second-order equation x
′′
=

f(t, x), where f is a Carathéodory function, by combining a new expression of Green’s function
together with Dancer’s global bifurcation theorem. Our main results are sharp and improve the
main results by Torres (2003).

1. Introduction

Let us say that the following linear problem:

x′′ + a(t)x = 0, t ∈ (0, T), (1.1)

x(0) = x(T), x′(0) = x′(T) (1.2)

is nonresonant when its unique solution is the trivial one. It is well known that (1.1), (1.2)
is nonresonant then, provided that h is a L1-function, the Fredholm’s alternative theorem
implies that the inhomogeneous problem

x′′ + a(t)x = h(t), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T)
(1.3)
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always has a unique solution which, moreover, can be written as

x(t) =
∫T

0
G(t, s)h(s)ds, (1.4)

where G(t, s) is the Green’s function related to (1.1), (1.2).
In recent years, the conditions,

(H+) Problem (1.1), (1.2) is nonresonant and the corresponding Green’s function G(t, s) is
positive on [0, T] × [0, T];
(H−) Problem (1.1), (1.2) is nonresonant and the corresponding Green’s function G(t, s) is
negative on [0, T] × [0, T],
have become the assumptions in the searching for positive solutions of singular second-order
equations and systems; see for instance Chu and Torres [2], Chu et al. [3], Franco and Torres
[4], Jiang et al. [5], and Torres [6]. Moreover, the positiveness of Green’s function implies
that an antimaximum principle holds, which is a fundamental tool in the development of the
monotone iterative technique; see Cabada et al. [7] and Torres and Zhang [8].

The classical condition implying (H+) is an Lp-criteria proved in Torres [9] (and based
on an antimaximum principle given in [8]). For the sake of completeness, let us recall the
following result.

For any 1 ≤ α ≤ ∞, let K(α) be the best Sobolev constant in the inequality

C‖u‖2α ≤ ‖u̇‖22, u ∈ H := H1
0(0, T) (1.5)

given explicitly by (see [10])

K(α) = inf
u∈H\{0}

‖u̇‖22
‖u‖2α

,

K(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2π
αT1+2/α

(
2

2 + α

)1−2/α( Γ(1/α)
Γ(1/2 + 1/α)

)2

, 1 ≤ α < ∞,

4
T
, α = ∞.

(1.6)

Throughout the paper, “a.e.” means “almost everywhere”. Given a ∈ L1(0, T), we write a � 0
if a ≥ 0 for a.e. t ∈ [0, T] and it is positive in a set of positive measure. Similarly, a ≺ 0 if
−a � 0.

Theorem A (see [9, Corollary 2.3]). Assume that a ∈ Lp(0, T) for some 1 ≤ p ≤ ∞ with a � 0
and moreover

‖a‖p < K
(
2p∗, T

)
(1.7)

with 1/p + 1/p∗ = 1. Then Condition (H+) holds.

For the case that a ≺ 0, Torres [9] proved the following.
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Theorem B (see [9, Theorem 2.2]). Assume that a ∈ Lp(0, T) for some 1 ≤ p ≤ ∞ with a ≺ 0.
Then Condition (H−) holds.

To study the existence and multiplicity of positive solutions of the related nonlinear
problem

x′′ + a(t)x = g(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T),
(1.8)

it is necessary to find the explicit expression of G(t, s).
Let ϕ be the unique solution of the initial value problem

ϕ′′ + a(t)ϕ = 0, ϕ(0) = 1, ϕ′(0) = 0, (1.9)

and let ψ be the unique solution of the initial value problem

ψ ′′ + a(t)ψ = 0, ψ(0) = 0, ψ ′(0) = 1. (1.10)

Let

D := ϕ(T) + ψ ′(T) − 2. (1.11)

Atici and Guseinov [11] showed that the Green’s function G(t, s) of (1.1), (1.2) can be
explicitly given as

G(t, s) =
ψ(T)
D

ϕ(t)ϕ(s) − ϕ′(T)
D

ψ(t)ψ(s)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ ′(T) − 1
D

ϕ(t)ψ(s) − ϕ(T) − 1
D

ϕ(s)ψ(t), 0 ≤ s ≤ t ≤ T,

ψ ′(T) − 1
D

ϕ(s)ψ(t) − ϕ(T) − 1
D

ϕ(t)ψ(s), 0 ≤ t ≤ s ≤ T.

