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We study the existence and multiplicity of positive solutions of the following boundary-value
problem: −u(6) − γu(4) +βu′′ −αu = f(t, u), 0 < t < 1, u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) =
0, where f : [0, 1]× R+ → R+ is continuous, α, β, and γ ∈ R satisfy some suitable assumptions.

1. Introduction

The following boundary-value problem:

u(6) +Au(4) + Bu′′ + Cu − f(x, u) = 0, 0 < x < L,

u(0) = u(L) = u′′(0) = u′′(L) = u(4)(0) = u(4)(L) = 0,
(1.1)

where A, B, and C are some given real constants and f(x, u) is a continuous function on
R2, is motivated by the study for stationary solutions of the sixth-order parabolic differential
equations

∂u

∂t
=

∂6u

∂x6
+A

∂4u

∂x4
+ B

∂2u

∂x2
+ f(x, u). (1.2)

This equation arose in the formation of the spatial periodic patterns in bistable systems and is
also a model for describing the behaviour of phase fronts in materials that are undergoing a
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transition between the liquid and solid state. When f(x, u) = u−u3, it was studied by Gardner
and Jones [1] as well as by Caginalp and Fife [2].

If f is an even 2L-periodic function with respect to x and odd with respect to u, in
order to get the 2L-stationary spatial periodic solutions of (1.2), one turns to study the two
points boundary-value problem (1.1). The 2L-periodic extension u of the odd extension of the
solution u of problems (1.1) to the interval [−L, L] yields 2L-spatial periodic solutions of(1.2)

Gyulov et al. [3] have studied the existence and multiplicity of nontrivial solutions of
BVP (1.1). They gained the following results.

Theorem 1.1. Let f(x, u) : R2 → R be a continuous function and F(x, u) =
∫u
0 f(x, s)ds. Suppose

the following assumptions are held:

(H1) F(x, u)/u2 → +∞ as |u| → +∞, uniformly with respect to x in bounded intervals,

(H2) 0 ≤ F(x, u) = o(u2) as u → 0, uniformly with respect to x in bounded intervals,

then problem (1.1) has at least two nontrivial solutions provided that there exists a natural number
n such that P(nπ/L) < 0, where P(ξ) = ξ6 − Aξ4 + Bξ2 − C is the symbol of the linear differential
operator Lu = u(6) +Au(4) + Bu′′ + Cu.

At the same time, in investigating such spatial patterns, some other high-order
parabolic differential equations appear, such as the extended Fisher-Kolmogorov (EFK)
equation

∂u

∂t
= −ζ∂

4u

∂x4
+
∂2u

∂x2
+ u − u3, ζ > 0, (1.3)

proposed by Coullet, Elphick, and Repaux in 1987 as well as by Dee and Van Saarlos in 1988
and Swift-Hohenberg (SH) equation

∂u

∂t
= ρu −

(

1 +
∂2u

∂x2

)2

u − u3, ρ > 0, (1.4)

proposed in 1977.
In much the same way, the existence of spatial periodic solutions of both the EFK

equation and the SH equation was studied by Peletier and Troy [4], Peletier and Rottschäfer
[5], Tersian and Chaparova [6], and other authors. More precisely, in those papers, the
authors studied the following fourth-order boundary-value problem:

u(4) +Au′′ + Bu + f(x, u) = 0, 0 < x < L,

u(0) = u(L) = u′′(0) = u′′(L) = 0.
(1.5)

The methods used in those papers are variational method and linking theorems.
On the other hand, The positive solutions of fourth-order boundary value problems

(1.5) have been studied extensively by using the fixed point theorem of cone extension
or compression. Here, we mention Li’s paper [7], in which the author decomposes the
fourth-order differential operator into the product of two second-order differential operators
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to obtain Green’s function and then used the fixed point theorem of cone extension or
compression to study the problem.

