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We consider the Cauchy problem for nonstationary 1D flow of a compressible viscous and
heat-conducting micropolar fluid, assuming that it is in the thermodynamical sense perfect and
polytropic. This problem has a unique generalized solution on Rx]0, T'[ for each T > 0. Supposing
that the initial functions are small perturbations of the constants we derive a priori estimates for
the solution independent of T, which we use in proving of the stabilization of the solution.

1. Introduction

In this paper we consider the Cauchy problem for nonstationary 1D flow of a compressible
viscous and heat-conducting micropolar fluid. It is assumed that the fluid is thermody-
namically perfect and polytropic. The same model has been considered in [1, 2], where
the global-in-time existence and uniqueness for the generalized solution of the problem on
Rx]0,T[, T > 0, are proved. Using the results from [1, 3] we can also easily conclude that the
mass density and temperature are strictly positive.

Stabilization of the solution of the Cauchy problem for the classical fluid (where
microrotation is equal to zero) has been considered in [4, 5]. In [4] was analyzed the Holder
continuous solution. In [5] is considered the special case of our problem. We use here some
ideas of Kanel’ [4] and the results from [1, 5] as well.

Assuming that the initial functions are small perturbations of the constants, we first
derive a priori estimates for the solution independent of T. In the second part of the work we
analyze the behavior of the solution as T — oo. In the last part we prove that the solution of
our problem converges uniformly on R to a stationary one.
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The case of nonhomogeneous boundary conditions for velocity and microrotation
which is called in gas dynamics “problem on piston” is considered in [6].

2. Statement of the Problem and the Main Result

Let p, v, w, and 0 denote, respectively, the mass density, velocity, microrotation velocity, and
temperature of the fluid in the Lagrangean description. The problem which we consider has
the formulation as follows [1]:

% +ng_z _0, (2.1)
00 (00 D) 22

in R x R*, where K, A, and D are positive constants. Equations (2.1)—(2.4) are, respectively,
local forms of the conservation laws for the mass, momentum, momentum moment, and
energy. We take the following nonhomogeneous initial conditions:

p(x/ 0) = PO(x)/

v(x,0) = vo(x),

(2.5)
w(x,0) = wo(x),
0(x,0) = 6o(x)

for x € R, where py, vy, wy, and 6y are given functions. We assume that there exist m, M € R,
such that

m<po(x) <M, m<O(x) <M, xeR (2.6)

In the previous papers [1, 2] we proved that for

Po — 1/ Do, Wo, 60 -le Hl(R) (27)

the problem (2.1)—(2.5) has, for each T € R*, a unique generalized solution:

(x,t) — (p,v,w,0)(x,t) (x,t) e[I=Rx]0,T[, (2.8)
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with the following properties:

p-lel® (o,T; Hl(R)> n H(1T),

(2.9)
v,w,0-1¢€L® (0, T; Hl(R)) N H(IT) N L2 (0, T; Hz(R)>.
Using the results from [1, 3] we can easily conclude that
0,p>0 inIL (2.10)
We denote by B¥(R), k € Ny, the Banach space

B*(R) = {u € CKR) : | l‘im [D"u(x)|=0,0<n< k}, (2.11)

where D" is nth derivative; the norm is defined by
il gy = sup{supm"u(xn}. (212)

n<k | xeR

From Sobolev’s embedding theorem [7, Chapter IV] and the theory of vector-valued
distributions [8, pages 467-480] one can conclude that from (2.9) one has

p-lel® (o,T; BO(R)) n c([o, T];LZ(R)>, (2.13)
v,w,0-1¢€L? <0, T; Bl(R)> N c<[o, TI; Hl(R)> nL® (o, T; BO(R)>, (2.14)

and hence
v,w,0-1 ec([o,T],-BO(R)), p € L*(IT). (2.15)

From (2.7) and (2.6) it is easy to see that there exist the constants Eq, E, E3, M1 € R*, M; > 1,
such that

lf dx+—f wgdx+Kf <——ln——1>dx+fR(90—ln90—1)dx=E1, (2.16)

2
1 ”
5 . vl + Zwo +0; )dx = E, (2.17)
1 f lngdx + f v, In lalx < Ej, (2.18)
2 Jr pj R Po

|x|<o0
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As in [5], we can find out the real numbers 7 and 77, 7 < 0 < 7, such that

0 7
el—1-nd :I el—1-ndn=Es, 2.20
L\/ ndn 0\/ ndn = Es (2.20)

where

E1E4\'/? E, K
= = = = —_— 2.21
Es 2< I ) , E4 2yE1<1+M1+E1>, U max{zD,l}. ( )

Using 77 and 7] we construct the quantities

u=exp, u=expi. (2.22)

The aim of this work is to prove the following theorem.