(1.12)

Torres [9] also studied the Green’s function G(t, s) of (1.1), (1.2). Let u be the unique solution
of the initial value problem

u′′ + a(t)u = 0, u(0) = 0, u′(0) = 1, (1.13)

and let v be the unique solution of the initial value problem

v′′ + a(t)v = 0, v(T) = 0, v′(T) = −1. (1.14)

Let

α :=
1

2 + v′(0) − u′(T)
. (1.15)
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Then the Green’s function K of (1.1), (1.2) given in [9] is in the form

K(t, s) = α[u(t) + v(t)] − 1
v(0)

⎧⎪⎨
⎪⎩
v(t)u(s), 0 ≤ s ≤ t ≤ T,

v(s)u(t), 0 ≤ t ≤ s ≤ T.

(1.16)

However, there is a mistake in (1.16).
It is the purpose of this paper to point out that the Green’s function in (1.16), which

is induced by the two linearly independent solutions u and v of (1.13) and (1.14), should be
corrected to the form

G(t, s) =
α[u(s) + v(s)]

v(0)
[u(t) + v(t)] − 1

v(0)

⎧⎪⎨
⎪⎩
v(t)u(s), 0 ≤ s ≤ t ≤ T,

v(s)u(t), 0 ≤ t ≤ s ≤ T.

(1.17)

This will be done in Section 2. Finally in Section 3, we study the existence of one-sign
solutions of the nonlinear problem

x′′ = f(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(1.18)

The proofs of the main results are based on the properties of G and the Dancer’s global
bifurcation theorem; see [12].

2. Preliminaries

Denote

Λ− := {a ∈ Lp(0, T) : a ≺ 0},

Λ+ :=
{
a ∈ Lp(0, T) : a � 0, ‖a‖p < K

(
2p∗

)
for some 1 ≤ p ≤ ∞

}
.

(2.1)

Recall that u is a unique solution of IVP (1.13) and v is a unique solution of IVP (1.14).

Lemma 2.1. Let a ∈ Lp(0, T). Then

u(T) = v(0). (2.2)

Proof. Since the Wronskian W(u, v)(t) is constant, it follows that

−u(T) =
∣∣∣∣∣
u(T) v(T)

u′(T) v′(T)

∣∣∣∣∣ =
∣∣∣∣∣
u(t) v(t)

u′(t) v′(t)

∣∣∣∣∣ =
∣∣∣∣∣
u(0) v(0)

u′(0) v′(0)

∣∣∣∣∣ = −v(0). (2.3)

The following result follows from the classical theory of Green’s function.
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Lemma 2.2. Let G(t, s) be the Green’s function of (1.1), (1.2). Then

(i) G : [0, T] × [0, T] → R is continuous;

(ii) for a given s ∈ (0, T), G(0, s) = G(T, s);

(iii) for a given s ∈ (0, T), Gt(0, s) = Gt(T, s);

(iv) for a given s ∈ (0, T), G(t, s) as a function of t is a solution of (1.1) in the intervals
[0, s) and (s, T].

Lemma 2.3. Let a ∈ Λ+ ∪ Λ−. Then the Green’s function G(t, s) induced by u and v is explicitly
given by (1.17), that is,

G(t, s) =
u(s) + v(s)

v(0)[2 + v′(0) − u′(T)]
[u(t) + v(t)] − 1

v(0)

⎧⎨
⎩
v(t)u(s), 0 ≤ s ≤ t ≤ T,

v(s)u(t), 0 ≤ t ≤ s ≤ T.
(2.4)

Remark 2.4. Notice that it is not necessary to assume that

v(0)/= 0. (2.5)

In fact, if a ∈ Λ+, then from [13, Remark in Page 3328], we have

λ1(a) ≥
(π
T

)2
(
1 −

‖a‖p
K
(
2p∗

)
)

> 0, (2.6)

where λ1(a) is the first eigenvalue of the antiperiodic boundary value problem

x′′ + (λ + a(t))x = 0, x(0) = −x(T), x′(0) = −x′(T). (2.7)

Now, by the same method to prove [8, Lemma 2.1], we may get that the solution v of the IVP
(1.14) has at most one zero in [0, T]. Since v(T) = 0, we must have that v(0)/= 0.

