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We study the initial-boundary problem of dissipative symmetric regularized long wave equations
with damping term by finite difference method. A linear three-level implicit finite difference
scheme is designed. Existence and uniqueness of numerical solutions are derived. It is proved

that the finite difference scheme is of second-order convergence and unconditionally stable by the
discrete energy method. Numerical simulations verify that the method is accurate and efficient.

1. Introduction

A symmetric version of regularized long wave equation (SRLWE),

Up + Py + Ully — Uyyy =0,
(1.1)
pr+u, =0,

has been proposed to model the propagation of weakly nonlinear ion acoustic and space
charge waves [1]. The sec? solitary wave solutions are

3(v? -1 1,[v*-1
u(x,t) = %seczi UT(x— vt),

3(v*-1) L,1,[v*-1
p(x,t) = TSQC E T(JC - Ut)

(1.2)



2 Boundary Value Problems

The four invariants and some numerical results have been obtained in [1], where v is the
velocity, 2> 1. Obviously, eliminating p from (1.1), we get a class of SRLWE:

1
Uy — Uxx + E <u2)xt — Uxxtt = 0. (13)

Equation (1.3) is explicitly symmetric in the x and ¢ derivatives and is very similar to the
regularized long wave equation that describes shallow water waves and plasma drift waves
[2, 3]. The SRLW equation also arises in many other areas of mathematical physics [4-6].
Numerical investigation indicates that interactions of solitary waves are inelastic [7]; thus,
the solitary wave of the SRLWE is not a solution. Research on the wellposedness for its
solution and numerical methods has aroused more and more interest. In [8], Guo studied the
existence, uniqueness, and regularity of the numerical solutions for the periodic initial value
problem of generalized SRLW by the spectral method. In [9], Zheng et al. presented a Fourier
pseudospectral method with a restraint operator for the SRLWEs and proved its stability
and obtained the optimum error estimates. There are other methods such as pseudospectral
method, finite difference method for the initial-boundary value problem of SRLWEs (see [9-
15]).

In applications, the viscous damping effect is inevitable, and it plays the same
important role as the dispersive effect. Therefore, it is more significant to study the dissipative
symmetric regularized long wave equations with the damping term

Up + Px — Uldyy + Ully — Uxxt = 0, (1.4)

pr+uy+yp=0, (1.5)

where v, y are positive constants, v > 0 is the dissipative coefficient, and y > 0 is the damping
coefficient. Equations (1.4)-(1.5) are a reasonable model to render essential phenomena of
nonlinear ion acoustic wave motion when dissipation is considered. Existence, uniqueness,
and wellposedness of global solutions to (1.4)-(1.5) are presented (see [16-20]). But it
is difficult to find the analytical solution to (1.4)-(1.5), which makes numerical solution
important.

To authors” knowledge, the finite difference method to dissipative SRLWEs with
damping term (1.4)-(1.5) has not been studied till now. In this paper, we propose linear three
level implicit finite difference scheme for (1.4)-(1.5) with

u(x,0) =up(x), p(x,0)=po(x), x€[xr,xr], (1.6)
and the boundary conditions
u(xp, t) =u(xg,t) =0, p(xr,t)=p(xg,t)=0, te][0,T]. (1.7)

We show that this difference scheme is uniquely solvable, convergent, and stable in both
theoretical and numerical senses.

Lemma 1.1. Suppose that uyg € H', py € Ly, the solution of (1.4)—(1.7) satisfies |lu||r, < C, |lux||L, <
C, lpllt, £C, and ||u||L,, < C, where C is a generic positive constant that varies in the context.
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Proof. Let

5 5 2 XR XR ) XR
E(t) = [lullz, + lluxllz, + ||p||L2 = f u’dx +J‘ (uy) dx +f p*dx, telo,T].
XL XL