Theorem 2.1. Suppose that the initial functions satisfy (2.6), (2.7), and the following conditions:

2
E f o2dx < ( Z Z) (2.23)
R
72 D u :
E1A wo dx < o5 (2.24)

E{K*M? <E 3M1>
D u 2

==

> (8+9M;) +2KM;E4 +

+E1M1 < 3AE1<u+ >)+E2}
D

i (2. (Ba) ([ v ([l veriomaas) |

(2.25)

2F; {48E§M1E1 <

then, when t — oo,

plx,t) —1, v(x,t) — 0, w(x,t) — 0, O(x,t) — 1, (2.26)

uniformly with respect to all x € R.

Remark 2.2. Conditions (2.23)—(2.25) mean that the constants E;, E;, E5, and M; are suffi-
ciently small. In other words the initial functions po, v9, wy, and 8y are small perturbations of
the constants.
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In the proof of Theorem 2.1, we apply some ideas of [4] and obtain the similar results
as in [5] where a stabilisation of the generalized solution was proved for the classical model
(where w = 0).

3. A Priori Estimates for p, v, w, and 0

Considering stabilization problem, one has to prove some a priori estimates for the solution
independent of the time variable T, which is the main difficulty. When we derive these
estimates we use some ideas from [4, 5]. First we construct the energy equation for the
solution of problem (2.1)-(2.4) under the conditions indicated above and we estimate the
function 1/p.

Lemma 3.1. For each t > 0 it holds that

RGeS JGm51)
= dx + — dx+ | (6-Inf-1)dx+ K —=In—--1)dx
2 Jr 2A R R\P P

t 2 2 2 2
P(2) o(W) el (2) _
+J‘0J‘R<6<6x) +9<ax +p9+D62 e dxdr = Eq,

where E is defined by (2.16).

(3.1)

Proof. Multiplying (2.1), (2.2), (2.3), and (2.4), respectively, by Kp~}(1-p™),v, Al p~lw, and
p~1(1 - 67'), integrating by parts over R and over ]0,t[, and taking into account (2.13) and
(2.14), after addition of the obtained equations we easily get equality (3.1) independently of
t. O

If we multiply (2.2) by (0/0x)In(1/p), integrate it over R and ]0, [, and use some
equalities and inequalities which hold by (2.1) and (2.13)-(2.15) together with Young’s
inequality we get, as in [5], the following formula:

GG w5 Lo (52G)) e
B T T s DI JRES P

1 1 ,
+§f ngod

for each t > 0. Using (3.1), (2.16), (2.18), and (2.21) we get easily

GG e S GO worsro) e
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where

é(t) = sup O(x,7), K; <§(t)> =2uE; (1 + é(t) + E) (3.4)

(x,7)eRx]0,t] Eq

As in [5], we introduce the increasing function

W) = f: Vet -1 gde (35)

that satisfies the following inequality:

(D)= (v me) (A ) e, o

where

K, (é(t)) =2F, (2?" (1 +0(t) + %))1/2. (3.7)

We can easily conclude that there exist the quantities 1, (5(1‘)) <0and 7, (é(t)) > (, such that

0 7,0()) _
B \/eﬂ—l—ndnzf \/ehl-1-ndn=Ky(0(t)). (3.8)
Jql(e(t)) 0 ( )

Comparing (3.8) and (3.6) we obtain, as in [5, Lemma 3.2], the following result.

Lemma 3.2. For each t > O there exist the strictly positive quantities u, = exp 1, 6(t)) and u, =
exp 77, (0(t)) such that

u, <pt(x,7) <, (x,7) €Rx]O, ¢ (3.9)

Now we find out some estimates for the derivatives of the functions v, w, and 6.
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Lemma 3.3. Foreach t > 0 it holds that
() sy
2 Jr\ \Ox A\ 0x
6ﬁ1/2 2 t av
(5ir) (UL (5
Du, 0 r \Ox

dx

)
) (i) [ (22) Yo
)

. (3.10)
+2<%> .[0 <IR (?3_(;] ’ <K4 9(7‘) (g—‘:j)zdx>dr
+ %JZI p<2192> dxdT<K5< (t)),
where
_ Dzl 2
K3<9(t)> = <W> , (3.11)
1
_ D 2
Ki(B() = <m> , (3.12)
1<5<6(t)) 481<2( (t))@(t)E1<u >2<8+9§(t)) +2KO(H K, <§(t))
=1
(3.13)

=2
E1K29 (t) u1 39(t) _2 3AE1 ﬁl 2
+ T El +E19(t) 1 D E_l + Uy +E2.