If a ∈ Λ−, we claim that v(t) > 0 for t ∈ [0, T). Suppose on the contrary that there exists
τ ∈ [0, T) such that

v(τ) = 0, v(t) > 0, for t ∈ (τ, T). (2.8)

Then

v′′(t) = −a(t)v(t) ≥ 0, t ∈ [τ, T), (2.9)

which means that

v(t) ≥ T − t, t ∈ [τ, T). (2.10)

In particular, v(τ) ≥ T − τ > 0, t ∈ [τ, T). This is a contradiction. Therefore, δ = T , and
accordingly, v(0) ≥ 0.
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Proof of Lemma 2.3. In the proof of [9, Proposition 2.0.1], the Green function was assumed to
have the form

K(t, s) = αu(t) + βv(t) − 1
v(0)

⎧⎨
⎩
v(t)u(s), 0 ≤ s ≤ t ≤ T,

v(s)u(t), 0 ≤ t ≤ s ≤ T.
(2.11)

However, for above K(t, s), it is impossible to find constants α and β, such that

Kt(0, s) = Kt(T, s), s ∈ (0, T). (2.12)

So, we have to assume that the Green’s function is of the form

G(t, s) = α(s)u(t) + β(s)v(t) − 1
v(0)

⎧⎨
⎩
v(t)u(s), 0 ≤ s ≤ t ≤ T,

v(s)u(t), 0 ≤ t ≤ s ≤ T.
(2.13)

By Lemma 2.2 (ii), we have that G(0, s) = G(T, s) for s ∈ (0, T). Thus

β(s)v(0) = G(0, s) = G(T, s) = α(s)u(T), s ∈ (0, T), (2.14)

which together with (2.2) imply that

β(s) = α(s), s ∈ (0, T). (2.15)

From (2.13) and (2.15), we have

Gt(t, s) = α(s)
[
u′(t) + v′(t)

] − 1
v(0)

⎧⎨
⎩
v′(t)u(s), 0 ≤ s < t ≤ T,

v(s)u′(t), 0 ≤ t < s ≤ T,
(2.16)

and, for s ∈ (0, T),

Gt(0, s) = α(s)
[
1 + v′(0)

] − v(s)
v(0)

, Gt(T, s) = α(s)
[
u′(T) − 1

]
+
u(s)
v(0)

. (2.17)

Applying this and Lemma 2.2 (iii), it follows that

α(s) =
u(s) + v(s)

[2 + v′(0) − u′(T)]v(0)
. (2.18)

Denote

M := max
0≤t,s≤T

G(t, s), m := min
0≤t,s≤T

G(t, s). (2.19)
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Finally, we state a result concerning the global structure of the set of positive solutions
of parameterized nonlinear operator equations, which is essentially a consequence of Dancer
[12, Theorem 2].

Suppose that E is a real Banach space with norm ‖ · ‖. LetK be a cone in E. A nonlinear
mapping A : [0,∞) × K → E is said to be positive if A([0,∞) × K) ⊆ K. It is said to be K-
completely continuous ifA is continuous andmaps bounded subsets of [0,∞)×K to precompact
subset of E. Finally, a positive linear operator V on E is said to be a linear minorant for A if
A(λ, u) ≥ λV (x) for (λ, u) ∈ [0,∞) ×K. If B is a continuous linear operator on E, denote r(B)
the spectrum radius of B. Define

cK(B) = {λ ∈ [0,∞) : ∃ x ∈ K with ‖x‖ = 1, x = λBx}. (2.20)

Lemma 2.5 (see [14, Lemma 2.1]). Assume that

(i) K has a nonempty interior and E = K −K;

(ii) A : [0,∞) ×K → E is K-completely continuous and positive, A(λ, 0) = 0 for λ ∈ R,
A(0, u) = 0 for u ∈ K, and

A(λ, u) = λBu + F(λ, u), (2.21)

where B : E → E is a strongly positive linear compact operator on E with r(B) > 0, and F :
[0,∞) ×K → E satisfies ‖F(λ, u)‖ = ◦(‖u‖) as ‖u‖ → 0 locally uniformly in λ.