The purpose of this paper is using the idea of [7] to investigate BVP for sixth-
order equations. We will discuss the existence and multiplicity of positive solutions of the
boundary-value problem

−u(6) − γu(4) + βu′′ − αu = f(t, u), 0 < t < 1, (1.6)

u(0) = u(1) = u′′(0) = u′′(1) = u(4)(0) = u(4)(1) = 0, (1.7)

and then we assume the following conditions throughout:
(H1) f : [0, 1] × [0,∞) �→ [0,∞) is continuous,
(H2) α, β, and γ ∈ R satisfy

γ < 3π2, 3π4 − 2γπ2 − β > 0,

α

π6
+

β

π4
+

γ

π2
< 1,

18αβγ − β2γ2 + 4αγ3 + 27α2 − 4β3 ≤ 0.

(1.8)

Note. The set of α, β, and γ which satisfies (H2) is nonempty. For instance, if γ = π2, β = 0,
then (H2) holds for α : −4π2/27 < α < 0.

To be convenient, we introduce the following notations:

L = π6 − γπ4 − βπ2 − α,

f
0
= lim inf

u→ 0+
min
t∈[0,1]

(
f(t, u)

u

)
, f∞ = lim sup

u→∞
max
t∈[0,1]

(
f(t, u)

u

)
,

f
∞
= lim inf

u→∞
min
t∈[0,1]

(
f(t, u)

u

)
, f0 = lim sup

u→ 0+
max
t∈[0,1]

(
f(t, u)

u

)
.

(1.9)

2. Preliminaries

Lemma 2.1 (see [8]). Set the cubic equation with one variable as follows:

ax3 + bx2 + cx + d = 0, a, b, c, d ∈ R, a /= 0. (2.1)

Let

A = b2 − 3ac, B = bc − 9ad, C = c2 − 3bd, Δ = B2 − 4AC, (2.2)

one has the following:

(1) Equation (2.1) has a triple root if A = B = 0,

(2) Equation (2.1) has a real root and two mutually conjugate imaginary roots if Δ = B2 −
4AC > 0,
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(3) Equation (2.1) has three real roots, two of which are reroots if Δ = B2 − 4AC = 0,

(4) Equation (2.1) has three unequal real roots if Δ = B2 − 4AC < 0.

Lemma 2.2. Let λ1, λ2, and λ3 be the roots of the polynomial P(λ) = λ3 + γλ2 − βλ + α. Suppose
that condition (H2) holds, then λ1, λ2, and λ3 are real and greater than −π2.

Proof. There are A = γ2 + 3β, B = −βγ − 9α, and C = β2 − 3αγ in the equation P(λ) = 0. Since
condition (H2) holds, we have

Δ = B2 − 4AC = 18αβγ − β2γ2 + 4αγ3 + 27α2 − 4β3 ≤ 0. (2.3)

Therefore, the equation has three real roots in reply to Lemma 2.1.
By Vieta theorem, we have

λ1λ2λ3 = −α,
λ1 + λ2 + λ3 = −γ,

λ1λ2 + λ1λ3 + λ2λ3 = −β.
(2.4)

Therefore α/π6 + β/π4 + γ/π2 < 1, γ < 3π2 and 3π4 − 2γπ2 − β > 0 hold if and only if

(
λ1 + π2

)(
λ2 + π2

)(
λ3 + π2

)
> 0,

(
λ1 + π2

)
+
(
λ2 + π2

)
+
(
λ3 + π2

)
> 0,

(
λ1 + π2

)(
λ2 + π2

)
+
(
λ1 + π2

)(
λ3 + π2

)
+
(
λ2 + π2

)(
λ3 + π2

)
> 0.

(2.5)

Then, we only prove that the system of inequalities (2.5) holds if and only if λ1, λ2, and λ3
are all greater than −π2.

In fact, the sufficiency is obvious, we just prove the necessity. Assume that λ1, λ2, λ3
are less than −π2. By the first inequality of (2.5), there exist two roots which are less than −π2

and one which is greater than −π2. Without loss of generality, we assume that λ2 < −π2, λ3 <
−π2, then we have λ1 > −π2. Multiplying the second inequality of (2.5) by λ2 + π2, one gets

(
λ1 + π2

)(
λ2 + π2

)
+
(
λ2 + π2

)2
+
(
λ2 + π2

)(
λ3 + π2

)
< 0. (2.6)