Proof. Multiplying (2.2), (2.3), and (2.4), respectively, by —0%v/0x?, —A~ p™ (8°w/dx?), and
—p~1(8%0/0x?), integrating over Rx]0, t[, and using the following equality:

6082 1 ov
S 3.14
ff ot ax2 2fR<ax> dacly (3.14)

that is satisfied for the functions 0 and w as well, after addition of the obtained equalities we

LY A Y o B

- <ax2>dxdT+D” ( >dm
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L[ 0pov v 00 62 op &*v
_fof 8x6xax2d xdr KI f Pox ox2 74 KJ‘ ,[ eaxaxz

P( 0p dw Pw [ wdw ov 0%0
—JOI axaxaxzd xdr f 2D xzdxdT+KfJ ana Sdxdr

ff ( ) a29dxdT JI < > azedxdT J‘L pza:zdxdr

0p 80 6%0 |
” % ox 2 X AT

(3.15)

Using (3.3), (3.9), the inequality

(@) (@) e

that holds for the functions 00/0x, ow/0x, v, and w as well, and applying Young's inequality

with a sufficiently small parameter on the right-hand side of (3.15), we find, similarly as in
[5], the following estimates:

b) 2
0P dT‘

T, (22

ﬂ“f(f L)) (1. (&w) ([(32) o) o

RS

() e o @) B (5 e
() << Yoo [ f,6(5) ane

(3.17)
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<K” ( >dm+ ” < >dm (3.18)

O [ R () awar s ] () acor
\KILI@S—Z%M}

cxe [ 2 (Y avar e L[ [ (22 axar 619

) e o(55) o

6,0 ow Fw

dT'

e, o(32) o

(@) (o) (L) )
SRR

35y oo (PEDE [ (5

il <axz>dm+z<w<1< —1>9<f>H (3 aner

(3.20)

; 2
< f —dx dr + - f f dxdr (3.21)
6x2
o= (T WP 1 Pw\’
<ui0(t) fo JR p_de ar + 1 -[0 IR P <w> dx dr,
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ov 020
‘ JI Gaxa 2dxdT

55 [ n () a2 [ (52 e
O [ S aeer B o (58)
JRCOE T
< [ () a2 [ (5 e
Gy o) (52 o) a2 f (3 s
(50 ) LGy or) e f (5 o
L5 e

(5 i
o [ o (3) anars 2 f (52 e
o) (o5 ) a2 f ()
() [ (], (G2 o) are b f ()
IR

(3.23)

(3.24)
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< %J‘;J‘R gdxdr+%f;IRp<gi§> dxdrt
< 6A1E31ﬂ§’ ;(J; wzdx>1/2 <IRP<2—‘;)) >1/2d7+ —J f <629> dxdrt
_6AElﬂ§'<ZS1)J' ,[R < e ule(t)ff ( )d dT>

’[ j <6x2> dxdr,

(3.25)
o[ ], ke
szP( )( )ddT"L_J‘I < )dxdq-
([0 w) (1,2 o0) [ ()
’[ I < > dxdr
(RO 8 1 (30 D[ (22
(3.26)

Inserting (3.17)-(3.26) into (3.15) and using estimates (3.1), (3.3), and (2.17) we obtain
LG G G et (5 e
f J <6x2> dxdr + —f f <gj§> dxdr
<Ks(0n) + <6gi:>2£ <f <gz> dx>3d7 +2<35‘le>

[(].(2)w) or
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where K5(0(t)) is defined by (3.10). We also use the following inequality:

e (o) ([ () )

(3.28)
5 1/2
< (2Em;)"? f ¥o dx
S 1U1 R P ox2
that is satisfied for the function 0w /0x as well. Therefore we have
2 2
0%*v — ov
—_— >
IRp<ax2> dx > (2E1uy) (IR <ax> dx> ,
(3.29)

[ o(29) ez earar ([ (20)ar).

