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The boundary value problems for degenerate anisotropic differential operator equations with
variable coefficients are studied. Several conditions for the separability and Fredholmness in
Banach-valued L, spaces are given. Sharp estimates for resolvent, discreetness of spectrum, and
completeness of root elements of the corresponding differential operators are obtained. In the last
section, some applications of the main results are given.

1. Introduction and Notations

It is well known that many classes of PDEs, pseudo-Des, and integro-DEs can be expressed
as differential-operator equations (DOEs). As a result, many authors investigated PDEs as
a result of single DOEs. DOEs in H-valued (Hilbert space valued) function spaces have
been studied extensively in the literature (see [1-14] and the references therein). Maximal
regularity properties for higher-order degenerate anisotropic DOEs with constant coefficients
and nondegenerate equations with variable coefficients were studied in [15, 16].

The main aim of the present paper is to discuss the separability properties of BVPs for
higher-order degenerate DOEs; that is,

iaux)D,E’“u(x) + A@ux) + S Ag(x)Du(x) = £(x), (1.1)
k=1

Ja:1]<1

where D][:]u(x) = (yr(xx)(0/ dx)) u(x), yr are weighted functions, A and A, are linear
operators in a Banach Space E. The above DOE is a generalized form of an elliptic equation.
In fact, the special case [ = 2m, k =1,...,n reduces (1.1) to elliptic form.
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Note, the principal part of the corresponding differential operator is nonself-
adjoint. Nevertheless, the sharp uniform coercive estimate for the resolvent, Fredholmness,
discreetness of the spectrum, and completeness of root elements of this operator are
established.

We prove that the corresponding differential operator is separable in L,; that is, it has

a bounded inverse from L, to the anisotropic weighted space W,EI]Y This fact allows us to
derive some significant spectral properties of the differential operator. For the exposition of
differential equations with bounded or unbounded operator coefficients in Banach-valued
function spaces, we refer the reader to [8, 15-25].

Let y = y(x) be a positive measurable weighted function on the region € C R". Let
Ly, (; E) denote the space of all strongly measurable E-valued functions that are defined on
Q with the norm

1/p
171y = 15 = ([0 @) ) 12p<ce 12

For y(x) =1, the space L,,(Q; E) will be denoted by L,(£2; E).
The weight y we will consider satisfies an A, condition; thatis, y € A,, 1 <p < w0 if
there is a positive constant C such that

p-1
()l s oo
for all cubes Q C R™.

The Banach space E is called a UMD space if the Hilbert operator (Hf)(x) =
lim, ¢ flx_y|>£(f(y)/(x—y))dy isbounded in L,(R, E), p € (1, ) (see, e.g., [26]). UMD spaces
include, for example, Ly, I, spaces, and Lorentz spaces L,q, p, g € (1, ).

Let C be the set of complex numbers and

Sp={L LeC JargA| <¢p}u{0}, 0<p<um (1.4)

A linear operator A is said to be ¢-positive in a Banach space E with bound M > 0 if
D(A) is dense on E and

||(A+u)‘1||L(E) < M1+ A7 (1.5)

forall A € Sy, ¢ € [0, ), I is an identity operator in E, and B(E) is the space of bounded linear
operators in E. Sometimes A + I will be written as A + A and denoted by A,. It is known [27,
Section 1.15.1] that there exists fractional powers A? of the sectorial operator A. Let E(A?)
denote the space D(A?) with graphical norm

lullecary = (el + [ 4%]) 7, 1<p<co, ~0 <0< (1.6)

Let E; and E; be two Banach spaces. Now, (El,Ez)Q,p, 0<0<1,1<p<oowill denote
interpolation spaces obtained from {Ej, E;} by the K method [27, Section 1.3.1].
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A set W C B(E4, E,) is called R-bounded (see [3, 25, 26]) if there is a constant C > 0
such that for all Ty, Ty, ..., T, € W and uy uy, ..., uy, € Ey, me N

)

where {r;} is a sequence of independent symmetric {-1,1}-valued random variables on [0, 1].

The smallest C for which the above estimate holds is called an R-bound of the
collection W and is denoted by R(W).

Let S(R";E) denote the Schwartz class, that is, the space of all E-valued rapidly
decreasing smooth functions on R". Let F be the Fourier transformation. A function ¥ €
C(R"; B(E)) is called a Fourier multiplier in L, ,(R"; E) if the map u — ®u = F'W(¢)Fu,
u € S(R";E) is well defined and extends to a bounded linear operator in L,,, (R"; E). The set
of all multipliers in L, (R"; E) will denoted by M% (E).

Let

dy, (1.7)

1
dySCf
0

E;

ri(y)Tiu,
=1

grf(y)”f

E;

Vi=1{¢:¢&=(&1,&, ..., &) ER", §j#0},

(1.8)
u, = {ﬂ= (ﬁ1,ﬁ2,...,ﬁn) e N" Zﬂk € {0,1}}.

Definition 1.1. A Banach space E is said to be a space satisfying a multiplier condition if, for
any ¥ € C™(R"; B(E)), the R-boundedness of the set {§ﬂD§‘P(§) :¢ € R"\0,pelU,)} implies

that ¥ is a Fourier multiplier in L, ,(R"; E), that is, ¥ € M;’%(E) for any p € (1, o).

Let ¥, € M)} (E) be a multiplier function dependent on the parameter h € Q. The

uniform R-boundedness of the set {¢DP®¥;,(¢) : ¢ € R*\ 0, € U}; that is,

zggR({gﬂDﬁ‘Ph(g):§ER”\0,ﬁ€LI}) <K (1.9)

implies that ¥}, is a uniform collection of Fourier multipliers.

Definition 1.2. The ¢-positive operator A is said to be R-positive in a Banach space E if there
exists ¢ € [0,sr) such that the set { A(A + (ke Sy} is R-bounded.

A linear operator A(x) is said to be ¢-positive in E uniformly in x if D(A(x)) is
independent of x, D(A(x)) is dense in E and ||(A(x) + AD7TY < M/ + |A|]) for any A € S,
@ € [0,).