Compare with the third inequality of (2.5), we have

(
λ2 + π2

)2
<
(
λ1 + π2

)(
λ3 + π2

)
< 0, (2.7)

which is a contradiction. Hence, the assumption is false. The proof is completed.
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Let Gi(t, s) (i = 1, 2, 3) be Green’s function of the linear boundary-value problem

−u′′(t) + λiu(t) = 0, u(0) = u(1) = 0. (2.8)

Lemma 2.3 (see [7]). Gi(t, s)(i = 1, 2, 3) has the following properties:

(i) Gi(t, s) > 0, for all t, s ∈ (0, 1),

(ii) Gi(t, s) ≤ CiGi(s, s), for all t, s ∈ [0, 1], where Ci > 0 is a constant,

(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s), for all t, s ∈ [0, 1], where δi > 0 is a constant.

One denotes the following:

Mi = max
0≤s≤1

Gi(s, s), mi = min
1/4≤s≤3/4

Gi(s, s) (i = 1, 2, 3),

C12 =
∫1

0
G1(δ, δ)G2(δ, δ)dδ, C23 =

∫1

0
G2(s, s)G3(s, s)ds,

(2.9)

then Mi,mi, C12, C23 > 0. Let ‖ · ‖ be the maximum norm of C[0, 1], and let C+[0, 1] be the cone of
all nonnegative functions in C[0, 1].

Let h ∈ C[0, 1], then one considers linear boundary-value problem (LBVP) as follows:

−u(6) − γu(4) + βu′′ − αu = h(t), t ∈ [0, 1], (2.10)

with the boundary condition (1.7). Since

−u(6) − γu(4) + βu′′ − αu =

(

− d2

dt2
+ λ1

)(

− d2

dt2
+ λ2

)(

− d2

dt2
+ λ3

)

u, (2.11)

the solution of LBVP (2.10)–(1.7) can be expressed by

u(t) =
∫∫∫1

0
G1(t, δ)G2(δ, τ)G3(τ, s)h(s)dsdτ dδ. (2.12)

Lemma 2.4. Let h ∈ C+[0, 1], then the solution of LBVP(2.10)–(1.7) satisfies

u(t) ≥ δ1δ2δ3C12C23

C1C2C3M1M2
G1(t, t)‖u‖. (2.13)

Proof. From (2.12) and (ii) of Lemma 2.3, it is easy to see that

u(t) ≤ C1C2C3M1M2

∫1

0
G3(s, s)h(s)ds, (2.14)
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and, therefore,

‖u‖ ≤ C1C2C3M1M2

∫1

0
G3(s, s)h(s)ds, (2.15)

that is,

∫1

0
G3(s, s)h(s)ds ≥ ‖u‖

C1C2C3M1M2
. (2.16)

Using (iii) of Lemma 2.3, we have

u(t) =
∫∫∫1

0
G1(t, δ)G2(δ, τ)G3(τ, s)h(s)dsdτ dδ

≥ δ1δ2δ3C12C23G1(t, t)
∫1

0
G3(s, s)h(s)ds

≥ δ1δ2δ3C12C23G1(t, t)
C1C2C3M1M2

‖u‖.

(2.17)

The proof is completed.

We now define a mapping A : C[0, 1]+ → C[0, 1]+ by

Au(t) =
∫∫∫1

0
G1(t, δ)G2(δ, τ)G3(τ, s)f(s, u(s))dsdτ dδ. (2.18)

It is clear that A : C[0, 1]+ → C[0, 1]+ is completely continuous. By Lemma 2.4, the positive
solution of BVP(1.6)-(1.7) is equivalent to nontrivial fixed point ofA. Wewill find the nonzero
fixed point of A by using the fixed point index theory in cones. For this, one chooses the
subcone K of C[0, 1]+ by

K =
{
u ∈ C[0, 1]+ | u(t) ≥ σ‖u‖, ∀t ∈

[
1
4
,
3
4

]}
, (2.19)

where σ = δ1δ2δ3C12C23m1/C1C2C3M1M2 , we have the following.

Lemma 2.5. Having A(K) ⊆ K, A : K → K is completely continuous.