Inserting (3.29) into (3.27) we obtain
1 0v\? 1 /dw\? [030\’ 020
() A () ) BT o (22
(Y (Y ( (25 Y ()
Du, o \Jr \ Ox 12ﬁ1A1/2E}/2 < \ ox
6_1/2 t LAY ’ Du, ? v\ 2 _
— _ =1 _ ov <
i < Du, > J‘o <IR <ax> dx 24&11::%/2 J‘R <ax) dx )dt < K5<6(t)>,

(3.30)
and (3.10) is satisfied. O

In the continuation we use the above results and the conditions of Theorem 2.1.
Similarly as in [4, 5], we derive the estimates for the solution (p,v,w, ) of problem (2.1)-
(2.7), defined by (2.8)—(2.10) in the domain IT = Rx]0, T'[, for arbitrary T > 0.

Taking into account assumption (2.19) and the fact that 0 € C (IT) (see (2.15)) we have
the following alternatives: either

sup O(x,t) = 0(T) < My, (3.31)

(x,t)ell
or there exists t1, 0 < t; < T, such that

0ty <M; for0<t<ty,  6(t)=M,, (3.32)
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Now we assume that (3.32) is satisfied and we will show later that because of the choice
Eq, E», E3, and M; (the conditions of Theorem 2.1), the property (3.32) is impossible.

Because K>(0(t)), defined by (3.7), increases with increasing 0(t), we can easily
conclude that

K, (é(t)) <Ky(M;) forO<t<t, (3.33)
and K,(M;) = Es. Therefore, comparing (2.20) and (3.8), we obtain

u<u (8), a>m(0), (3.34)

where u, u, and u, (O(1)), u1(6(t)) are defined by (2.22) and Lemma 3.2. It is important to
point out that the quantities K3 () and K4(6(t)), defined by (3.11)-(3.12), decrease with
increasing 0(t) and for 6(t;) = M; they become

2 2
Du Du

Ki(My) = ——— KiM)=( — ) . 3.35

3(M) (ME%M), +(M) <m Al/ZE}ﬂ) (3.35)

Now, using these facts we will obtain the estimates for [ (0w/ 0x)’dx and
g0/ dx)*dx on [0, 1]. Taking into account the assumptions (2.23) and (2.24) of Theorem 2.1
and the following inclusion (see (2.14)):

0v Ow

o 3 € c([o, T] ;LZ(R)>, (3.36)

we have again the following two alternatives: either

IR (g_z>2(x, t)dx < Kz(My), J‘R <g—(;)>2(x, dx < Ky(M;) for t € [0,t], (3.37)

or there exists f,, 0 < t, < t1, such that 0cww/0x and 0v/0x (or conversely) have the following
properties:

2
f (%‘;’) (x,H)dx < Ko(My) for 0<t<b, (3.38)
R
dw\?
a (x, tz)dx = K4(M1) for ) <ty, (339)

2
f (2—2) (x,)dx < K3(M;) for0<t<t. (3.40)
R
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We assume that (3.38)—(3.40) are satisfied. Then we have
0(t) < My, Kis(M;) <Ky <§(f)>, K3(My) < Kj <§(t)>
for t € [0, t,]. Using (3.41) from (3.10), for t = t,, we obtain

I (2—?(’)2@, Hdx <24Ks(8(k)), 0<t<tb.
R

Since K5 (é(t)), defined by (3.13), increases with the increase of 5(t), it holds that
Ks (5(t)> < Ks(My), tel0,b].
Using condition (2.25) we get
2AK; (é(t)) < Ky(My), telo,t]
and conclude that

—[R <?5_(;}>2(x’ ty)dx < Ka(My).

This inequality contradicts (3.39). Consequently, the only case possible is when

tr =1y,

and then for 0w/ 0x (3.37) is satisfied.

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

If in (3.38)—(3.40) the functions Ow/0x and O0v/O0x exchange positions, using
assumption (2.25), in the same way as above we obtain that the function 0v/0x satisfies

the inequality

ov

IR <a_x>2(xrt)dx < Kz(My), tel0,t].

With the help of (3.37) from (3.10) we can easily conclude that

AN
a (x,t)dx<2K5(M1) for0<t§t1.
R

Now, as in [5], we introduce the function ¥ by

0(x,t)

Y(O(x,t)) = Vs—1-Insds.
1

(3.47)

(3.48)

(3.49)
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Taking into account that from (2.14) follows that 6(x,t) — 1as |x| — oo, we have
YO (x,t)) — 0 as |x| — oo.