The ¢-positive operator A(x), x € G is said to be uniformly R-positive in a Banach
space E if there exists ¢ € [0,r) such that the set { A(x)(A(x) + ntiée Sy} is uniformly
R-bounded; that is,

supR({gﬂD‘6 [A(x)(A(X) + §I)_1] :$ER"\0,p€e LI}) <M. (1.10)

xeG

Let 04, (E1, E2) denote the space of all compact operators from E; to E,. For E; = E; = E, it is
denoted by 0. (E).
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For two sequences {a;}{” and {b;}{° of positive numbers, the expression a; ~ b; means
that there exist positive numbers C; and C; such that

Cla]- < b]' < Czﬂj. (1.11)

Let 0, (E1, E2) denote the space of all compact operators from E; to E,. For E; = E; = E,
it is denoted by o, (E).

Now, s;(A) denotes the approximation numbers of operator A (see, e.g., [27, Section
1.16.1]). Let

04(E1, Ep) = {A tAc€ ow(El,Ez),ZS?(A) <o, 1<g< oo}. (1.12)
j=1

Let Ep and E be two Banach spaces and E, continuously and densely embedded into
Eandl = (ll,lz,. . .,ln).
We let W;W(Q; Eo,E) denote the space of all functions u € L,,(£2;Eq) possessing

generalized derivatives chku = 0u/ 6x§(k such that D;fu € Ly, (£; E) with the norm

(1.13)

n

!

u ; = ||u £+ D}u < oo
leliws, @ikob) = I14llL,, @iE0) kZ:1|| [0 P

Let D,[(i]u(x) = (yr(xx)(0/ dxx)) u(x). Consider the following weighted spaces of func-
tions:

W(G; E(A),E) = {u :u € L,(G;E(A)), DI*'u € L,(G; E),
(1.14)

n
[I]
u = ||u . + D " u
” ”W;[,H,(G;E(A),E) ” ”L,,(G,E(A)) ;” k L,(GE)

2. Background

The embedding theorems play a key role in the perturbation theory of DOEs. For estimating
lower order derivatives, we use following embedding theorems from [24].

Theorem Al. Let a = (ay,ay,...,a,) and D* = D' D3? - -- Dy" and suppose that the following con-
ditions are satisfied:

(1) E is a Banach space satisfying the multiplier condition with respect to p and y,

(2) A is an R-positive operator in E,

(B)a=(a1,a2,...,ay)and | = (I, I, ..., 1,,) are n-tuples of nonnegative integer such that

n
24
%:k;l—:g, 0<u<l-s1<p<oo, (2.1)
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(4) Q C R" is a region such that there exists a bounded linear extension operator from
W, (Q;E(A),E) to W}, (R"; E(A),E).

Then, the embedding D*W, (Q; E(A),E) C Ly, (Q; E(A'™"#)) is continuous. Moreover,
for all positive number h < oo and u € W;W(Q; E(A),E), the following estimate holds

—(1-
ID%ully, (@par-=w) < hllullwt @E@a)E +h ( #)”“”LP,,,(Q;E)- (2.2)

Theorem A2. Suppose that all conditions of Theorem A1 are satisfied. Moreover, let y € A,, Q be a
bounded region and A™' € 0,,(E). Then, the embedding

W, (QE(A),E) C L, (QE) (2.3)
is compact.
Let Sp A denote the closure of the linear span of the root vectors of the linear operator A.
From [18, Theorem 3.4.1], we have the following.
Theorem A3. Assume that

(1) E is an UMD space and A is an operator in 0,(E), p € (1, 00),

(2) p1, 2, .., ps are non overlapping, differentiable arcs in the complex plane starting at the
origin. Suppose that each of the s regions into which the planes are divided by these arcs is
contained in an angular sector of opening less then o /p,

(3) m > 0 is an integer so that the resolvent of A satisfies the inequality
IR, A) = 0(I0™), (2.4)

as A — 0along any of the arcs p.

Then, the subspace Sp A contains the space E.
Let

G={x=(x1,x2,...,%xn) : 0 < x < by}, Y(x):x{lxzz---x,yl". (2.5)

Let

po=xp,  v=[Iar  r=]]x (2.6)

Let I = I(W;,ﬂly(Q;E(A),E),LPIY(Q; E)) denote the embedding operator W;,,M(Q;E(A),E) —
L,,(QE).

From [15, Theorem 2.8], we have the following.
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Theorem A4. Let Eq and E be two Banach spaces possessing bases. Suppose that

0<yc<p-1, 0<Pe<l, w-yn>p(fr-1), l<p<oo,

" _ 2.7)
_ . Yk — Vk (
s;(I(Ep,E)) ~j V%, ko>0,j=1,2,...,00, 9= % ———o<l.
: Sp(l - Pr)
Then,
5; (I( ! (G0, E), Lyy(G; E))> =1/ kot ) (2.8)
3. Statement of the Problem
Consider the BVPs for the degenerate anisotropic DOE
Zak(x)D[k]u(x) +[A@) +AJu(x) + > Ag(x)Du(x) = f(x), 3.1)
|a:l|<1
Mk
Zakﬂ Tu(Gro) =0, j=1,2,...,dx
(3.2)

Mmij

Zﬁk]lD u Gkb) / ] = 1/2/- . -/lk - dk/ dk € (Ollk)/

where

o
‘x:(txlltxZ/-'-/aﬂ)/ l:(11112/"'/l1’l)/ |lI ll_ lk’
k=1
G = {x = (x1/x2/" '/xl’l)/ 0 < xk < bk, }/ a= (allaZI‘ --/an)/
Dl = Dl['xl]Dg’Q] ...pll Dl[f]u(x) = [xzk(bk - xk)”"ai] u(x),
Xk (3.3)

1
OSYk/ vk<1_;/ k:1/2/'~'/n/ GkO:(x1/x2/"-/xk—1/0/xk+1/'-'/xn)/

Gy = (x1, %2, -+, Xk-1, bk, Xks1, - -+, Xn), 0 <my <l -1,
x(k) = (x1, %2, Xk 1, Xki1, -, %), Ge=[J(0,07), jk=12,...,n,

j#k

ajk, Pjk, A are complex numbers, a; are complex-valued functions on G, A(x), and A,(x) are
linear operators in E. Moreover, yx and v, are such that