XL

Multiplying (1.4) by u and integrating over [x, xz], we have

According to

we get

XR
I (uut + UPx — VUUyx + uPu, — uuxxt>dx =0.
XL

XR 1 XR
f uuydx = —i uidx,

XL XL

XR XR XR
f updx = up|if - j pdu = —I uyp dx,
XL L

XL, X,

XR XR XR 2
—f Uty A = —Utty[}F +f udu = f (uy)"dx,

XL XL XL

XR 1
J 1wu,dx = —u3|§f =0,
XL 3 )

XR

XR
— XR
_f Ul dx = —Utty|f + J‘

XL XL

1d (*r ”
Uydu = ¥ T} LL (uy)“dx,

XR

%IXR (uz + ui)dx - ZI

XL XL

XR
Uypdx + ZUJ‘ (uy)?dx =0,
XL

Then, multiplying (1.5) by p and integrating over [x;, xg], we have

By

we get

J‘xR (ppt + puy + Yp2>dx =0.

XL

XR 1 d XR
f pprdx = E%j prdx,

XL

%f pzdx+2’[ uxpdx+2yf p*dx = 0.

X1, X1,

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)



4 Boundary Value Problems

Adding (1.14) to (1.11), we obtain

4 w? + 12 + p?)dx = 20 (1) ?dx -2 2dx <0. (1.15)
at xtp Y| P

XL XL

So E(t) is decreasing with respect to ¢, which implies that E(t) = ||u||%2 + ||ux||%2 + ||p||22 < E(0),
t € [0,T]. Then, it indicates that [[u||r, < C, |[uxllr, < C, and ||p||r, < C. It is followed from
Sobolev inequality that |lu||;, < C. O

2. Finite Difference Scheme and Its Error Estimation

Let h and 7 be the uniform step size in the spatial and temporal direction, respectively. Denote
xj = xr+jh(j =0,12,...,]),t, = nt(n = 0,1,2,...,N), N = [T/7], u;? = u(xj, tn), p]’.‘ =
p(x;j,ta), and Zg ={u=(uj)|ug=u;=0,j=0,1,2,...,J}. We define the difference operators
as follows:

n _ . n n_ ,mn n _ . n n+l _  n-1
(un> _MiaTH <un> _ WA < n> _ M ¥a < n> _n Y
1/ x h 7 1'% h 7 1/% 2h ! 17 2T ’
TSl Vi J-1
—n _ ] ] no.n\ _ n,.n n2 _ n o n n — n
uj - 2 7 <u ;0 ) - hjgoujvjr ”u ” <u U >r ”u ||oo Og}sa])fl u] .

(2.1)

Then, the average three-implicit finite difference scheme for the solution of (1.4)—(1.7) is as
follow:

(); = () o+ (P), o (@) o+ %[“?’ (), + () | =0 (2.2)

(1), () =77 =0 (2.3)
ulo. =uo(x;), ,0? =po(xj), 0<j<], (2.4)
ug=uy=0, pg=p;y=0, 1<n<N. (2.5)

Lemma 2.1. Summation by parts follows [12, 21] that for any two discrete functions u,v € Zj

(@) vi) = ~(u @)z), (o3 () e ) = =((@) o (), )- (2.6)
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Lemma 2.2 (discrete Sobolev’s inequality [12, 21]). There exist two constants Cy and C, such
that

[ ]l, < Call™|| + Colfui]l. (2.7)

Lemma 2.3 (discrete Gronwall inequality [12, 21]). Suppose that w(k), p(k) are nonnegative
functions and p(k) is nondecreasing. If C > 0 and

k-1
w(k) < p(k) + Ct Y w(l). (2.8)
1=0

Then w(k) < p(k)eC™ .