Proof. For u ∈ K, let h(t) = f(t, u(t)), then Au(t) is the solution of LBVP(2.10)–(1.7). By
Lemma 2.4, one has

Au(t) ≥ δ1δ2δ3C12C23

C1C2C3M1M2
G1(t, t)‖A(u)‖ ≥ σ‖A(u)‖, ∀t ∈

[
1
4
,
3
4

]
, (2.20)

namely Au ∈ K. Therefore, A(K) ⊆ K. The complete continuity of A is obvious.
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The main results of this paper are based on the theory of fixed point index in cones [9].
Let E be a Banach space andK ⊂ E be a closed convex cone in E. Assume thatΩ is a bounded
open subset of E with boundary ∂Ω, and K ∩ Ω/= ∅. Let A : K ∩ Ω → K be a completely
continuous mapping. IfAu/=u for every u ∈ K∩∂Ω, then the fixed point index i(A,K∩Ω, K)
is well defined. We have that if i(A,K ∩Ω, K)/= 0, then A has a fixed point in K ∩ ∂Ω.

Let Kr = {u ∈ K | ‖u‖ < r} and ∂Kr = {u ∈ K | ‖u‖ = r} for every r > 0.

Lemma 2.6 (see [9]). Let A : K → K be a completely continuous mapping. If μAu/=u for every
u ∈ ∂Kr and 0 < μ ≤ 1, then i(A,Kr,K) = 1.

Lemma 2.7 (see [9]). Let A : K → K be a completely continuous mapping. Suppose that the
following two conditions are satisfied:

(i) infu∈∂Kr‖A(u)‖ > 0,

(ii) μAu/=u for every u ∈ ∂Kr and μ ≥ 1,

then i(A,Kr,K) = 0.

Lemma 2.8 (see [9]). Let X be a Banach space, and let K ⊆ X be a cone in X. For p > 0, define
Kp = {u ∈ K | ‖u‖ < p}. Assume that A : Kp → K is a completely continuous mapping such that
Au/=u for every u ∈ ∂Kp = {u ∈ K | ‖u‖ = p}.

(i) If ‖u‖ ≤ ‖Au‖ for every u ∈ ∂Kp, then i(A,Kp,K) = 0.

(ii) If ‖u‖ ≥ ‖Au‖ for every u ∈ ∂Kp, then i(A,Kp,K) = 1.

3. Existence

We are now going to state our existence results.

Theorem 3.1. Assume that (H1) and (H2) hold, then in each of the following case:

(i) f0 < L, f
∞
> L,

(ii) f
0
> L, f∞ < L,

the BVP(1.6)-(1.7) has at least one positive solution.

Proof. To prove Theorem 3.1, we just show that the mapping A defined by (2.18) has a
nonzero fixed point in the cases, respectively.

Case(i): since f0 < L, by the definition of f0, we may choose ε > 0 and ω > 0, so that

f(t, u) ≤ (L − ε)u, 0 ≤ t ≤ 1, 0 ≤ u ≤ ω. (3.1)

Let r ∈ (0, ω), we now prove that μAu/=u for every u ∈ ∂Kr and 0 < μ ≤ 1. In fact, if there
exist u0 ∈ ∂Kr and 0 < μ0 ≤ 1 such that μ0Au0 = u0, then, by definition of A, u0(t) satisfies
differential equation the following:

−u(6)
0 − γu

(4)
0 + βu′′

0 − αu0 = μ0f(t, u0), 0 ≤ t ≤ 1, (3.2)
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and boundary condition (1.7). Multiplying (3.2) by sinπt and integrating on [0, 1], then using
integration by parts in the left side, we have

L

∫1

0
u0(t) sinπt dt = μ0

∫1

0
f(t, u0(t)) sinπt dt ≤ (L − ε)

∫1

0
u0(t) sinπt dt. (3.3)

By Lemma 2.4, u(t) ≥ (δ1δ2δ3C12C23/C1C2C3M1M2)G1(t, t)‖u‖, and then
∫1
0 u0(t) sinπt dt >

0. We see that L ≤ (L − ε), which is a contradiction. Hence, A satisfies the hypotheses of
Lemma 2.6, in Kr . By Lemma 2.6 we have

i(A,Kr,K) = 1. (3.4)