Xk
f x;}’k (b — x) *dxp < o0, xx € [0,bk], k=1,2,...,n. (3.4)
0
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A function u € W,E]Y(G;E(A),E, Lyj) ={ue Wg]Y(G;E(A),E),Lk,-u = 0} and satisfying
(3.1) a.e. on G is said to be solution of the problem (3.1)-(3.2).
We say the problem (3.1)-(3.2) is L,-separable if for all f € L,(G;E), there exists a

unique solution u € Wry]y(G;E (A),E) of the problem (3.1)-(3.2) and a positive constant C
depending only G, p, v, I, E, A such that the coercive estimate

n
(l]
é”Dkk “”LP(G;E) + 1 Aully, G < ClfIlL, G (3.5)

holds.
Let Q be a differential operator generated by problem (3.1)-(3.2) with A = 0; that is,

D(Q) = WN(G;E(A), E, L),

(3.6)
Qu = Zak(x)D u+A(x u+ Z Aqx(x)D

la:l|<1

We say the problem (3.1)-(3.2) is Fredholm in L, (G; E) if dimKer Q = dimKer Q" < oo,
where Q* is a conjugate of Q.

Remark 3.1. Under the substitutions

Xk
Tk = f x bk —xk) dxx, k=1,2,...,n, (3.7)
0

the spaces L,(G;E) and Wg]Y(G;E (A),E) are mapped isomorphically onto the weighted
spaces Lp,y(é; E) and Wé/?(é; E(A),E), where

- n - - bi _
G= E(O, bk>, by = J; kak (bx - xk)kadxk. (3.8)

Moreover, under the substitution (3.7) the problem (3.1)-(3.2) reduces to the nondegenerate
BVP

En: (MDfu(r) + (A(T) + L)u(r) + 3 Adr)D*u(r) = f(7),

k=1 |a:l<1

Mij

S aiDju(Gro) =0, j=1,2,...,dx, x(k) € Gy, (3.9)

i=0

Mkj

> piDiu(Gro) =0, x(k) € Gr, j=1,2,..., k= d, di € (0,),
i=0
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where

ékO = (TlfTZI vy Th=1, 01 Thtls--- /Tn)/ ékb = <Tlr T2, Tk-1, Ekl Thtlse--y Tn)z
k(1) = ar(x1 (1), x2(1), ..., xu(7)), A7) = Alar(x1(1), x2(T), ..., xn(7))),  (3:10)

Ak(‘r) = Ax(ak(x1 (1), x2(T), ..., x,(T))), ¥ (1) = y(x1(7), x2(T), . . ., X0 (T)).

By denOting T, ér CN;kO/ CN;kb/ ak(T)/ AN(T)/ Ak(]/)/ ?k(T) again by X, G/ GkO/ Gkb/ [lk(.X'), A(.X'),
Ak (x), vk, respectively, we get

iak(x)fou(x) + Ay (x)u(x) + Z Ax(x)D*u(x) = f(x),
k=1

Ja:l]<1

Mij

> ariDiu(Gy) =0, j=1,2,..., 1L —di, x(k) € (Gy), (3.11)
i=0

M

Z,BkjiD;{u(Gkb) =0, x(k)eGg, j=12,..., Ik —dk, dr € (0,1x).
i—0

4. BVPs for Partial DOE

Let us first consider the BVP for the anisotropic type DOE with constant coefficients

(L+\u= iakD,{’klu(x) +(A+ Du(x) = f(x),
k=1 (4.1)

iju=fkjr j=1121-”/dk/ iju=fkj/ j=1/2/”-/lk_dk/

where

i k 0 '
D,E]u(x) = [x£ e u(x), (4.2)

Ly; are boundary conditions defined by (3.2), ax are complex numbers, A is a complex
parameter, and A is a linear operator in a Banach space E. Let w1, wko, . . ., wi, be the roots
of the characteristic equations

aw* +1=0, k=1,2,...,n (4.3)
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Now, let

)
ij = Yk, Xk)(l—)/k+pmkj)/plk,p/ Xk = LP (G E), Yi = WrE,yUf]) (G, E(A), E),

k k n o Ye-1 o Yk+l 1,
l( ) = (11112/~-'rlk—l/lk+1/”'/ln)/ Y( )= <x1 7 Xy ""’xk—l’xk-:l""’x">’ (44)
kao = (xlrx21 ey Xk=1,XKk0, Xkt1s -+ -/ xn)‘

By applying the trace theorem [27, Section 1.8.2], we have the following.

Theorem A5. Let Iy and j be integer numbers, 0 < j <l =1,0; = (1-yx+pj+1)/plk, xxo € [0, bx].
Then, for any u € W;,,Y(G; Eo, E), the transformations u — D{(u(kaO) are bounded linear from
W;,,Y(G; Eo, E) onto Fyj, and the following inequality holds:

|Di (G < Clllhg, iy (4.5)

Proof. 1t is clear that
W} (G; Eo, E) = Wy, (0, bi; Y, Xi). (4.6)
L]

Then, by applying the trace theorem [27, Section 1.8.2] to the space W,l,k,Yk (0, by; Yk, Xi),
we obtain the assertion.

Condition 1. Assume that the following conditions are satisfied:

(1) E is a Banach space satisfying the multiplier condition with respect to p € (1,00)
and the weight function y = szlxz" ,0<e<1-1/p;

(2) Aisan R-positive operator in E for ¢ € [0, 7/2);
(3) ax#0, and

aT . o )
|argwk]-—7r|§§—(p, i=1,2,...,d, |argwk]-|55—(p, j=de+1,... L (47)

forO<dr<lt,k=1,2,...,n.

Let B denote the operator in L, (G; E) generated by BVP (4.1). In [15, Theorem 5.1] the
following result is proved.