Then there exists an unbounded connected subset C of

DK(A) = {(λ, u) ∈ [0,∞) ×K : u = A(λ, u), u /= 0} ∪
{(

r(B)−1, 0
)}

(2.22)

such that (r(B)−1, 0) ∈ C.
Moreover, if A has a linear minorant V , and there exists a

(
μ, y

) ∈ (0,∞) ×K (2.23)

such that ‖y‖ = 1 and μVy ≥ y, then C can be chosen in

DK(A) ∩ ([0, μ] ×K
)
. (2.24)

3. Main Results

In this section, we consider the existence of positive solutions of nonlinear periodic boundary
value problem

x′′ = f(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T),
(3.1)

where f : [0, 1] × R → R is satisfying Carathéodory conditions.
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3.1. a ∈ Λ+

By Theorem A, a ∈ Λ+ implies G(t, s) > 0 on [0, T] × [0, T], and subsequently M > m > 0. Let
us define

P+ :=
{
x ∈ C[0, T] | x(t) ≥ 0 on [0, T], min

t
x(t) ≥ m

M
‖x‖∞

}
. (3.2)

Lemma 3.1 (see [9, Theorem 3.2]). Let us assume that there exist a ∈ Λ+ and 0 < r < R such that

f(t, x) + a(t)x ≥ 0, ∀x ∈
[
m

M
r,
M

m
R

]
, a.e. t ∈ [0, T]. (3.3)

Then (3.1) has a positive solution provided one of the following conditions holds

(i)

f(t, x) + a(t)x ≥ M

Tm2
x, ∀x ∈

[ m
M

r, r
]
, a.e. t ∈ [0, T],

f(t, x) + a(t)x ≤ 1
TM

x, ∀x ∈
[
R,

M

m
R

]
, a.e. t ∈ [0, T];

(3.4)

(ii)

f(t, x) + a(t)x ≤ 1
TM

x, ∀x ∈
[ m
M

r, r
]
, a.e. t ∈ [0, T],

f(t, x) + a(t)x ≥ M

Tm2
x, ∀x ∈

[
R,

M

m
R

]
, a.e. t ∈ [0, T].

(3.5)

Let

γ∗(t) :=
f(t, (m/M)r) + a(t)(m/M)r

(m/M)r
, Γ∗(t) :=

f(t, (M/m)R) + a(t)(M/m)R
(M/m)R

, (3.6)

f̃(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ∗(t)x, x ≥ M

m
R,

f(t, x) + a(t)x,
m

M
r ≤ x ≤ M

m
R,

γ∗(t)x, 0 ≤ x ≤ m

M
r.

(3.7)

Let

γ(t) := min
{
f(t, s) + a(t)s

s
| s ∈

[mr

M
, r
]}

, Γ(t) := max
{
f(t, s) + a(t)s

s
| s ∈

[
R,

MR

m

]}
,

γ(t) := max
{
f(t, s) + a(t)s

s
| s ∈

[mr

M
, r
]}

, Γ(t) := min
{
f(t, s) + a(t)s

s
| s ∈

[
R,

MR

m

]}
.

(3.8)
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Theorem 3.2. Assume that
(A1) There exist a ∈ Λ+ ∩ C[0, T] and 0 < r < R such that

f(t, x) + a(t)x > 0, ∀x ∈
[
m

M
r,
M

m
R

]
, a.e. t ∈ [0, T]. (3.9)

Then (3.1) has a positive solution provided one of the following conditions holds

(i) μ0(γ) < 1 < μ0(Γ);

(ii) μ0(Γ) < 1 < μ0(γ).

Here μ0(β) denotes the principal eigenvalue of

x′′ + a(t)x = μβ(t)x, t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(P)

Remark 3.3. Let a ∈ Λ+ and β � 0. Then μ0(β) > 0. Moreover, μ0(β) is simple and the
corresponding eigenfunction ψ0 ∈ int P+.

In fact, (3.10) is equivalent to

x(t) = μ

∫T

0
G(t, s)β(s)x(s)ds := μAx(t). (3.10)

Since G > 0 on [0, T] × [0, T], it follows that A(P+) ⊂ int P+. From Krein-Rutman theorem,
see [15, Theorem 19.3], we may get the desired results.