On the other hand, since f
∞
> L, there exist ε ∈ (0, L) and H > 0 such that

f(t, u) ≥ (L + ε)u, 0 ≤ t ≤ 1, u ≥ H. (3.5)

Let C = max0≤t≤1, 0≤u≤H |f(t, u) − (L + ε)u| + 1, then it is clear that

f(t, u) ≥ (L + ε)u − C, 0 ≤ t ≤ 1, u ≥ 0. (3.6)

Choose R > R0 = max{H/σ, ω}. Let u ∈ ∂KR. Since u(s) ≥ σ‖u‖ > H, for all s ∈ [1/4, 3/4],
from (3.5)we see that

f(t, u) ≥ (L + ε)u(s) ≥ (L + ε)σ‖u‖, ∀s ∈
[
1
4
,
3
4

]
. (3.7)

By Lemma 2.5, we have

Au

(
1
2

)
=
∫∫∫1

0
G1

(
1
2
, δ

)
G2(δ, τ)G3(τ, s)f(s, u(s))dsdτ dδ

≥ δ1δ2δ3C12C23m1

∫3/4

1/4
G3(s, s)f(s, u(s))ds

≥ 1
2
δ1δ2δ3C12C23m1m3(L + ε)σ‖u‖.

(3.8)

Therefore,

‖Au‖ ≥ Au

(
1
2

)
≥ 1

2
δ1δ2δ3C12C23m1m3(L + ε)σ‖u‖, (3.9)
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from which we see that infu∈∂KR‖A(u)‖ > 0, namely the hypotheses (i) of Lemma 2.7 holds.
Next, we show that if R is large enough, then μAu/=u for any u ∈ ∂KR and μ ≥ 1. In fact, if
there exist u0 ∈ ∂KR and μ0 ≥ 1 such that μ0Au0 = u0, then u0(t) satisfies (3.2) and boundary
condition (1.7). Multiplying (3.2) by sinπt and integrating, from (3.6)we have

L

∫1

0
u0(t) sinπt dt = μ0

∫1

0
f(t, u0(t)) sinπt dt ≥ (L + ε)

∫1

0
u0(t) sinπt dt − 2C

π
. (3.10)

Consequently, we obtain that

∫1

0
u0(t) sinπt dt ≤ 2C

πε
. (3.11)

By Lemma 2.4,

∫1

0
u0(t) sinπt dt ≥ δ1δ2δ3C12C23

C1C2C3M1M2
‖u0‖

∫1

0
G1(t, t) sinπt dt, (3.12)

from which and from (3.11)we get that

‖u0‖ ≤ 2CC1C2C3M1M2

δ1δ2δ3C12C23πε

(∫1

0
G1(t, t) sinπt dt

)−1
:= R. (3.13)

Let R > max{R,R0}, then for any u ∈ ∂KR and μ ≥ 1, μAu/=u. Hence, hypothesis (ii) of
Lemma 2.7 also holds. By Lemma 2.7, we have

i(A,KR,K) = 0. (3.14)

Now, by the additivity of fixed point index, combine (3.4) and (3.14) to conclude that

i
(
A,KR \Kr,K

)
= i(A,KR,K) − i(A,Kr,K) = −1. (3.15)

Therefore, A has a fixed point in KR \Kr , which is the positive solution of BVP(1.6)-(1.7).
Case (ii): since f

0
> L, there exist ε > 0 and r0 > 0 such that

f(t, u) ≥ (L + ε)u, 0 ≤ t ≤ 1, 0 ≤ u ≤ r0. (3.16)

Let r ∈ (0, r0), then for every u ∈ ∂Kr , through the argument used in (3.9), we have

‖Au‖ ≥ Au

(
1
2

)
≥ 1

2
δ1δ2δ3C12C23m1m3(L + ε)σ‖u‖. (3.17)



10 Boundary Value Problems

Hence, infu∈∂Kr‖A(u)‖ > 0. Next, we show that μAu/=u for any u ∈ ∂Kr and μ ≥ 1. In fact, if
there exist u0 ∈ ∂Kr and μ0 ≥ 1 such that μ0Au0 = u0, then u0(t) satisfies (3.2) and boundary
(1.7). From (3.2) and (3.16), it follows that