Theorem A6. Let Condition 1 be satisfied. Then,
(a) the problem (4.1) for f € L,(G; E) and |arg | < ¢ with sufficiently large |\| has a unique

solution u that belongs to W,El] (G, E(A),E) and the following coercive uniform estimate
holds:

ilzkpql—i/lk

k=11i=0

Dllci]”“ * [AulL, Gy < M”f”Lp(G;E)’ (4.8)

L,(GE

(b) the operator B is R-positive in L,(G; E).
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From Theorems A5 and A6 we have.

Theorem A7. Suppose that Condition 1 is satisfied. Then, for sufficiently large |A| with |arg | < ¢
the problem (4.1) has a unique solution u € W,EE]Y(G;E(A),E) forall f € L,(G;E) and fij € Fy;j.
Moreover, the following uniform coercive estimate holds:

li

n
Z |.)L|1 —i/lx

n Ik
2 + ”A””LP(G;E) < M”f”L,,(G;E) Z”fkj"n]-‘ (4.9)
k=1 i= k=1 j=1

”L,,(G;E)
Consider BVP (3.11). Let wy (x), wia2(x), . . ., wii, (x) be roots of the characteristic equations
a(X)w*+1=0, k=1,2,...,n (4.10)

Condition 2. Suppose the following conditions are satisfied:
(1) ax #0 and

larg wyj — | < % -, j=1,2,...,d,

. (4.11)
|larg wy;| < 5= j=de+1,.. 1,
for
Jr
O<di<ly, k=1,2,...,n g¢ [0,5), (4.12)

(2) E is a Banach space satisfying the multiplier condition with respect to p € (1,0)
and the weighted function y = [T¢_;x} (bx — xx)", 0 <y < 1-1/p.

Remark 4.1. Letl = 2my and ax = (—=1)"*by(x), where by are real-valued positive functions.
Then, Condition 2 is satisfied for ¢ € [0, 7/2).
Consider the inhomogenous BVP (3.1)-(3.2); that is,

(L + )L)u = f, iju = fkj- (4.13)

Lemma 4.2. Assume that Condition 2 is satisfied and the following hold:

(1) A(x) is a uniformly R-positive operator in E for ¢ € [0,0r/2), and ay(x) are continuous
functionson G, A € S,

(2) A(x) A" (X) € C(G; B(E)) and A, AVl € [ (G; B(E)) forO < pp<1—|a:1].

Then, for all X € S(p) and for sufficiently large |\| the following coercive uniform estimate
holds:

k

n
Z |.)L|1_i/lk

k=1 i=0

D;;u|| AU, G < C”f”LM(GE) + Z Z”fk]”}‘k (4.14)

Ly (GE) a4

for the solution of problem (4.13).
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Proof. Let G1,Gy,...,Gn be regions covering G and let ¢1,¢»,...,¢pN be a corresponding
partition of unity; that is, ¢; € CF°, 0; = supp¢y; C G; and Zﬁl ¢j(x) = 1. Now, for
ue W,l,,Y(G;E(A),E) and u;(x) = u(x)y;(x), we get

(L+Muj = Zak(x)fouj(x) + Ay ()uj(x) = fi(x), Lxuj=®y, (4.15)
k=1
where
n n ag-1 . )
fi=foi+Da D Ac()] [ D, Caik D "iDju = D’ 9 Au(x)Du(x),
k=1 |a:l|<1 k=1 i=0 |al|<1 (4.16)

@i = ¢jLiitt + Bri () Ly,

here, L;{i and By; are boundary operators which orders less than my; — 1. Freezing the
coefficients of (4.15), we have

zn:ak(xoj)DZ‘uj(x) + Ay (x0j)uj(x) = Fj,
P 4.17)

Lkiu]- :(I)ki, i= 1,2,...,lk, k= 1,2,...,11,

where

F]' = f7 + [A(.’X'o]> - A(x)]u] + kZ [ak(x) - a(xgj)]Diku]-(x). (418)
=1

It is clear that y(x) ~ szlxﬁ on neighborhoods of G; N Gxo and

n

y(x) ~ [ [ox - x)™, (4.19)

k=1

on neighborhoods of G; N Gy, and y(x) ~ C; on other parts of the domains G;, where C;
are positive constants. Hence, the problems (4.17) are generated locally only on parts of the
boundary. Then, by Theorem A7 problem (4.17) has a unique solution u; and for |arg A| < ¢
the following coercive estimate holds:

—

Iy

zn: Z|)L|l—i/lk

k=1 i=0

. n k
D;(u] ||Gj,P/Y + ||Au] ”Gj/P/Y S C [”Pj”Gj,p,y + kz:; ; ”(Dk] ”Fki] : (420)



12 Boundary Value Problems

From the representation of F;, ®k; and in view of the boundedness of the coefficients, we get

~

n
IFill, py < Wfillg, py * H[AGeos) = A)uillg, ., + ;” (a1 (x) — a(x0)) | D (x) HGM

0k, < Nl Licull e, + 115 (o) Ligell , < M(ILkitllp, + Ll )-
(4.21)

Now, applying Theorem A1l and by using the smoothness of the coefficients of (4.16), (4.18)
and choosing the diameters of ¢; so small, we see there is an ¢ > 0 and C(¢) such that

n
1l < Wil + el A e, + e[ DE

< ”f‘/’J”c, oyt M > 1AL( x)D“u](x)”G oyt £||”f||w,l,,r(cj;E(A),E) (4.22)
|a:l|<1

< ”f‘/’j ”Gj,p,y + 5””}' ”W;W(G]-;E(A),E) +C(e) ””J’ ”G,,p,y'

Then, using Theorem A5 and using the smoothness of the coefficients of (4.16), (4.18), we get
Dkl < M[ILkselp,, + | Ligal, | < M [nLkiunpki il opgmxo] - 42

Now, using Theorem A1, we get that there is an € > 0 and C(¢) such that

”u]”w e (b Y, Xi) = E”u]”w e (05 Yie X)) C(S)”u]'”Lp,,,k

(4.24)
< E||uj||W’f,l),(Gj;E(A),E) +C(e) ||uj||Gj,p,y’
where
(0, bk]') =(0,bx) N G]'. (4.25)
Using the above estimates, we get

kil < MlILkiellp,, + 5||”j||w;,y(cj;E(A),E) + C(E)”ui”G/-,p,y' (4.26)