Remark 3.4. Theorem 3.2 is a partial generalization of Lemma 3.1. It is enough to prove that
the condition (i) on f in Theorem 3.2 holds when the condition (i) in Lemma 3.1 holds.

First, we claim that

(i) μ0(M/Tm2) < 1;

(ii) μ0(1/TM) > 1.

To this end, let us denote by λ0 the principal eigenvalue of the linear problem

u′′ + a(t)u = λu, u(0) = u(T), u′(0) = u′(T), (3.11)

and ϕ the corresponding eigenfunction with ϕ ∈ int P+. Then applying the facts that G ≥ m
and G/≡m,

λ0 = μ0

(
M

Tm2

)
· M

Tm2
, (3.12)

∥∥ϕ∥∥∞ ≥ ϕ(t)

= λ0

∫T

0
G(t, s)ϕ(s)ds

> λ0m
m

M
T
∥∥ϕ∥∥∞,

(3.13)
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which together with (3.12), imply that

μ0

(
M

Tm2

)
< 1. (3.14)

By the same method, with obvious changes, we may show that μ0(1/TM) > 1.
Now, we prove μ0(γ) < 1 < μ0(Γ).
Define the operators S1, S2 : C[0, T] → C[0, T] by

(S1u)(t) =
M

Tm2

∫T

0
G(t, s)u(s)ds,

(S2u)(t) =
∫T

0
G(t, s)γ(s)u(s)ds,

(3.15)

respectively.
Since γ(t) ≥ M/Tm2, by [15, Theorem 19.3], we get r(S2) ≥ r(S1), where r(Si), i = 1, 2,

is the spectrum radius of Si. Thus, μ0(γ) = 1/r(S2) ≤ 1/r(S2) = μ0(M/Tm2) < 1.
Similarly, μ0(Γ) ≥ μ0(1/TM) > 1.

Remark 3.5. The conditions μ0(γ) < 1 < μ0(Γ) and μ0(Γ) < 1 < μ0(γ) are optimal.
Let ε, ε1, ε2 be positive constants with ε1 < ε2, and

1
8
+ ε1 ≤ a(t) ≤ 1

8
+ ε2. (3.16)

Let us consider the problem

u′′ + a(t)u = (a(t) + ε)u, u(0) = u(T), u′(0) = u′(T). (3.17)

Obviously, for f(t, s) + a(t)s = (a(t) + ε)s, we have that

γ(t) = Γ(t) = a(t) + ε,

μ0

(
γ
)
= μ0

(
Γ
)
= μ0(a(t) + ε).

(3.18)

For j = 1, 2, the principal eigenvalue μ0(1/8 + εj + ε) of

x′′ +
(
1
8
+ εj

)
x = μ ·

(
1
8
+ εj + ε

)
· x, t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T)

(3.19)
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is

μ0

(
1
8
+ εj + ε

)
=

1 + 8εj
8
(
εj + ε

)
+ 1

. (3.20)

Applying the fact that

μ0

(
1
8
+ ε1 + ε

)
≤ μ0

(
γ
)
= μ0

(
Γ
)
≤ μ0

(
1
8
+ ε2 + ε

)
, (3.21)

though μ0(Γ) is a little bit smaller than 1, the existence of positive solutions of (3.17) will not
be guaranteed in this case.

Proof of Theorem 3.2. We only prove (i). (ii) can be proved by a similar method.
To study the existence of positive solutions of (3.1), let us consider the parameterized

problem

x′′ + a(t)x = μf̃(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(3.22)

Notice that

f̃(t, x) = γ∗(t)x + ξ(t, x), f̃(t, s) = Γ∗(t)s + ζ(t, s), (3.23)

with

lim
x→ 0

ξ(t, x)
x

= 0, lim
s→+∞

ζ(t, s)
s

= 0, a.e. t ∈ [0, T]. (3.24)

Thus, (3.22) can be rewritten as

x′′ + a(t)x = μγ∗(t)x + μξ(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(3.25)

Denote

E =
{
x ∈ C1[0, T] | x(0) = x(T), x′(0) = x′(T)

}
(3.26)

equipped with the norm ‖ · ‖ = max{‖x‖∞, ‖x′‖∞}. Let

Φ+ :=
{
x ∈ C1[0, T] | x(t) > 0 on [0, T], x(0) = x(T), x′(0) = x′(T)

}
. (3.27)
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From Lemma 2.5, there exists a continuum C+ of solutions of (3.25) joining (μ0(γ∗), 0)
to infinity in Φ+. Moreover, C+ \ {(μ0(γ∗), 0)} ⊂ Φ+.