L

∫1

0
u0(t) sinπt dt = μ0

∫1

0
f(t, u0(t)) sinπt dt ≥ (L + ε)

∫1

0
u0(t) sinπt dt. (3.18)

Since
∫1
0 u0(t) sinπt dt > 0, we see that L ≥ (L + ε), which is a contradiction. Hence, by

Lemma 2.7, we have

i(A,Kr,K) = 0. (3.19)

On the other hand, since f∞ < L, there exist ε ∈ (0, L) and H > 0 such that

f(t, u) ≤ (L − ε)u, 0 ≤ t ≤ 1, u ≥ H. (3.20)

Set C = max0≤t≤1, 0≤u≤H |f(t, u) − (L − ε)u| + 1, we obviously have

f(t, u) ≤ (L − ε)u + C, 0 ≤ t ≤ 1, u ≥ 0. (3.21)

If there exist u0 ∈ K and 0 < μ0 ≤ 1 such that μ0Au0 = u0, then (3.2) is valid. From (3.2) and
(3.21), it follows that

L

∫1

0
u0(t) sinπt dt = μ0

∫1

0
f(t, u0(t)) sinπt dt ≤ (L − ε)

∫1

0
u0(t) sinπt dt +

2C
π

. (3.22)

By the proof of (3.13), we see that ‖u0‖ ≤ R. Let R > max{R, r0}, then for any u ∈ ∂KR and
0 < μ ≤ 1, μAu/=u. Therefore, by Lemma 2.6, we have

i(A,KR,K) = 1. (3.23)

From (3.19) and (3.23), it follows that

i
(
A,KR \Kr,K

)
= i(A,KR,K) − i(A,Kr,K) = 1. (3.24)

Therefore,A has a fixed point inKR \Kr , which is the positive solution of BVP(1.6)-(1.7). The
proof is completed.
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From Theorem 3.1, we immediately obtain the following.

Corollary 3.2. Assume that (H1) and (H2) hold, then in each of the following cases:

(i) f0 = 0, f
∞
= ∞,

(ii) f∞ = 0, f
0
= ∞,

the BVP(1.6)-(1.7) has at least one positive solution.

4. Multiplicity

Next, we study the multiplicity of positive solutions of BVP(1.6)-(1.7) and assume in this
section that

(H3) there is a p > 0 such that 0 ≤ u ≤ p and 0 ≤ t ≤ 1 imply f(t, u) < ηp, where

η = (C1C2C3M1M2
∫1
0 G3(s, s)ds)

−1
.

(H4) there is a p > 0 such that σp ≤ u ≤ p and 0 ≤ t ≤ 1 imply f(t, u) ≥ νp, where
ν−1 = δ1δ2δ3C12C23m1

∫3/4
1/4 G3(s, s)ds.

Theorem 4.1. If f
0
> L and f

∞
> L and (H3) is satisfied, then BVP(1.6)-(1.7) has at least two

positive solutions: u1 and u2, such that 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖.

Proof. According to the proof of Theorem 3.1, there exists 0 < r0 < p < R1 < +∞, such that
0 < r < r0 implies i(A,Kr,K) = 0 and R ≥ R1 implies i(A,KR,K) = 0.

We now prove that i(A,Kp,K) = 1 if (H3) is satisfied. In fact, for every u ∈ ∂Kp, from
the definition of Awe have

‖Au‖ = max

∣∣∣∣∣

∫∫∫1

0
G1(t, δ)G2(δ, τ)G3(τ, s)f(s, u(s))dsdτ dδ

∣∣∣∣∣

≤ C1C2C3M1M2

∣∣∣∣∣

∫1

0
G3(s, s)f(s, u(s))ds

∣∣∣∣∣

≤ C1C2C3M1M2

∫1

0
G3(s, s)ηp ds

= ‖u‖.