Consequently, from (4.22)—(4.26), we have

n Ik 1-i/1
=1/ lk .
S50 ot Vst

(4.27)

<ClifllG,py +elluillng, + M@luillg,,,, cy, leszllpk,»

k=1 i=1
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Choosing ¢ < 1 from the above inequality, we obtain

n Ik n Ik
3 WD+ llAw,, < [Ilfllc oyt il + 20 ||fki||pk1]- (4.28)

k=1 i=0 Py k=1 i=1
Then, by using the equality u(x) = Z]-Z\il u;(x) and the above estimates, we get (4.14). O

Condition 3. Suppose that part (1.1) of Condition 1 is satisfied and that E is a Banach space
satisfying the multiplier condition with respect to p € (1, ) and the weighted function y =
szlxzk (bk - xk)Vk/ 0 < Yk, Vi <1- 1/P

Consider the problem (3.11). Reasoning as in the proof of Lemma 4.2, we obtain.
Proposition 4.3. Assume Condition 3 hold and suppose that

(1) A(x) is a uniformly R-positive operator in E for ¢ € [0,7r/2), and that ai(x) are
continuous functions on G, A € S,

(2) A(x)A™(X) € C(G; B(E)) and A, AVl e [ (G; B(E)) for0 < <1 —|a: 1.

Then, for all A € S(yp) and for sufficiently large |A|, the following coercive uniform estimate
holds

Ix

n
Z |.)L|1 i/l

k=1 i=0

||Lp/y(G;E) * ”Au”Lnr (GE) = C”f”Lm(G )’ (4.29)

for the solution of problem (3.11).

Let O denote the operator generated by problem (3.11) for A = 0; that is,

D(0) =W}, (G;E(A),E, Lj),
(4.30)

Ou= Y ar(x)Dfu+ A(x)u+ >, Aa(x)D"u
k=1 |a:I|<1

Theorem 4.4. Assume that Condition 3 is satisfied and that the following hold:
(1) A(x) is a uniformly R-positive operator in E, and ay(x) are continuous functions on G,
(2) A(x) A" (X) € C(G; B(E)), and Ay AVl € L (G;B(E)) forO<p<1—|a:1].
Then, problem (3.11) has a unique solution u € W;,/Y(G;E(A),E) for f € L,,(G;E) and

A € S, with large enough |\|. Moreover, the following coercive uniform estimate holds:

I

n
Z |)L|1_i/lk

k=1 i=0

D;(u”Lm(G;E) +lAullL,, ) < C”f”LM(G;E)' (4.31)
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Proof. By Proposition 4.3 for u € W;,,Y(G; E(A),E), we have

n k

S Bl + 4wl < I+ Ll + ] @3)
It is clear that

Il = ||”(L”‘)” L””py—w [+ Dy, + 1Lul,, | (4.33)

Hence, by using the definition of W;,,Y(G; E(A), E) and applying Theorem Al, we obtain
Il < 7y [+ 2yl + g ] (434)

From the above estimate, we have

n lk

Z Z|~A’|17i/lk

k=1 i=0

DLu”pY + | Aull,, < ClI(L+ul,, (4.35)

Py =

The estimate (4.35) implies that problem (3.11) has a unique solution and that the operator
O + .\ has a bounded inverse in its rank space. We need to show that this rank space coincides
with the space L, ,(G; E); that is, we have to show that for all f € L,,,(G; E), there is a unique
solution of the problem (3.11). We consider the smooth functions g; = gj(x) with respect to a
partition of unity ¢; = ¢;(y) on the region G that equals one on supp ¢;, where supp g; C G;
and |gj(x)| < 1. Let us construct for all j the functions u; that are defined on the regions
Q; = GNG; and satisfying problem (3.11). The problem (3.11) can be expressed as

Zn:ak (xoj)D;fuj (x) + Ay (o) uj(x)
k=1

{f+ [A(x0;) - A(x)]u,+z a(x) - ap(x0)) | Du; = 3 Ag(x)D } (4.36)
k=1 |all<1

Lyuj=0,j=1,2,...,N.
Consider operators Oj, in L, (G;; E) that are generated by the BVPs (4.17); that is,

D(0j) =W, (G;E(A),E Lw), i=12,... I k=1,2,...,n,

. (4.37)
Oju = Zak(xoj)fouj(x) + Ay (xoj)uj(x), j=1,...,N.
k=1
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By virtue of Theorem A6, the operators Oj, have inverses O;Al for |argl| < ¢ and
for sufficiently large [A|. Moreover, the operators O]‘)} are bounded from L,,(Gj;E) to
W, (Gj;E(A),E), and forall f € L, (G;; E), we have

n lk

Z Z|)L|l—i/lk

k=1 i=0

i -1
DiOj f

a0, o Sl @39)

Lyy(Gj;E) Lyy(GjiE

Extending u; to zero outside of supp¢; in the equalities (4.36), and using the
substitutions u; = O;_ll v;j, we obtain the operator equations

UjZKj/\Uj+gjf, j=1,2,...,N, (439)

where K j\ are bounded linear operators in Lp(Gj ; E) defined by

Kj =g {f + [A(xo7) = A)] O} + kZ[ak(x) — ax(x0)| DO} = 3 Aa(x)D"O; }
=1

|e:l|<1
(4.40)

In fact, because of the smoothness of the coefficients of the expression K;, and from
the estimate (4.38), for |arg A\| < ¢ with sufficiently large ||, there is a sufficiently small £ > 0
such that

” [A(xoj) - A(x)]ogilvj||Lp,),(Gj;E) < g”Uf”Lp,y(G,‘;E)’
n . (4.41)
éll Jax () - (x| DLOGo |, <elloily, o

Moreover, from assumption (2.2) of Theorem 4.4 and Theorem A1 for € > 0, there is a constant
C(g) > 0 such that

>

|a:l|<1

Aa(x)D”‘O]Tjuj ”LW(G]_;E) <ellv ”w},,,,(cj;E(A),E) +C(e)|v; ”Lp,,,(cj;g)' (4.42)