Now, we divide the proof into two steps.

Step 1. We show that C+ joining (μ0(γ∗), 0) to (μ0(Γ∗),∞) in Φ+. So, C+ ∩ ({1} × E)/= ∅, and
accordingly, (3.25) has at least one positive solution u.

Suppose that (ηk, yk) ∈ C+ with

∣∣ηk∣∣ + ‖yk‖ −→ ∞. (3.28)

We firstly show that {ηk} is bounded.
In fact, it follows from the definition of f̃ and Condition (3.9) that

f̃(t, s)
s

≥ e(t), a.e. t ∈ [0, T], s ∈ (0,∞) (3.29)

for some e ∈ L1(0, T) with e(t) > 0 a.e. on [0, T].
We claim that yk has to change its sign in [0, T] if ηk → ∞.
In fact,

y′′
k(t) + a(t)yk = ηk

f̃
(
t, yk

)
yk

yk (3.30)

yields that y′′
k
(t) > 0 as k is large enough. However, this contradicts the boundary condition

y′
k(0) = y′

k(T).
Therefore, {ηk} is bounded.
Now, {(ηk, yk)} (k ∈ N) satisfy

y′′
k + a(t)yk = ηkΓ∗(t)yk + ηkζ

(
t, yk

)
, t ∈ (0, T),

yk(0) = yk(T), y′
k(0) = y′

k(T).
(3.31)

Let

vk :=
yk

‖yk‖ . (3.32)

Then

v′′
k + a(t)vk = ηkΓ∗(t)vk + ηk

ζ
(
t, yk

)
yk

vk, t ∈ (0, T),

vk(0) = vk(T), v′
k(0) = v′

k(T).

(3.33)
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Equation (3.33) is equivalent to

vk(t) = ηk

∫T

0
G(t, s)

(
Γ∗(s)vk(s) +

ζ
(
s, yk(s)

)
yk(s)

vk(s)

)
ds. (3.34)

Set

wk(t) := Γ∗(t)vk(t) +
ζ
(
t, yk(t)

)
yk(t)

vk(t). (3.35)

Since f̃(t, yk(t)) = Γ∗(t)yk(t)+ζ(t, yk(t)), it follows from (3.7) and the fact yk > 0 on [0, T] that

∣∣∣∣∣
ζ
(
t, yk(t)

)
yk(t)

∣∣∣∣∣ ≤ |Γ∗(t)| +
∣∣∣∣∣
f̃
(
t, yk(t)

)
yk(t)

∣∣∣∣∣

≤ |Γ∗(t)| + ∣∣γ(t)∣∣ + |Γ(t)| + |a(t)| +max

{∣∣∣∣∣
f
(
t, yk(t)

)
yk(t)

∣∣∣∣∣ :
m

M
r ≤ yk(t) ≤ M

m
R

}

≤ |Γ∗(t)| + ∣∣γ(t)∣∣ + |Γ(t)| + |a(t)| +max
{∣∣∣∣f(t, τ)τ

∣∣∣∣ : m

M
r ≤ τ ≤ M

m
R

}
,

(3.36)

which implies

∣∣∣∣∣
ζ
(
t, yk(t)

)
yk(t)

∣∣∣∣∣ ≤ σ(t), t ∈ (0, T) (3.37)

for some function σ ∈ L1[0, T], independent of k. Thus, it follows from (3.9) and (3.6) that
{wk(t)}∞k=1 is bounded uniformly in C[0, T]. It is easy to check that {ηk