Theorem 2.4. Ifug € H?, py € Ly, then the solution of (2.2)—(2.5) satisfies

lu"| <C, Juil<C, |lp*|<C IW'l,<C (n=12,...,N). (2.9)

Proof. Taking an inner product of (2.2) with 2ﬁ7 (ie., u}‘*l + u;?‘l) and considering the
boundary condition (2.5) and Lemma 2.1, we obtain

5l )2 )

B i ) (2.10)
+{(n) 2wy -o( (@) 2wy + (o) =0,

where P = (1/3)[u] (i} ) + (u}11})]. Since

(7). 2 ) =~(p12(3),.)
((@),.25) = -2I=

n+1 2_
X

n+l n-1

u — ||u

2
| u

2

7

-1
2 1
ut)y =2 n(g" ST E7i4
<P,2u]» > = 3hj=0 [u]. <u] )i + (u] U )f]u]
-1
1L
_ n n+1 n-1 n+l n-1 n n+l n-1 n n+l n-1
- EZO[”J (”JH tU T u1—1> Ui <u1+1 + ”J+1> Uja <”J—1 +”f—1>]
]:
 (un+! +ur_1—1>
j j
143 1 1 1 1
— n n n+ n— n+ n—
= 5.4 O<u] +u]+1><u]+1 +u]+1><u] +u] )
]:
J-1
_l u + y" un+l + un—l un+1 + un—l =0
24 j j-1 j j j-1 1) =
]:

(2.11)
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we obtain

1(u 2)+1<u
2T 2T

Taking an inner product of (2.3) with 2ﬁ;’ (ie, p

n-1
x

n+l 2_
X

n-1

n+1 2_ u

u

2> - <p?’2<ﬁ7>,?> +2olug|* =0, (212)

n+1 n-1 .
4 ol W in
; p; ), we obta

2 2

1 _111? — —
E( o = [ ! > + <<u?>i,2p;’> +oy|lpr| " =0 (2.13)
Adding (2.12) to (2.13), we have
2 2 2 2 2 2
un+1 _ un—l + uz+1 _ uz—l + pn+1 _ Pn—l
) (2.14)
— — —n12 —
:27'[<p]’.‘,2<u;‘>£>— <<u;?)£,2p7>] —dor||uy||” - 4yr (P -
Since
— _ 1 1 2 1 1 2 1 2
(er.2(),) = (o1 (7)), ) < e g ([ + )
. (2.15)
—n\ _ 1 -1 2 1] -1
() 227) = () ooty < e« (o o)
Equation (2.14) can be changed to
un+1 2 _ nun—lnz + un+1 2 _ un—l 2 + pn+1 2 _ Pn—l 2
X X
5 5 5 , s (2.16)
< CT< sl I G e I Pl | P T (e >
Let A" = [l |12 + ]| + [l 12 + [l + lp" M1 + [lp"]|?, and (2.16) is changed to
A" A"l < Cr <A” + AH). (2.17)
If 7 is sufficiently small which satisfies 1 — C7 > 0, then
A" — AL < CTATL (2.18)

Summing up (2.18) from 1 to n, we have

n-1
A< A+ CTY Al (2.19)
1=0
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From Lemma 2.3, we obtain A” < C, which implies that, ||u"| < C, ||u%|| < C, and ||p"|| < C.
By Lemma 2.2, we obtain ||u"||,, < C. O

Theorem 2.5. Assume that u® € H?, p° € H', the solution of difference scheme (2.2)—(2.5) satisfies:

ezl <C lunl<C [l <C |lp"l.<C (m=1,2,...,N). (2.20)

Proof. Differentiating backward (2.2)-(2.5) with respect to x, we obtain

(7)) (). 07y S ), = ) =0 e

(o) o+ (), (7)), =0 (2.22)
(), =wox(x), (#)), = pox(x)), 0<j<], (2.23)
(up), = (“}’)x =0, (pp), = (P}’)x =0, 0<n<N. (2.24)

n+l

1 + 4771 and considering (2.24) and

Computing the inner product of (2.21) with 2u’; (i.e., u
Lemma 2.1, we obtain

+(
2T

2 2

n-1
x

n+1 —Mu

2> (2.25)

+ (Pl 2te) = 0,

27 + (R, 2i") = 0,
where R = (1/3) [(u;‘ (u])z + (u;?ﬁ;‘) <1, It follows from Theorem 2.4 that

< (i=012...)). (2.26)

By the Schwarz inequality and Lemma 2.1, we get

vz = [ (), (). ) )