Hence, for |arg A| < ¢ with sufficiently large ||, there is a 6 € (0,1) such that ||Kj,[| < 6.
Consequently, (4.39) for all j have a unique solution v; = [I - K N gjf- Moreover,

-1
il 60 = 1=Kl "0, ¢y < Wl (4.43)

Thus, [ - K j)t]_l gj are bounded linear operators from L, ,(G;E) to L,,(Gj;E). Thus, the
functions

uj=Upf =05 [T-Kn]"gif (4.44)
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are solutions of (4.38). Consider the following linear operator (U + \) in L,(G; E) defined by

DU+L) =W, (GE(A),E L), j=12,...,k k=12,...,n,

N . (4.45)
U+0)f =i (Ujf = O [I - Kl gjf.

j=1

It is clear from the constructions U; and from the estimate (4.39) that the operators U}, are
bounded linear from L, ,(G; E) to W;,/Y (Gj;E(A),E), and for | arg A| < ¢ with sufficiently large
|A|, we have

k

i Z|J{|1*i/lk

k=1 i=0

Ditf| + laupfll, <Clifl, (4.46)

Therefore, (U + A) is a bounded linear operator in L ,(G;E). Since the operators
Uj) coincide with the inverse of the operator O, in L, ,(Gj; E), then acting on O, to u =

S giUjf gives

N N
Ou =Y 9,00(Upf) +®if = f+ D, 0uf, (4.47)
j=1 j=1

where @) are bounded linear operators defined by

n

n Ix ak
Ouf - {ZakZCkaZ%Dif"’(Unf) ¢ 5 AT Con DD (U } 19
k=1 =1

Ja:l]<1 k=1v=1

Indeed, from Theorem Al and estimate (4.46) and from the expression ®;,, we obtain that
the operators @;, are bounded linear from L,(G;E) to L,(G;E), and for |arg\| < ¢ with
sufficiently large [A|, there is an € € (0,1) such that ||®@;,|| < . Therefore, there exists a
bounded linear invertible operator (I + Zﬁl @; )t)_l ; that is, we infer for all f € L,,(G;E)
that the BVP (3.11) has a unique solution

-1
N N
u(X) = Oxlf = Z(P]O]_Al [I - K]')L] 71g]‘ <I + Z(Dj)‘> f (4.49)
j=1

=1
O

Result 1. Theorem 4.4 implies that the resolvent (O + 1) satisfies the following anisotropic
type sharp estimate:

n lk

Z Zl)Lllfi/lk

k=1 i=0

Di(O+1)! || * ||A(o +1)7 || <C, (4.50)

B(Lyy (GE) B(L,y(GE)) —

for |arg A| < ¢, € [0,7/2).
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Let Q denote the operator generated by BVP (3.1)-(3.2). From Theorem 4.4 and
Remark 3.1, we get the following.

Result 2. Assume all the conditions of Theorem 4.4 hold. Then,
(a) the problem (3.1)-(3.2) for f € L,(G;E), |arg\| < ¢ and for sufficiently large ||

has a unique solution u € W;E{]Y(G;E (A),E), and the following coercive uniform
estimate holds

—

k

i Zl)‘|1_i/lk

k=1 i=0

[i]
D} ””Lp<c;5> + 1 Aully, ey < MIFIlL, ) (4.51)

(b) 15 EglE)e 0w (E), then the operator O is Fredholm from WFE{]Y(G;E(A),E) into
p\r L)

Example 4.5. Now, let us consider a special case of (3.1)-(3.2). Let E = C, [y =2 and I, = 4,
n=2,G=(0,1) x (0,1) and A = g; that is, consider the problem

Lu= alD)[Cz]u + azDE]u + bDE]DE]u + apu = f,

mij . mij )
ZaliD,[f]u(O, y) =0, Zﬁlium (Ly) =0, myje{0,1},
@52)
myj . myj )
N D u(x,0)=0, Y pull(x,1)=0, 0<my <3,
i=0 i=0
where
il = [x“l(l - x)“za%] , D= [yﬁl(l - y)ﬁzai] :
Y (4.53)

u=u(x,y), ay eC(E), a; <0, a, > 0.

Theorem 4.4 implies that for each f € L,(G), problem (4.52) has a unique solution u €
W,El] (G) satisfying the following coercive estimate:

| D

[2]

21, [4]

D] < -
L,(G) * ” y U L,(G) + ”u”Lp(G) = C”f”LP(G) (4.54)

Example 4.6. Let Iy = 2my and ax = br(x)(-1)"*, where by are positive continuous function
on G, E = C” and A(x) is a diagonal matrix-function with continuous components d,,(x) > 0.
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Then, we obtain the separability of the following BVPs for the system of anisotropic
PDEs with varying coefficients:

Z(—l)mkbk(x)Dimkum(x) + A () Uy (X) = fr(x),
k=1

myo my o (4.55)
> kjiDjun (Gro) = 0, > BrjiDjim(Gip) =0,
i=0 i=0

i=12,....m, m=12,...,v
in the vector-valued space L, ,(G; C").

5. The Spectral Properties of Anisotropic Differential Operators

Consider the following degenerated BVP:

iak(x)D}jk]u(x) + AU + Y Agx)Du(x) = f(x),
k=1 |a:I|<1

Mkj

N a;iDu(Gro) =0, j=1,2,...,dx, (5.1)
i=0

Mkj

N BiDPu(Giw) =0, j=1,2,..., 1~ dy, di € (0,1),
i=0

where

G={x=(x1,x2,...,%n),0<xx <br}, a=(mq,az...,a,),

| )i (5.2)
D[u] — Dgal]DgaZJ . D};X"], Dmu(x) = I:xYkT M(X),
k

Consider the operator Q generated by problem (5.1).

Theorem 5.1. Let all the conditions of Theorem 4.4 hold for vi = 0 and A™ € 04 (E). Then, the
operator Q is Fredholm from W,EE]Y(G; E(A),E) into L,(G; E).