∫T
0 G(t, s)wk(s)ds} ⊂

C1[0, T]. This together with the fact that C1[0, T] imbeded compactly into C[0, T] implies
that, after taking a subsequence and relabeling if necessary, vk → v∗ in C[0, T] for some
v∗ ∈ C[0, T] and ηk → η∗ for some η∗ ∈ [0,∞), and using Lebesgue dominated convergence
theorem, we get

v∗(t) = η∗
∫T

0
G(t, s)Γ∗(s)v∗(s)ds. (3.38)

This implies that v∗ ∈ W2,1(0, T) and

v∗′′ + a(t)v∗ = η∗Γ∗(t)v∗, t ∈ (0, T),

v∗(0) = v∗(T), v∗′(0) = v∗′(T),
(3.39)
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and subsequently,

η∗ = μ0(Γ∗). (3.40)

Therefore, C+ joins (μ0(γ∗), 0) to (μ0(Γ∗),∞) in Φ+.

Step 2. We show that u is actually a solution of (3.1).
To this end, we only prove that

x′′ + a(t)x = f̃(t, x), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T)
(3.41)

has no positive solution y with ‖y‖∞ < r or ‖y‖∞ > MR/m.
In fact, suppose on the contrary that y is a positive solution of (3.41) with ‖y‖∞ < r.

Then we have from (3.7), (3.8) and the definition of f̃ that

f̃
(
t, y(t)

)
y(t)

≥ γ(t), t ∈ [0, T]. (3.42)

Since

y′′(t) + a(t)y(t) = 1 · f̃
(
t, y(t)

)
y(t)

y(t), y(0) = y(T), y′(0) = y′(T), (3.43)

w′′(t) + a(t)w(t) = μ0

(
γ
)
· γ(t)w(t), w(0) = w(T), w′(0) = w′(T), (3.44)

where w is the corresponding eigenfunction of μ0(γ) with w > 0. Multiplying both sides of
equation in (3.43) by w and multiplying both sides of equation in (3.44) by y, integrating
from 0 to T and subtracting, we get

∫T

0

[
f̃
(
t, y(t)

)
y(t)

− μ0

(
γ
)
· γ(t)

]
y(t)w(t)dt = 0, (3.45)

which together with (3.42) implies that

μ0

(
γ
)
≥ 1. (3.46)

However, this contradicts the assumption that μ0(γ) < 1.
Next, suppose on the contrary that y is a positive solution of (3.41) with ‖y‖∞ >

MR/m. Then we have from (3.7) and (3.8) and the definition of f̃ that

f̃
(
t, y(t)

)
y(t)

≤ Γ(t), t ∈ [0, T]. (3.47)
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Since

y′′(t) + a(t)y(t) = 1 · f̃
(
t, y(t)

)
y(t)

y(t), y(0) = y(T), y′(0) = y′(T), (3.48)

z′′(t) + a(t)z(t) = μ0

(
Γ
)
· Γ(t)z(t), z(0) = z(T), z′(0) = z′(T), (3.49)

where z is the corresponding eigenfunction of μ0(Γ)with z > 0. Multiplying both sides of the
equation in (3.48) by z and multiplying both sides of the equation in (3.49) by y, integrating
from 0 to T and subtracting, we get

∫T

0

[
f̃
(
t, y(t)

)
y(t)

− μ0

(
Γ
)
· Γ(t)

]
y(t)z(t)dt = 0, (3.50)

which together with (3.47) implies that

μ0

(
Γ
)
≤ 1. (3.51)

However, this contradicts the assumption that μ0(Γ) > 1.

Let

b(t) :=
f(t,−(m/M)r) − a(t)(m/M)r

−(m/M)r
, B(t) :=

f(t,−(M/m)R) − a(t)(M/m)R
−(M/m)R

,

f̂(t, x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(t)x, x ≤ −M
m

R,

f(t, x) + a(t)x, −M
m

R ≤ x ≤ − m

M
r,

b(t)x, x ≥ − m

M
r.

(3.52)

Let

b(t) := min
{
f(t, s)+a(t)s

s
| s∈

[
−r,−mr

M

]}
, B(t) := max

{
f(t, s)+a(t)s

s
| s∈

[
−MR

m
,−R

]}
,

b(t) := max
{
f(t, s)+a(t)s

s
| s∈

[
−r,−mr

M

]}
, B(t) := min

{
f(t, s)+a(t)s

s
| s∈

[
−MR

m
,−R

]}
.