—

=312 (@), + (o) @) (2.27)

Y (CHRRICHN

|2

<c(flzl? + )
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Noting that
_ _ - 1 2 2
<PZZ,;,2uZ>=—<2u2f,p§?>=—<p§Z,uZ§1+uZ£>SIIPZII2+§( wed ||+ | )
(2.28)
(i, 2001) = 2|,
it follows from (2.25) that
2 2 2
wt = e |
5 ) 5 (2.29)
<sorft s o (o fu o ot st o),

Computing the inner product of (2.22) with 2p” (i.e., p*! + p?™!) and considering (2.24) and
Lemma 2.1, we obtain

1 n+1 2 n—1 2 n —=n —n |2
E Px —||Px +<ux3?’px>+2Y”px” =0. (230)
Since
n —n n n+1 n-1 n 2 1 n+1 2 n-1 2
<ux@2f’x>=<ux,wpx + P >Slluxx|| 5 U+ ]lPE , (2.31)
then (2.30) is changed to
_ —nn2 2 112
ot = e < vl « co (ol + x|+ o). e
Adding (2.29) to (2.32), we have
2 2 2 2 2 2
= ot | et - st | |- e
—n 2 —np2
< —dor|[u || - dy||P%l
2 2 2 2 2 2
e I e s e e i PR i
2 2 2 2 2 2
e I s R e e e e e I e o )

(2.33)

Leting B™ = ||t 1|2 + [|u2||? + |22 + [ 1 + [|p )12 + || 2%, we obtain B® — B! < Ct(B" +
B" ™). Choosing suitable 7 which is small enough to satisfy 1 - Ct > 0, we get

B"-B"! < CrB". (2.34)
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Summing up (2.34) from 1 to n, we have

n-1
B"<B’+Cr) B (2.35)
1=0

By Lemma 2.3, we get B” < C, which implies that ||p}|| < C, |u% | < C. It follows from
Theorem 2.4 and Lemma 2.2 that ||u}| < C, ||p"]|, < C. O

3. Solvability
Theorem 3.1. The solution u™ of (2.2)—(2.5) is unique.

Proof. Using the mathematical induction, clearly, u°, p° are uniquely determined by initial
conditions (2.4). then select appropriate second-order methods (such as the C-N Schemes)
and calculate u! and p! (i.e. u®, p° and u!, p' are uniquely determined). Assume that
u’,ul,...,u"and p° p!,..., p" are the only solution, now consider ™! and p™*! in (2.2) and

(2.3):

s LR R
p;’l+1 ;p;ﬁl (3.2)

Taking an inner product of (3.1) with ™!, we have

1 n+1 2 1 n+1 2 v n+1 1 g n n+1 n, n+l n+l _
o + E| uy + 5 |4 + 6h,zo[u]< ) <u]u] >£]u]. =0. (3.3)
Since
1 = 1 1 1
n n+ n, n+ n+
Ehjzo [u] <u] >3? * <u1 u; >g]u1
1 G 1 1 1 1 1
n( .  n+ n+ n+ u ot n+
= 12 [u]‘ (uj+1 - uj—l) + (u]+1u]+l Ui Uj_ 1)]11] (3.4)
j=0
_ 1 e n, n+l n+1 n+l, n+l 1 = n n+1 n+1 n, n+l n+l _0
T 124 0[”1”1 Ut + Ui U ”J+1] _E%[ui— Uiy U U ] =Y
j= =
then it holds
1 n+1 2 1 v n+1 2
o (5245 =0. 3.5
2T| 2r T2 )% (3:5)
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Taking an inner product of (3.2) with p"*! and adding to (3.5), we have
REDITYREN)
2r T 2) 1" 2r 2

which implies that (3.1)-(3.2) have only zero solution. So the solution u;”l and p;.‘” of (2.2)-

(2.5) is unique. O

1u
2T

n+l n+1 2

X

n+l

p =0, (3.6)

4. Convergence and Stability

Let v(x,t) and @(x,t) be the solution of problem (1.4)—-(1.7); that is, v? = u(xj,ty), @7 =
p(x;j,tn), then the truncation of the difference scheme (2.2)-(2.5) is

r}‘ = <v}1)?— <U}1>x§?+ <@7>2 - v<5}’)xE + %[v]” (5?)32 + (v?i;l)f], (4.1)

s1=(07),+ (v)), +19;- (42)

Making use of Taylor expansion, it holds [r| +[s7| = O(t* + h?) if h,T — 0.