Consequently,

@ (0(x 1) < |¢(0(x,1))]

0(x,t) d
L £tp(s)ds

) \/8(x,t) ~1-In6(x, 1)

< (IR(G(x, t)-1-In 9(x,1?))dx>1/2 (IR (%)z(x, t)dx>

Using (3.32), (3.48), and (3.1) from (3.51) we get

00(x, t)
ox

dx‘

1/2

15, 9001 = (B00) = (M) < GRS(ME

or

M
Vs—-1-Insds - (2Ks(M;)E;)? < 0.
1

15

(3.50)

(3.51)

(3.52)

(3.53)

Since this inequality contradicts (2.25), it remains to assume that t; = T. Hence we have the

following lemma.

Lemma 3.4. Foreach T > 0 it holds that

e(xr t) < Ml/ (xl t) € H/

2
(x,t)dx§K4(M1), OStST,

Ji(
J(

'[ <89> (x,£)dx <2Ks(M;), 0<t<T.
r \Ox

%’I%’ %’I%’

(x,t)deK3(M1), OStST,

)
y

Proof. These conclusions follow from (3.32), (3.37), and (3.48) directly.

(3.54)

(3.55)

(3.56)

(3.57)
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Lemma 3.5. It holds that

O<u< <u, (x,t)ell, 3.58
us oD (x,t) (3.58)
sup |w(x, t)] < (BAE1Ky(My))"4, (3.59)
(x,t)ell
sup [o(x, )| < (8E1K3(My))'*, (3.60)
(x,t)ell
O(x,t) >h>0, (x,t) €Tl (3.61)

where u and u are defined by (2.20)—(2.22) and a constant h depends only on the data of problem
(2.1)-(2.5).

Proof. Because the quantity gl(é(t)) in Lemma 3.2 decreases with increasing 0(t) while

U (é(t)) increases, it follows, in the same way as in [5], from (3.9) and (3.54) that (3.58) is
satisfied. Using the inequalities

x 1/2 2 1/2
V% = 2f va—vdx < 2<I vzdx> f <a_v> dx ,

o OX R r \Ox

x 1/2 2 1/2
w? = 2f wa—wdx < 2<I wzdx> <I <6_w> dx>

e Ox R r \ Ox

(3.62)

and estimations (3.1), (3.55), and (3.56) we get immediately (3.59) and (3.60). From (3.50),
(3.53), (3.56), and (3.1) we have, as in [5], for O(x, ) < 1 that

1 1
J Vs—1-1Insds < 2Ks(M7)E;)"? < f Vs—-1-Insds (3.63)
0(x,t) 0

holds because of (2.25). Hence we conclude that there exists the constant & > 0 such that
O(x,t) > h. O
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Remark 3.6. Using the properties of the functions u; = exp ql(é(t)) and u; = exp1] O())
defined in Lemma 3.2, from (3.55)-(3.56) and (3.59)-(3.60) we get the following estimates:

2
dw\? D
_ < - _
JR <6x> dx < <12A1/zE}/2> p{-2UH).
2
av>2 < D >
— )dx< | —— ) exp{-2A(1)},
IR <8x 24E}"*

(3.64)
p>\"* 1
sop ool () e}
p>\"* 1
S o(x,t) < | = ex
oo feted) < 2> w2 )
where A(t) = 77,(6(t)) - 1, 6(t)) > 0.
Lemma 3.7. Foreach T > 0 it holds that
T 2
j j <g—z> dxdr < K, (3.65)
0
T
J’ j (%) dxdr < Ky, (3.66)
0
T 2
('] (2 axar<x, 67
f I —dxdT<K9, (3.68)
R
T
J‘ f <g—5> dxdTSKlo, (369)
0JR
op\2
’[ (a ) dx < Ky, te [O,T], (370)
f I <ax2> d.X'dT<K12, (371)
f J < ax2> dxdr < Ky, (3.72)

f f (ax2> dx dr < Kus, (3.73)

where the constants K¢, K7, ..., Ki4 € R* are independent of T.
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Proof. Taking into account (3.58), (3.61), and (3.54) from (3.1),(3.3), (3.10), and (3.27) we get

all above estimates. O

4, Proof of Theorem 2.1

In the following we use the results of Section 3. The conclusions of Theorem 2.1 are immediate
consequences of the following lemmas.