Proof. Theorem 4.4 implies that the operator Q + A for sufficiently large |A| has a bounded
inverse (O + 1)~ from L,(G;E) to ngl] (G, E(A),E); that is, the operator Q + A is Fredholm
from WFEI] (G;E(A),E) into L,(G; E). Then, from Theorem A2 and the perturbation theory

of linear operators, we obtain that the operator Q is Fredholm from W,E{]Y(G;E (A),E) into
L,(GE). O
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Theorem 5.2. Suppose that all the conditions of Theorem 5.1 are satisfied with v = 0. Assume that
E is a Banach space with a basis and

21
Zl— , si(I(E(A),E) ~j ", j=1,2,...,00, v>0. (5.3)

Then,

a) for a sufficiently large positive d
5i((Q+d) " (Ly(GE))) ~ 7/, (5.4)

(b) the system of root functions of the differential operator Q is complete in L,(G; E).

Proof. Let I(Ey, E) denote the embedding operator from Ej to E. From Result 2, there exists a

resolvent operator (Q + d)™! which is bounded from L,(G;E) to Wg]y(G,‘ E(A),E). Moreover,
from Theorem A4 and Remark 3.1, we get that the embedding operator

1(WEHG;E(A), E), Ly (G E)) (5.5)
is compact and
5; <1<w,£{1Y(G;E( ),E), L,(G; E))) 71/ (v+20), (5.6)

It is clear that

(Q+d) " (L,(G:E) = (Q+d)™ (L, (G; E), W HG; E(A), E))
(5.7)
x I(W,EE]Y(G; E(A),E),L,(G; E)).

Hence, from relations (5.6) and (5.7), we obtain (5.4). Now, Result 1 implies that the
operator Q + d is positive in L,(G; E) and

Q+d) " eoy(L(GE), q>- !

+

(5.8)

Then, from (4.52) and (5.6), we obtain assertion (b). O
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Consider now the operator O in L,,(G;E) generated by the nondegenerate BVP
obtained from (5.1) under the mapping (3.7); that is,

D(O) = W’l),y (Gr E(A)/ E, ij)/
n l (5.9)
Ou= Zak(x)Dkku + A(x)u(x) + Z Ay (x)D%u.
k=1 Je:l|<1
From Theorem 5.2 and Remark 3.1, we get the following.

Result 3. Let all the conditions of Theorem 5.1 hold. Then, the operator O is Fredholm from
W;,,Y(G; E(A),E) into L, (G; E).

Result 4. Then,

(a) for a sufficiently large positive d

s]-<(O +d) N (L,(G; E))) ~ U ) (5.10)

(b) the system of root functions of the differential operator O is complete in L, ,(G; E).

6. BVPs for Degenerate Quasielliptic PDE

In this section, maximal regularity properties of degenerate anisotropic differential equations
are studied. Maximal regularity properties for PDEs have been studied, for example, in [3]
for smooth domains and in [28] for nonsmooth domains.

Consider the BVP

Lu= Y a®)DMu(x,y) + 3 ap(y)Dyu(x,y) + 3 valx,y) D u(x,y)
k=1 |6|<2m ladl<1
=f(x,y), x€G yeqQ,

Mij

ZakﬁD,{(i]u(Gko,y) =0, x(k)eGk, yeQ, j=1,2,...,dx,
i=0

M . (6.1)
ZﬁkjiD;[:]u(Gkb/ y) =0, x(k)eGi, yeQ,
i=0
j =1,2,.. .,lk —dk, dk € (O,Zk),
Bju = Z bjﬂ(y)Dl;u(x,y) =0, xeG, j=12,...,m,

|ﬂ|=m,- y€0Q
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where D; = —i(0/0y;), akji, Pxji are complex number, y = (y1,...,y,) € Q C R¥ and

. i
G={x=(x1,%x2,...,%n),0 < x < b}, DI[J] = <x£k(bk —xk)vka%) ,
k

GkO = (x1/x2/ ey Xi-1, 0/ Xi+1s+ - /xn)/

Gkb = (‘xllle A kafllbkl xk+1l crry xn),

(6.2)
OSmkjSZk—l, |ak]-|+|ﬁk]~|>0, i=12,... 1.
x(k) = (x1/x2/---rxk—1/xk+1/-- -/xn)/ Gk = H(O,b]),
j#k
i k=12,...,n

Let Q = GxQ, p = (p1,p). Now, LP(Q) will denote the space of all p-summable scalar-
valued functions with mixed norm (see, e.g., [29, Section 1, page 6]), that is, the space of all
measurable functions f defined on Q, for which

T < [ ([1seew |mdx)p/pl dy>1/p . 63)

Analogously, W' (Q) denotes the Sobolev space with corresponding mixed norm.
Let wyj = wij(x),j=1,2,...,1, k =1,2,...,n denote the roots of the equations

ar(x)w* +1=0. (6.4)
Let Q denote the operator generated by BVP (6.1). Let
F= B(LP (Ez)) (6.5)

Theorem 6.1. Let the following conditions be satisfied:
1) aq € C(ﬁ)for each |a| = 2mand a, € [Le + L, ] () for each |a| = k < 2m with 1 > p1,
p1 € (1,00) and 2m —k > 1/1i, va € Lo,

(2) bjg € C*=™1(3Q) for each j, p,m; < 2m, y = [T} ,xp (b — x1)™, 0 <y, ve < 1= 1/p,
p € (1,00),

B) fory e Q, ¢ € R, neS(pr), g1 €[0,r/2), & + 1| #0 let

n+ D, aa(y)E #0, (6.6)

|a|=2m
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(4) for each yo € 09, the local BV Ps in local coordinates corresponding to yo
n+ 2 aa(yo)D*d(y) =0,
|a|=2m

Bjoﬁ': Z b]ﬂ(yo)Dﬂﬁ(y) Zh]', j:1,2,...,m
|l=m;

6.7)

has a unique solution & € Co(Ry) forall h = (hy, hy, ..., hy) € R™ and for &' € RF! with
I§' + 1 #0,

(5) ax € C(G), ax(x) #0 and

larg wyj — | < % -9, j=1,2,...,d,

1<Z_ z 6.8
|arg(,(Jk]| S 2 (pl (/’e [0/ 2>/ ( )

jde+1,...,lk, O<dk<lk, k=1,2,...,n, UaELoo(G), x € G.