Theorem 4.1. Assume that ug € H', py € Ly, then the solution u™ and p" in the senses of norms
I lleo and || - || 2, respectively, to the difference scheme (2.2)—(2.5) converges to the solution of problem
(1.4)—(1.7) and the order of convergence is O(t? + h?).

Proof. Subtracting (2.2) from (4.1) subtracting (2.3) from (4.2), and letting e? = v]’.‘ - u]’.‘, 11]7.‘ =
07 - p, we have

r]'-’ - <e?>?_ (e;l>x§f+ <n?>i_v<z}1>x§+Q/ (4.3)
st = (), + (¢) .+ 77, (4.4)

where
Q=3 [1@), - @), ]+ 3[(9), - (wm) ] 43

Computing the inner product of (4.3) with 2e", we get

n-1 2

n+1 2
— ex

€x

arl(28)) - () 287 - (0,287

"= ~sor ez

2
|+

- |le
(4.6)
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According to

—n\ _ 2 = nf=n nf=n —n 2 e n—n n—n —
)= 2 e @), @) - S5, - () )
2 12 =\ Ton L 20 e nen
- B8 () s Jr - 2 - ),
J-1 J-1
= —%h}zo [v]” (2’1); + e;‘ (ﬂ?)f]é;‘ + %h}zo [e] v;‘ + u;’E}’] (e?)x

it follow from Lemma 1.1, Theorems 2.4, and 2.5 that

<¢ |g|<c |(®).

<C,

n
i

—-n
Uj

n
Uuj

<C (j=0,1,2,...,7).

By the Schwarz inequality, we obtain

2 S ol 2. _ _
—-(Q,2e") < 5Cth< <e;’>£ + |e;‘|> ey +§Chzo< er| + e} ) (e?)f
= j=
<c(lI17 + e + 12" 1%
§C< e " e + [l || + et + [ler 2).
Since
2 2
<r7,257> = <r]?1,e}“1+e]’."1>§ ||r”||2+%( e+ [le™! >,
n —n n =n n||2 1 n+1 2 n-1 2
_<<ﬂf>2’28f>: <ﬂj'2<€j>£> <lln"ll”+ 2 [1I% Ml !
it follows from (4.9)—(4.10) and (4.6) that
en+1 2_ en—l 2+ en+1 2_ en—l 2
X X
527||r"||+c7< e pen? + et |+ flen || + [lent 2+||11||2>.

11

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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Computing the inner product of (4.4) with 27", we obtain

2 2
1 -1 — — —n)|2
Vian IVl = 27'<s]7-‘,211;’> - 2T<<€?>£,2Tl;~l> =2y||7"|
(4.12)
n+1 2 n-1 2 ny2 nvA
<Cr(|n 1" llexll” ) +27([s™]I
Adding (4.12) to (4.11), we have
2 2 2 2 2 2
en+1 _ en—l + e;+1 _ 62—1 + Tln+1 B 11"_1
2 2 2
<2rf P o 2els P+ O et [ e et e (413)
2 2 2
+ e+ e+ Al I ]
Leting
D" = ||e"|? et ||? ny2 ne1||? n||2 el ||?
= |le"||” + ||e +le||” + ||et + ||| + ||m , (4.14)
we get
D" - D" < orr" | + 275" + Cr (D™ + D"). (4.15)
If 7 is sufficiently small which satisfies 1 — Ct > 0, then
D" - D" < CrD"" + Cr||r"||* + Cr||s"||*. (4.16)
Summing up (4.16) from 1 to n, we have
n 2 n 2 n-1
p <D’ +Cry[|F| + ey |||+ cr XD (4.17)
1=1 1=1 1=0