Lemma 4.1. It holds that

(Y woax—o [ (@Y woax—o [ (2Ynar—o

(4.1)

when t — oo.

Proof. Let € > 0 be arbitrary. With the help of (3.65)-(3.69) we conclude that there exists ¢y > 0
such that

t 2 t 2 t
f j <8_v> dxdr <e, f f <89> dxdr <e, j f <6w> dxdr <e,
t JR \OX ox 0x
t 2 t 2
f w—dxdr<5, f f <6p> dxdr <e,
1 Jr PO ox

(4.2)

for t > ty, and

IR <g—z>2(x, to)dx <, IR (%)2(36,150)1136 <g, IR <2—Z>2(x, to)dx < e. (4.3)

Similarly to (3.10), we have

%ﬂ(( 2) 2 (3) (3 )>dx+ [ <a2e> -
T {52
() [ (1L 5'or) (s [ () o)
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1 ov\*> 1 /0w\*> [060\* , (! 00\ 2
< Z - —_ (= _— _
—2IR<<ax> x(a) *(5) >(x’t°)d“K LJJ(ax) dxdr
<16K1 9(t) uJ‘ J. <—U) XdT+K2.[ J ( )dxdT
u? 0 to J R

81<2 e(t) w
+2 = dxdT+u26(t)f J‘ —dxdT
a to R
2 —3
3K J‘ J‘ 0 <_v> 3AE19(t)u J‘ J‘ —dxdT
to a to R
3AE © dew \ 2 12DK; <§(t)>ﬁl/2
J‘ I <—> dxdr + f j < ) dx dr.
to X E to
(4.4)
Taking into account (3.54), (3.58), (3.61), and (4.2)—(4.3) from (4.4) we obtain
ov\> 1 /0v\*> /06>
= —(= - < .
fR<<8x> +A<ax> +<ax) >dx_K15e for t > ty, (4.5)
where Kjs5 depends only on the data of our problem and does not depend on ty;. Hence
relations (4.1) hold. O
Lemma 4.2. [t holds that
v(x,t) — 0, w(x,t) — 0, O(x,t) —1 (4.6)

whent — oo, uniformly with respect to all x,x € R.

Proof. We have (see (3.51) and (3.62))

2 (x,t) < 2<IR o2(x, t)dx>1/2 <IR (gv> (x, t)dx)l/z,
w?(x, 1) < 2<IR w?(x, t)dx>1/2 <J; (g_(;,)Z(x, t)dx>1/2, (4.7)
lg(O(x,1))| < (JR(G(x, £)-1-In0O(x, t))dx)l/2 (JR (%)2dx>1/2.
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Taking into account (3.1) from (4.7) we get

1/2

V2 (x, 1) < 2(251)1/2<IR <av>2(x, t)dx> ,

1/2
1/2 aw 2
w?(x,t) < 2(2AE,) <J‘R (5) (x, t)dx> , (4.8)

woeent<e([ (2)ar)

Using (4.1) and property (3.50) of the function ¢r we can easily obtain that (4.6) holds. O

Now;, as in [5], we analyze the behavior of the function p as f — oo. From (3.69) and
(3.72) we conclude that for £ > 0 there exists ty > 0 such that

LJ (ax> dxdr <e, LJ <ax2>2dxd7<s, IR<2—Z>2(x,t0)dx<g (4.9)

for t > tg. Deriving (2.1) with respect to x, multiplying by (0/0x)(1/p), and integrating over
R and Jty, t[, after using (3.58) and Young's inequality, we obtain

() ] () e ] (52 e

(4.10)
+—f ( > (x,ty)dx.
With the help of (4.9) we get easily the following result.
Lemma 4.3. It holds that
op\>
- 411
JR <6x> (x,t)dx — 0 (4.11)
whent — oo.
Similarly as for the function ¢(6), we have
1/p
@ < ; > Vs—-1-Insds
(4.12)

S(L(%-1-ln%>dx>m<L,%<§—Z>2dx>m-
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Taking into account (3.1) from (4.12) one has

f#(%) < (K-1E1>1/2ﬁ<fR <g—5>2dx>l/z. (4.13)

Using (4.11) we obtain the following conclusion.

Lemma 4.4. It holds that
plx,t) —1 (4.14)

when t — oo, uniformly with respect to x € R.
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