(3.53)

Similar to the proof of Theorem 3.2, we may prove the following.
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Theorem 3.6. Assume that
(H1) There exist a ∈ Λ+ ∩ C[0, T] and 0 < r < R such that

f(t, x) + a(t)x < 0, ∀x ∈
[
−M
m

R,− m

M
r

]
, a.e. t ∈ [0, T]. (3.54)

Then (3.1) has a negative solution provided one of the following conditions holds

(i) μ0(b) < 1 < μ0(B);

(ii) μ0(B) < 1 < μ0(b).

3.2. a ∈ Λ−

By Theorem B, a ∈ Λ− implies G(t, s) < 0 on [0, T] × [0, T], and subsequently m < M < 0. Let
us define

P− :=
{
x ∈ C[0, T] | x(t) ≥ 0 on [0, T], min

t
x(t) ≥ M

m
‖x‖∞

}
. (3.55)

Let μ0(β) denote the principal eigenvalue of

x′′ + a(t)x = μβ(t)x, t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(3.56)

Then, it is easy to see from Krein-Rutman theorem that μ0(β) > 0 provided that a ∈ Λ− and
β ≺ 0. Moreover, μ0(β) is simple and the corresponding eigenfunction ψ0 ∈ int P−.

Let

q(t) := min
{
f(t, s) + a(t)s

s
| s ∈

[
Mr

m
, r

]}
, Q(t) := max

{
f(t, s) + a(t)s

s
| s ∈

[
R,

mR

M

]}
,

q(t) := max
{
f(t, s) + a(t)s

s
| s ∈

[
Mr

m
, r

]}
, Q(t) := min

{
f(t, s) + a(t)s

s
| s ∈

[
R,

mR

M

]}
.

(3.57)

Applying the knowledge of the sign of Green’s function when a ∈ Λ− and the similar
argument to prove Theorem 3.2 with obvious changes, we may prove the following.

Theorem 3.7. Let us assume that there exist a ∈ Λ− ∩ C[0, T] and 0 < r < R such that

f(t, x) + a(t)x < 0, ∀x ∈
[
M

m
r,

m

M
R

]
, a.e. t ∈ [0, T]. (3.58)
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Then (3.1) has a negative solution provided one of the following conditions holds

(i) μ0(q) < 1 < μ0(Q);

(ii) μ0(Q) < 1 < μ0(q).

Let

p(t) :=min
{
f(t, s)+a(t)s

s
| s∈

[
−r,−Mr

m

]}
, P(t) :=max

{
f(t, s)+a(t)s

s
| s∈

[
−mR

M
,−R

]}
,

p(t) :=max
{
f(t, s)+a(t)s

s
| s∈

[
−r,−Mr

m

]}
, P(t) :=min

{
f(t, s)+a(t)s

s
| s∈

[
−mR

M
,−R

]}
.

(3.59)

Theorem 3.8. Let us assume that there exist a ∈ Λ− ∩ C[0, T] and 0 < r < R such that

f(t, x) + a(t)x > 0, ∀x ∈
[
− m

M
R,−M

m
r

]
, a.e. t ∈ [0, T]. (3.60)

Then (3.1) has a negative solution provided one of the following conditions holds

(i) μ0(p) < 1 < μ0(P);

(ii) μ0(P) < 1 < μ0(p).

Remark 3.9. Very recently, Zhang [16] studied conditions on a so that the operator Lax =
x′′ + a(t)x admits the maximum principle or the antimaximum principle with respect to the
periodic boundary condition. By exploiting Green’s functions, eigenvalues, rotation numbers,
and their estimates, he gave several optimal conditions. The Green’s function in Zhang [16]
and the one in (2.4) are same. In fact, in the nonresonance case, Problem (1.1), (1.2) has a
unique Green’s function. In the resonance case, Problem (1.1), (1.2) has no Green’s function
any more.

Remark 3.10. It is worth remarking that Cabada and Cid [17], and Cabada et al. [18] have
improved the Lp-criteria in Torres [9] to the case that a may change its sign, and established
the similar results for periodic one-dimensional p-Laplacian problems.
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