Select appropriate second-order methods (such as the C-N Schemes), and calculate u! and
pt, which satisfies

D° = o(T2 + h2>2. (4.18)
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Noticing that

n 2 2 2
TZ”rl” < nT max rl” ST-O<7'2+h2> ,

4 1<%
) 2 (4.19)
T;”sl”Z < n7max s1||2 <1-0(r*+ 1),
we then have
D" < o(T2 + h2)2 + CTTZ_:DZ. (4.20)
By Lemma 2.3, we get
D" < O<72 + h2>2. (4.21)
This yields
lel <o(z2+12), el <o(+r), gl <0(7 +#?). (4.22)
By Lemma 2.2, we have
le”l, < O(r2 + 2). (4.23)
0

Similarly to Theorem 4.1, we can prove the result as follows.

Theorem 4.2. Under the conditions of Theorem 4.1, the solution u™ and p™ of (2.2)—(2.5) is stable in
the senses of norm || - ||, and || - |2, respectively.

5. Numerical Simulations

Since the three-implicit finite difference scheme can not start by itself, we need to select other
two-level schemes (such as the C-N Scheme) to get u!, p!. Then, reusing initial value u°,
p°, we can work out 12, p?,u3, p%, .. .. Iterative numerical calculation is not required, for this
scheme is linear, so it saves computing time.

When t = 0, the damping does not have an effect and the dissipative will not appear.

So the initial conditions of (1.4)—(1.7) are same as those of (1.1):

up(x) = gsecz?Sx, po(x) = gseczﬁx, (v=1.5). (5.1)
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Table 1: The error ratios in the sense of I, at various time steps.

T=h=0.1 T=h=005 T =h=0.025

t=02 5.783531e - 4 1.366490e - 4 3.178799%e - 5

t=04 9.505742e - 4 2.237941e - 4 5.198658e - 5

H t=0.6 1.159542¢ - 3 2.724234e - 4 6.320922e - 5
t=0.8 1.246682¢ - 3 2.925785e - 4 6.789465e - 5

t=1.0 1.248960e - 3 2.936257e — 4 6.817804e — 5

t=02 1.292902¢ - 3 3.176066e — 4 7.553391e - 5

t=04 2.182523e - 3 5.367686e — 4 1.277456e — 4

P t=0.6 2.182523e - 3 6.760967e — 4 1.610159%¢ - 4
t=0.8 3.046673e - 3 7.521463e - 4 1.792741e - 4

t=1.0 3.154536e - 3 7.796078e — 4 1.859421e - 4

2.5 T T
2+ .
15+ b
1k i
0.5 ]
0 i .
-20 -15  -10 -5 0 5 10 15 20
— t=0
-- t=05

- t=1

Figure 1: When 7 = h = 0.05, the wave graph of u at various times.

Let x; = =20, xg = 20, T = 1.0, and v = y = 1. Since we do not know the exact solution of
(1.4)-(1.5), an error estimates method in [21] is used: a comparison between the numerical
solutions on a coarse mesh and those on a refine mesh is made. We consider the solution on
mesh 7 = h = 1/160 as the reference solution. In Table 1, we give the ratios in the sense of [,
at various time steps.

When 7 = h = 0.05, a wave figure comparison of u and p at various time steps is as in
Figures 1 and 2.

From Table 1, it is easy to find that the difference scheme in this paper is second-order
convergent. Figures 1 and 2 show that the height of wave crest is more and more low with
time elapsing due to the effect of damping and dissipativeness . It simulates that the continue
energy E(t) of problem (1.4)—(1.7) in Lemma 1.1 is digressive. Numerical experiments show
that the finite difference scheme is efficient.
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1.8 T T T T T T T
1.6
14t
12

1t
08
06

2
-20 -15 -10 -5 0 5 10 15 20

— =0
- t=05
- =1

Figure 2: When 7 = h = 0.05, the wave graph of p at various times.
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