(4.1)

From (ii) of Lemma 2.8, we have

i
(
A,Kp,K

)
= 1. (4.2)

Combining (3.14) and (3.19), we have

i
(
A,KR \Kp,K

)
= i(A,KR,K) − i

(
A,Kp,K

)
= −1,

i
(
A,Kp \Kr,K

)
= i

(
A,Kp,K

) − i(A,Kr,K) = 1.
(4.3)
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Therefore,A has fixed points u1 and u2 inKp \Kr andKR\Kp, respectively, which means that
u1(t) and u2(t) are positive solutions of BVP(1.6)-(1.7) and 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖. The proof is
completed.

Theorem 4.2. If f0 < L and f∞ < L and (H4) is satisfied, then BVP(1.6)-(1.7) has at least two
positive solutions: u1 and u2, such that 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖.

Proof. According to the proof of Theorem 3.1, there exists 0 < ω < p < R2 < +∞, such that
0 < r < ω implies i(A,Kr,K) = 1 and R ≥ R2 implies i(A,KR,K) = 1.

We now prove that i(A,Kp,K) = 0 if (H4) is satisfied. In fact, for every u ∈ ∂Kp, from
the proof of (i) of Theorem 3.1, we have

∥
∥∥
∥Au

(
1
2

)∥
∥∥
∥ =

∫∫∫1

0
G1

(
1
2
, δ

)
G2(δ, τ)G3(τ, s)f(s, u(s))dsdτ dδ

≥ δ1δ2δ3C12C23m1

∫3/4

1/4
G3(s, s)νp ds

= ‖u‖.

(4.4)

Therefore, ‖Au‖ ≥ ‖Au(1/2)‖ ≥ ‖u‖, according to (i) of Lemma 2.8, i(A,Kp,K) = 0.
Combining (3.4) and (3.23), we have

i
(
A,KR \Kp,K

)
= i(A,KR,K) − i

(
A,Kp,K

)
= 1,

i
(
A,Kp \Kr,K

)
= i

(
A,Kp,K

) − i(A,Kr,K) = −1.
(4.5)

Therefore,A has the fixed points u1 and u2 inKp \Kr andKR \Kp, respectively, which means
that u1(t) and u2(t) are positive solutions of BVP(1.6)-(1.7) and 0 ≤ ‖u1‖ ≤ p ≤ ‖u2‖. The
proof is completed.

Theorem 4.3. If f
0
> L and f∞ < L, and there exists p2 > p1 > 0 that satisfies

(i) f(t, u) < ηp1 if 0 ≤ t ≤ 1 and 0 ≤ u ≤ p1,

(ii) f(t, u) ≥ νp2 if 0 ≤ t ≤ 1 and σp2 ≤ u ≤ p2,

then BVP(1.6)-(1.7) has at least three positive solutions: u1, u2, and u3, such that 0 ≤ ‖u1‖ ≤ p1 ≤
‖u2‖ ≤ p2 ≤ ‖u3‖.

Proof. According to the proof of Theorem 3.1, there exists 0 < r0 < p1 < p2 < R3 < +∞, such
that 0 < r < r0 implies i(A,Kr,K) = 1 and R ≥ R3 implies i(A,KR,K) = 1.

From the proof of Theorems 4.1 and 4.2, we have

i
(
A,Kp1 , K

)
= 1, i

(
A,Kp2 , K

)
= 0. (4.6)
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Combining the four afore-mentioned equations, we have

i
(
A,KR \Kp2 , K

)
= i(A,KR,K) − i

(
A,Kp2 , K

)
= 1,

i
(
A,Kp2 \Kp1 , K

)
= i

(
A,Kp2 , K

) − i
(
A,Kp1 , K

)
= −1,

i
(
A,Kp1 \Kr,K

)
= i

(
A,Kp1 , K

) − i(A,Kr,K) = 1.

(4.7)

Therefore, A has the fixed points u1, u2, and u3 in Kp1 \ Kr , Kp2 \ Kp1 , and KR \ Kp2 , which
means that u1(t), u2(t), and u3(t) are positive solutions of BVP(1.6)-(1.7) and 0 ≤ ‖u1‖ ≤ p1 ≤
‖u2‖ ≤ p2 ≤ ‖u3‖. The proof is completed.
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