Then,

(a) the following coercive estimate

é”l)’[‘lk]u & " Z ”Dgu”Lp(é) * ”u”Lp(ﬁ) < C”f“L,,(ﬁ) (6.9)

L,(Q
p() |pl=2m

holds for the solution u € WI[,I,]Y’M(Q) of problem (6.1),
(b) for A € S(y) and for sufficiently large |A|, there exists a resolvent (Q + N7 and

—

n k

Z |)L|1_i/lk

Di(Q+A)" ||F + ”A(Q + ) ||F <M, (6.10)
k=1 i=0

(c) the problem (6.1) for v = 0 is Fredholm in Ly (Q),
(d) the relation with v =0

sj<(Q +)L)71 <Lm<é>>> ~ ]'—1/(10+%0), Ip = gi = ﬁ (6.11)

holds,
(e) for vic = 0 the system of root functions of the BVP (6.1) is complete in LP(Q).
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Proof. Let E = L, (£2). Then, from [3, Theorem 3.6], part (1.1) of Condition 1 is satisfied.
Consider the operator A which is defined by

D(A) =W (Q;Bju=0),  Au= > ag(y)Du(y).

o (6.12)

For x € Q, we also consider operators
Ap(x)u =v.(x,y)D*u(y), |a:l]<1. (6.13)

The problem (6.1) can be rewritten as the form of (3.1)-(3.2), where u(x) = u(x,-) and f(x) =
f(x,-) are functions with values in E = L,, (€2). From [3, Theorem 8.2] problem

nu(y) + >, as(y)DPuly) = f(y),

|ﬂ|§2m
(6.14)
Bju = Z bjp(y)Dﬂu(y) =0, j=12,....m

[Bl<m;

has a unique solution for f € L, () and arg n € S(¢1), || — oo. Moreover, the operator
A, generated by (5.8) is R-positive in L,,; that is, part (2.2) of Condition 1 holds. From (2.2),
(3.7), and by [29, Section 18], we have

S Ayl <C 3 I ull, < el e + ull, (6.15)
Ja:l|<1 Je:l|<1

that is, all the conditions of Theorem 5.2 and Result 4 are fulfilled. As a result, we obtain
assertion (a) and (b) of the theorem. Also, it is known (e.g., [27, Theorem 3.2.5, Section 4.10])
that the embedding W;l"’(Q) C Ly, (Q) is compact and

( <W2m(c) L, (G))) 1/, (6.16)

Then, Results 3 and 4 imply assertions (c), (d), (e). O
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7. Boundary Value Problems for Infinite Systems of Degenerate PDE

Consider the infinity systems of BVP for the degenerate anisotropic PDE

Zak(x)D[k U () +Z (dj(x) + M) (x) + > Zda,m(x)D Vi (x)

le:l]<1j=1
=fm(x), x€G m=12,...,0

my; (7.1)
Zakﬂ GkO) 0, X(k) € G, ] =L12,... rdkl

Mk

N BiDPu(Giw) =0, x(k) € G, j=1,2,..., 1k dy,
i=0

where dy € (0,Ix), ax are complex-valued functions, ay;ji, fxji are complex numbers. Let

G={x=(x1,x2,...,%1),0 < x <bg}, DI[:] = (xzk(bk —x@”"%) ,
k

Gro = (x1,x2,. .+, Xk-1,0, Xks1, - -+, Xn), || +|Bri| >0,

Gkb = (xll X2,y Xk=1, bk/ Xk+1s+ - /xn)/ 0 < mkj < lk - ]-/

x(k)=(xl,xz,...,X'k_l,Xk+1,...,xn), Gk=H(0/b]’), j,k=].,2,...,7’l,
4k (7.2)

D(x)={dn(x)}, dn>0, u={u,}, du={dyu,}, m=12-- o0,

1/q
1,(D) == {u tu €y, |lull, iy = |Dull, = <Z|dmum|‘7> < oo},

i=1,2,..,hk k=1,2,...,n

Let V denote the operator in L,(G; ;) generated by problem (7.1). Let

B = B(L,(G;1,)). (7.3)
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Theorem 7.1. Lety = nglx?(bk —x )", 0<y, v <1-1/p,pe (1,0), ax € C(G), ax(x) #0,

and |argwyj — x| < /2 - @, |argwyj| < x/2 -9, j =1,2,...,.Ik, o € ¢ € [0,1/2), x € G,
A € C(G), dum € Lo (G) such that

maxsupZdu]m(x)d (el M, VxeG O<pu<l—|a:l|. (7.4)

Then,

a) forall f(x) = {fu(x)}7 € Ly,(G;1y), for |arg \| < ¢ and sufficiently large |A|, the problem
(7.1) has a unique solution u = {u,,(x)}7° that belongs to the space Wg]y(G, l4(D), 1) and
the following coercive estimate holds:

1/p
Z”: I <§:|Dl[(zk]um(x)|q>r’/qu . f <§:|dmum(x)|q>wqu
k=1 |7 G \m=1 G \m=1
1/p

o p/aq
<clf. (o) ]

(b) there exists a resolvent (V + L)~ of the operator V and

1/p

(7.5)

k

n
> i

k=1 j=0

DI (v + 1) ”B + ||A(V + 7 ”B <M, (7.6)

c) for vy = 0, the system of root functions of the BVP (7.1) is complete in L,(G; ;).

Proof. Let E = 1;, A and A,(x) be infinite matrices such that
A= [dubmj], Aa(x) = [dajm(x)], m,j=1,2,..., 0. (7.7)

It is clear that the operator A is R-positive in I;. The problem (7.1) can be rewritten in
the form (1.1). From Theorem 4.4, we obtain that problem (7.1) has a unique solution
u € W,(G;1y(D),l,) for all f € L,(G;1,) and

k

n
Z |.)L|1 i/l

k=1 i=0

||L,,(G;l)+”A Iy < M Fll, 61 (7.8)

From the above estimate, we obtain assertions (a) and (b). The assertion (c) is obtained
from Result 4. O
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